工程力学材料力学答案-第十一章解析
- 格式:doc
- 大小:290.50 KB
- 文档页数:8
工程力学第十一章习题解答题目:一物体质量为10kg,在水平地面上以10m/s的初速度开始运动,若物体受到一个恒力F=20N的作用,且与运动方向相反,求物体在力作用下停止前所经过的距离。
解答过程:一、问题分析根据牛顿第二定律,力等于质量乘以加速度,即F=ma。
本题中,物体受到一个恒力F=20N的作用,且与运动方向相反,因此加速度a为负值。
我们需要求解物体在力作用下停止前所经过的距离。
二、解题步骤1. 求加速度a根据牛顿第二定律,F=ma,代入已知数据,得到加速度a:a = F/m = -20N / 10kg = -2m/s²2. 求物体停止前所经过的时间t由于物体初速度v0=10m/s,加速度a=-2m/s²,根据速度-时间关系式v=v0+at,我们可以求解物体停止前的时间t:0 = 10m/s - 2m/s² tt = 10m/s / 2m/s² = 5s3. 求物体在力作用下停止前所经过的距离s根据位移-时间关系式s=v0t + 1/2at²,代入已知数据,求解物体在力作用下停止前所经过的距离s:s = 10m/s 5s + 1/2 (-2m/s²) (5s)²s = 50m - 25ms = 25m三、答案验证根据动能定理,物体在运动过程中,动能的变化等于外力做的功。
物体从初始速度10m/s减速到0,动能变化为:ΔK = 1/2 m (v² - v0²) = 1/2 10kg (0 - 100m²/s²) = -500J外力做的功为:W = F s = 20N 25m = 500J由于动能变化等于外力做的功,所以我们的答案是正确的。
四、总结本题主要考查了牛顿第二定律、速度-时间关系式、位移-时间关系式和动能定理的应用。
通过求解加速度、时间和距离,我们得到了物体在力作用下停止前所经过的距离为25m。
11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。
解:(1) 画梁的弯矩图(2) 最大弯矩(位于固定端):max 7.5 M kN =(3) 计算应力: 最大应力:K 点的应力:11-7 图示梁,由No22槽钢制成,弯矩M =80 N.m ,并位于纵向对称面(即x-y 平面)内。
试求梁内的最大弯曲拉应力与最大弯曲压应力。
解:(1) 查表得截面的几何性质:4020.3 79 176 z y mm b mm I cm ===(2) 最大弯曲拉应力(发生在下边缘点处)()30max880(7920.3)10 2.67 17610x M b y MPa I σ-+-⋅-⨯-⨯===⨯6max max max227.510176 408066ZM M MPa bh W σ⨯====⨯6max max 337.51030132 ********K ZM y M y MPa bh I σ⋅⋅⨯⨯====⨯x M1zM M z(3) 最大弯曲压应力(发生在上边缘点处)30max88020.3100.92 17610x M y MPa I σ---⋅⨯⨯===⨯ 11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。
解:(1) 求支反力31 44A B R qa R qa ==(2) 画内力图(3) 由胡克定律求得截面C 下边缘点的拉应力为:49max 3.010******* C E MPa σε+-=⋅=⨯⨯⨯=也可以表达为:2max4C C z zqa MW W σ+== (4) 梁内的最大弯曲正应力:2maxmax max 993267.5 8C zz qa M MPa W W σσ+====qxxF SM11-14 图示槽形截面悬臂梁,F =10 kN ,M e =70 kNm ,许用拉应力[σ+]=35 MPa ,许用压应力[σ-]=120 MPa ,试校核梁的强度。
第11章典型习题解析1.用卡氏第二定理求图12.3所示刚架A 截面的位移和B 截面的转角。
略去剪力Q 和轴力N 的影响,E Ⅰ为已知.解:(1)A 截面的位移AB 段弯矩:M(x)=-Px (0≤x ≤l ) ∂M(x) /∂P=-x在A 处虚加一水平力向右的力Q,之后,再令其为0.那么,BC 段弯矩:M(y)=-2P l - Q l +(P+Q)y∂M(y) /∂P=-2l +y ∂M(y) /∂ Q=-l +yA 截面的竖直位移:Y A ==∂∂∑⎰EI P Mdx ML 0 ()()()()⎰⎰+-+-+--L LEIdy y L Py PL EI dx x Px 00222 =EIPL 223A 截面的水平位移: X A =EI Q M M L ∂∂∑⎰0dx=()()EI dy y L Qy Py QL PL L 200+-++--⎰ 积分,令Q=0得 ()()EIPL EI dy y L Py PL XA L 1252230=+-+-=⎰(2)B 截面的转角在B 处虚加一力偶M B,AB 段弯矩:M(x)=-Px (0≤x<l )BC 段弯矩:M(y)=-2P l -B M +Py (0<y<l )∂M(x) /∂MB=0 ∂M(y) /∂MB =-1 ∑⎰∂∂=L B B EI dx M M M 0θ =()()⎰-+--L B EI dxPy M PL 0212 EIPL 432= 2.用卡氏第二定理求图示的A 截面的位移和B 截面的转角。
