工程力学-材料力学-第12章动量矩定理(华蕊)
- 格式:pptx
- 大小:1.55 MB
- 文档页数:34
第十二章动量矩定理§12—1质点和质点系的动量矩一、质点的动量矩质点Q的动量对于点0的矩,定义为质点对于点0的动量矩M O mv = r mvM z mv 二2 0Q AM O mv [二M z mv动量矩的单位:kgm2/s、质点系的动量矩nL o 二為M o m i V ii』nL z八M z m i v iM O (mv)(r mv ) dtdtdr dtmv rmvdt绕定轴转动刚体对其转轴的动量矩等于刚体对转轴的转动惯量与转动角 速度的乘积n n n2L z 八 M z mM八 m i y 订i =mmyy ynJ z 八 m"2id :§12— 2动量矩定理、质点的动量矩定理M O mv =v mv r F dt-J—M O mv 二 M O F dt质点的动量矩定理:质点对某定点的动量矩对时间的一阶导数,等于作 用力对同一点的矩。
直角坐标投影式为d厂 一Mx(mv)= Mx(F ) dt pl 2 My(mv)=My(F ) dt plL 2M z (mv)= M z (F ) dtL z=J z :特殊情形:当质点受有心力F的作用时,如图11-4所示,力矩M°(F)=O,则质点对固定点0的动量矩M o(mv)=恒矢量,质点的动量矩守恒。
例如行星绕着恒星转,受恒星的引力作用,引力对恒星的矩M°(F)=O,行星的动量矩M o (m v )=恒矢量,此恒矢量的方向是不变的,因此行星作平面曲线运动;此恒矢量的大小是不变的,即mvh=恒量,行星的速度v与恒星到速度矢量的距离h成反比。
(1)从而由式(1)得单摆运动微分方程为护阶0(2)解式(2) 得单摆的运动规律为9 =cp o Sin( 3n t +8)其中,3-g称为单摆的角频率,单摆的周期为例1如图所示单摆,由质量为m的小球和绳索构成。
单摆悬吊于点0,绳长摆在铅垂平面内绕点0作微振幅摆动,设摆与铅垂线的夹角为「为逆时针时正,如图所示。
3 动量矩定理动量定理给出了三个独立的方程,在某种意义上来说,它只解决了一个点(质心)的运动问题,不足以全面地描述质点系的运动状态。
例如,一均质圆盘绕过质心且垂直于圆盘的定轴转动,不论圆盘转动快慢如何,也不论其转动快慢有何变化,它的动量始终为零。
这说明动量定理不能反映这种运动的规律。
动量矩定理反映了质点系外力系在空间的分布与质点系运动之间的规律。
设n 个质点组成质点系,其中第i 个质点的质量为m i ,矢径为r i ,瞬时速度为v i ,该质点对固定点O 的动量矩为L Oi (图8-1)定义为(8.1.12) ),...,2,1(,n i m i i i Oi =×=v r L 动量矩是一个矢量。
定义质点系对O 点的动量矩为质点系中每个质点对同一点动量矩的矢量和,即(8.1.13)i i ni i ni Oi O m v r L L ×==∑∑==11在直角坐标系中,质点系的动量矩可表示为(8.1.14) k j i L z y x O L L L ++=式中L x , L y , L z 为质点系动量矩L O 分别在轴x , y , z 上的投影。
类似静力学中力对点之矩和力对轴之矩的关系,有质点系对点O 的动量矩在通过该点的轴上的投影等于质点系对该轴的动量矩,即质点系对坐标轴x , y , z 的矩为(8.1.15)∑∑∑===−=−=−=ni ix i iy i i z n i n i iz i ix i i y iy i iz i i x v y v x m L v x v z m L v z v y m L 111)(,)(,)(作为特殊的质点系,刚体作平移和定轴转动时动量矩的计算相对简单。
(1) 平移刚体对O 点的动量矩 设平移刚体的质量为m ,同一瞬时刚体上各点的速度均相等,用v 表示,由式(8.1.13)得()v r v r v r L m m m C i i i i i O ×=×=×=∑∑)( (8.1.16)因此,刚体平移时,可将全部质量集中在质心,作为一个质点计算其动量矩。