换也是完全重构的,因此Contourlet变换是一个紧框架操作。 (2) 如果LP和DFB都采用正交滤波器,则Contourlet变换提
供了一个框架界为1的紧框架。 (3) Contourlet变换的冗余率小于4/3。 (4) 使用FIR滤波器,N像素图像的Contourlet变换的计算复
杂度为O(N)。 (5) 假定在LP金字塔的第j层应用lj级DFB,则图像的离散
图6-3为k层结构方向滤波器组的多通道表示。 Bamberger 和Smith提出方向滤波器组(DFB)。 它能够对图像进行方向分 解,同时具有很好的重构性。 但是,该DFB结构必须遵循一种 复杂的树形展开规则才能获得较为理想的频率分割。
图6-3 k层结构方向滤波器的多通道表示
第六章 基于Contourlet变换的人脸图像超分辨率研究
因此,M.N.Do.提出了一个新的DFB,并应用于Contourlet变 换。 该DFB是基于梅花滤波器组(Quincunx Filter Bank, QFB) 的扇形滤波器,它可以不用对输入图像进行调节,并且有一个简 单的展开分解树的规则。 实现DFB的锲形频率切分可以通过 QFB的扇形方向频率切分滤波器与二次取样的“旋转”的适 当组合来实现。 这样大大简化了DFB的结构。 由于合成部分 与分解部分是严格对称的,因此下面只介绍分解部分。
第六章 基于Contourlet变换的人脸图像超分辨率研究
图6-6 Contourlet变换流程图
第六章 基于Co1.2 Contourlet变换的特性分析 Contourlet变换主要具有如下特征: (1) 如果LP和DFB都采用完全重构滤波器,则Contourlet变
第六章 基于Contourlet变换的人脸图像超分辨率研究
为了获得四个方向的频率分割,DFB的前两层分解如图6-4 所示,其中Q0和Q1分别为第1层、 第2层的抽样矩阵。 根据 Noble恒等式,可将图6-4中第2层的滤波器与抽样矩阵Q0相互 交换。 扇形滤波器被等效为具有象限频率响应的象限滤波器, 再与第1层的扇形滤波器相结合,就会得到四个方向的子带分 割,如图6-5所示。 为了实现更理想的频率分割,在DFB结构的 第3层分解中,将QFB和“旋转”算子相结合。 使用“旋转” 算子对频率子带进行重新排序,从而实现Contourlet结构中DFB 的二维频率平面的理想分割。