略去剪力Q 和轴力N 的影响,E Ⅰ为已知。
解:(1)A 截面的位移在A 点虚加一向下的力F ,支反力2qL F P Y B ++= (L 为AB 和AD 的长度) P X qL P Y C C -=--=,2AB 段弯矩: M1=0∂ M1 /∂F=0AD 段弯矩:M2(x)=2qL P F qx 2++⋅1()x-2∂M2(x) /∂F=xCD 段弯矩:M3(y)=PyaⅠⅠ2ⅠC DA 截面的竖直位移:∑⎰∂∂=L A EIdx F M M Y 0=⎰⋅⎥⎦⎤⎢⎣⎡-⋅⎪⎭⎫ ⎝⎛++L EI xdx qx x F qL P 02222 积分,令F=0得34A PL qL Y 6EI 24EI =+求A 截面的水平位移时, 在A 处虚加一水平力向右的力Q, 再令其为0.那么, 支反力B qL Y P Q 2=++ (L 为AB 和AD 的长度)C C qL Y P Q X P Q 2=-+=-+()+,() AB 段弯矩: M1=0∂ M1 /∂Q=0AD 段弯矩:M2(x)=(P+Q)x ⋅∂M2(x) /∂Q=xCD 段弯矩:M3(y)=(P+Q )y∂M3(y) /∂Q=yA 截面的水平位移∑⎰∂∂=L A EI dx Q M M X 0=()⎰⋅+L EIdx x Q P 022=()⎰⋅+L EI ydy y Q P 0积分,令Q=0得 EIPL X A 23= (2) B 截面的转角在B 处虚加一顺时针的力偶M B, 积分,并令其为零。
工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图解得: P F PF AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交2-4 图示为一拔桩装置。
在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。
然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=0.1rad (弧度)(当α很小时,tanα≈α)。
如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。
题2-4图 作BD 两节点的受力图 联合解得:kN F F F A80100tan 2=≈=α 2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a 所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN ,吊杆的尺寸如图b 所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS1=h*t=40*4.5=180mm2S2=(H-d)*t=(65-30)*4.5=157.5mm2∴σmax=2FS=38.1MPa1-6:一长为30cm的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1)AC. CD DB 各段的应力和变形.(2)AB杆的总变形.解: (1)σAC=-20MPa,σCD=0,σDB=-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0.01mm (2) ∴ABl ∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知 材料的弹性模量E=200Gpa,试求各段的应力和应变. 解:31.8127AC ACCB CBPMPa S PMPa S σσ====AC AC ACLNL EA EA σε===1.59*104,CBCBCBLNLEA EAσε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:NllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
单选题
1.在图示结构中,如果将作用于构件AC上矩为M的
力偶搬移到构件BC上,则A、B、C三处约束力的
大小( )。
A.都不变
B.A、B处约束力不变,C处约束力改变;
C.都改变
D.A、B处约束力改变,C处约束力不变
答案:C
知识点:第二章
难度: 4
解析: 力偶的性质
2.下列结论中哪些是正确的()?
(1)为保证构件能正常工作,应尽量提高构件的强度。
(2)为保证构件能正常工作,应尽量提高构件的刚度。
(3)为保证构件能正常工作,应尽量提高构件的稳定性。
(4)为保证构件能正常工作,应尽量提高构件的强度、刚度和稳定性。
A.(1),(2),(3)
B.(4)
C.全对
D.全错
答案: C
知识点:第五章
难度: 3
解析: 材料力学的定义
3.变截面杆AD受集中力作用,如图所示。
设N AB、N BC、N CD分别表示该杆AB段,BC段和CD 段的轴力,则下列结论中正确的是( )
A.N AB >N BC >N CD
B.N AB =N BC=N CD
C.N AB=N BC >N CD
P
P
D
C
B
A。
第十一章 能量方法第十一章答案11、1 图示桁架各杆的材料相同,截面面积相等。
试求在F 力作用下,桁架的变形能。
12,2N N F F F ==32N F F = 2222222()2222N F F l l F x V dx EA EA EA ε⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭==+⎰2234F l EA=、11、2计算图示各杆的应变能。
(a) 2223244F l F l F l V EA EA EAε=+=、 (b) 2212/32/3120022e e l l M M x x l l V dx dx EI EIε⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=+⎰⎰ /32/322221220023318l l e e M M l x x EIl EI ⎛⎫⎛⎫⎛⎫ ⎪=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭、11、3 传动轴受力情况如图所示。
轴的直径为40mm ,材料为45钢,E = 210GPa ,G = 80GPa 。
试计算轴的应变能。
由扭转引起的应变能:20.220800.0322pV dx GI ε==⎰由弯曲引起的应变能:20.210(531.4)20.0292x V dx EIε==⎰120.061J V V V εεε=+=、11、4 计算图示梁的应变能,并说明就是否满足叠加原理及其原因。
2230()26lFl Fx F lV dx EI EIε-==⎰而22310()22l Fl F lV dx EI EIε==⎰22320()26lFx F l V dx EI EIε-==⎰、不满足叠加原理,因为应变能与内力的关系不就是线性的。
、0、36kN(b)1kN200200 EIMe=FlFlx11、5在外伸梁的自由端作用力偶矩中点C 的挠度w c 。
(见课本下册p40例12-4)11、6 图示刚架的各杆的EI 皆相等,试求截面A 、B 的位移与截面C 的转角。
(a) A 点:在A 点加一个向下的单位力。
M (x 1)=0, M (x 2)=Fx 2, M (x 3)=Fb11()M x x =,22()M x Fx =,3()0M x = 3330()()h M x M x Fabhdx EI EI∆==-⎰、C 点:在C 加一个逆时针的力偶矩为1的单位力偶。
材料力学答案第十一章仅供学习与交流,如有侵权请联系网站删除 谢谢50第十一章 能量方法第十一章答案11.1 图示桁架各杆的材料相同,截面面积相等。
试求在F 力作用下,桁架的变形能。
12,2N N F F F == 32N F F = 222222()2222N F F l l F x V dx EA EA EA ε⎫⎛⎫⎪ ⎪⎝⎭⎝⎭==+⎰2234F l EA=.11.2计算图示各杆的应变能。
(a)仅供学习与交流,如有侵权请联系网站删除 谢谢512223244F l F l F l V EA EA EAε=+=.(b) 2212/32/3120022e e l l M M x x l l V dx dx EI EIε⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=+⎰⎰ /32/322221220023318l l ee M M l x x EIl EI ⎛⎫⎛⎫⎛⎫ ⎪=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.11.3 传动轴受力情况如图所示。
轴的直径为40mm ,材料为45钢,E = 210GPa ,G = 80GPa 。
试计算轴的应变能。
由扭转引起的应变能:20.220800.0322pV dx GI ε==⎰由弯曲引起的应变能:20.210(531.4)20.0292x V dx EIε==⎰120.061J V V V εεε=+=.11.4 计算图示梁的应变能,并说明是否满足叠加原理及其原因。
2230()26lFl Fx F l V dx EI EIε-==⎰0.08kN· 0.36kN (b) 1kN 2000200EIMe=FlFlx仅供学习与交流,如有侵权请联系网站删除 谢谢52而22310()22lFl F l V dx EI EIε==⎰22320()26lFx F l V dx EI EIε-==⎰.不满足叠加原理,因为应变能与内力的关系不是线性的。
11.5在外伸梁的自由端作用力偶矩M跨度中点C 的挠度w c 。
11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的
最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。
解:(1) 画梁的弯矩图
(2) 最大弯矩(位于固定端):
max 7.5 M kN =
(3) 计算应力: 最大应力:
K 点的应力:
11-7 图示梁,由No22槽钢制成,弯矩M =80 N.m ,并位于纵向对称面(即x-y 平面)内。
试求梁内的最大弯曲拉应力与最大弯曲压应力。
解:(1) 查表得截面的几何性质:
4020.3 79 176 z y mm b mm I cm ===
(2) 最大弯曲拉应力(发生在下边缘点处)
()30max
8
80(7920.3)10 2.67 17610x M b y MPa I σ
-+-⋅-⨯-⨯===⨯
6max max max
22
7.510176 408066
Z
M M MPa bh W σ⨯====⨯6max max 33
7.51030
132 ********
K Z
M y M y MPa bh I σ⋅⋅⨯⨯====⨯
x M
1
z
M M z
(3) 最大弯曲压应力(发生在上边缘点处)
30max
8
8020.3100.92 17610
x M y MPa I σ
---⋅⨯⨯===⨯ 11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底
边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。
解:(1) 求支反力
31 44
A B R qa R qa ==
(2) 画内力图
(3) 由胡克定律求得截面C 下边缘点的拉应力为:
49max 3.010******* C E MPa σε+-=⋅=⨯⨯⨯=
也可以表达为:
2
max
4C C z z
qa M
W W σ+== (4) 梁内的最大弯曲正应力:
2
max
max max 993267.5 8
C z
z qa M MPa W W σσ+
=
===
q
x
x
F S
M
11-14 图示槽形截面悬臂梁,F =10 kN ,M e =70 kNm ,许用拉应力[σ+]=35 MPa ,许用压应力
[σ-]=120 MPa ,试校核梁的强度。
解:(1) 截面形心位置及惯性矩:
112212(150250)125(100200)150
96 (150250)(100200)
C A y A y y mm A A ⋅+⋅⨯⋅+-⨯⋅=
==+⨯+-⨯
332
284
1505025200(15050)(25)2(25200)(150)12121.0210 zC
C C I y y mm ⎡⎤⨯⨯=+⨯⋅-++⨯⋅-⎢⎥
⎣⎦=⨯ (2) 画出梁的弯矩图
(3) 计算应力
A +截面下边缘点处的拉应力及上边缘点处的压应力分别为:
68
(250)
4010(25096)60.4 1.0210C A A zC
M y MPa I σ
++
+⋅-⨯-=
==⨯ 68
40109637.61.0210
C
A A zC
M y MPa I σ-
++
⋅⨯⨯=
==⨯ A -截面下边缘点处的压应力为
68
(250)
3010(25096)45.3 1.0210
C A A zC
M y MPa I σ
--
-⋅-⨯-=
==⨯ 可见梁内最大拉应力超过许用拉应力,梁不安全。
11-15 图示矩形截面钢梁,承受集中载荷F 与集度为q 的均布载荷作用,试确定截面尺寸b 。
已知载荷F =10 kN ,q =5 N/mm ,许用应力[σ] =160 Mpa 。
C
B
x
解:(1) 求约束力:
3.75 11.25 A B R kNm R kNm ==
(2) 画出弯矩图:
(3) 依据强度条件确定截面尺寸
[]66max max
23
3.7510 3.7510160 466
z
M MPa bh b W σσ⨯⨯===≤= 解得:
32.7 b mm ≥
11-17 图示外伸梁,承受载荷F 作用。
已知载荷F =20KN ,许用应力[σ]=160 Mpa ,试选择
工字钢型号。
解:(1) 求约束力:
5 25 A B R kNm R kNm ==
(2) 画弯矩图:
(3) 依据强度条件选择工字钢型号
[]6max max
2010160 M MPa W W
σσ⨯==≤=
解得:
3125 W cm ≥
查表,选取No16工字钢
F
x
M
x
M
11-20 当载荷F 直接作用在简支梁AB 的跨度中点时,梁内最大弯曲正应力超过许用应力
30%。
为了消除此种过载,配置一辅助梁CD ,试求辅助梁的最小长度a 。
解:(1) 当F 力直接作用在梁上时,弯矩图为:
此时梁内最大弯曲正应力为:
[]max,1max,13/2
30%M F W
W
σσ=
=
= 解得:
[]20%F
W
σ=..............① (2) 配置辅助梁后,弯矩图为:
依据弯曲正应力强度条件:
[]max,2max,2324F Fa
M W
W
σσ-=
=
= 将①式代入上式,解得:
1.385 a m =
11-22 图示悬臂梁,承受载荷F 1与F 2作用,已知F 1=800 N ,F 2=1.6 kN ,l =1 m ,许用应力[σ]
=160 MPa,试分别在下列两种情况下确定截面尺寸。
(1) 截面为矩形,h =2b ; (2) 截面为圆形。
B
x
x
1
解:(1) 画弯矩图
固定端截面为危险截面
(2) 当横截面为矩形时,依据弯曲正应力强度条件:
[]3621max
2233
2800102 1.610160 26633
z x x z
M M F l F l MPa b h h b b b W W σσ⋅⋅⨯⨯⨯=+=+=+≤=⋅⋅ 解得:
35.6 71.2 b mm h mm ==
(3) 当横截面为圆形时,依据弯曲正应力强度条件:
[]max max 32
160 32
M W
MPa
σσ=
==
=
≤=
解得:
52.4 d mm =
11-25 图示矩形截面钢杆,用应变片测得其上、下表面的轴向正应变分别为εa =1.0×10-3与
εb =0.4×10-3,材料的弹性模量E =210Gpa 。
试绘横截面上的正应力分布图。
并求拉力F 及偏心距e 的数值。
解:(1) 杆件发生拉弯组合变形,依据胡克定律知:
333
3
1.010******** 0.4102101084 a a b b E MPa E MPa
σεσε--=⋅=⨯⨯⨯==⋅=⨯⨯
⨯=
横截面上正应力分布如图:
y
y
(M x (M
z
b a
(2) 上下表面的正应力还可表达为:
22
210 6
846
a b M N F e F MPa b h W A b h
M N F e F MPa b h W A b h σσ⋅=
+=+=⋅⋅⋅=-+=-+=⋅⋅
将b 、h 数值代入上面二式,求得:
18.38 1.785 F mm e mm ==
11-27 图示板件,载荷F =12 kN ,许用应力[σ] =100 MPa ,试求板边切口的允许深度x 。
(δ=5
mm )
解:(1) 切口截面偏心距和抗弯截面模量:
()2
40 26
x x
e W δ-==
(2) 切口截面上发生拉弯组合变形;
33max
21210121021005(40)5(40)
6
x
Fe F MPa x W A x σ⨯⨯
⨯=+=+=⨯-⨯- 解得:
5.2 x mm =
e。