色谱法基本理论
- 格式:ppt
- 大小:613.50 KB
- 文档页数:47
色谱分析的基本理论和方法色谱分析是一种通过物质在不同条件下在固定相和流动相之间的物理或化学作用而实现分离、富集和检测目标物质的分析方法,它是现代化学分析中最常用的方法之一。
色谱分析主要应用于化学合成、生物化学、医药研究、环境监测、食品安全等领域。
本文将从色谱分析的基本理论、方法和实现过程三个方面阐述色谱分析的原理和应用。
基本理论色谱分析基于物质在固定相和流动相中的物理或化学作用,实现物质之间的分离和富集。
在色谱分析中,固定相是一种具有在温度和压力下稳定的化学性质的物质,称为固定相。
流动相是一种可以移动并与固定相相互作用的溶液或气体。
色谱分析常用的固定相有硅胶、氢氧化铝、聚乙烯醇、聚四氟乙烯等,流动相则可以根据不同的具体情况选择有机溶剂、缓冲液或气体。
色谱分析的基本原理是物质在固定相和流动相中的行为存在差异,这种差异可以通过物质与固定相的相互作用特性来实现分离。
常见的固定相有分子筛、离子交换树脂和填料柱等,它们都拥有独特的分离机制。
当样品进入色谱柱,被保留在柱中,而流动相则将未被保留的样品带出柱外,实现物质之间的分离。
不同的物质在流动相和固定相之间的相互作用力量不同,它们在色谱柱中停留时间的长短也不同,这就是基于物质在固定相和流动相中化学或物理性质不同而实现的分离。
实现过程色谱分析实现过程包括前处理、分离、富集和检测四个阶段。
前处理是为了加速色谱分离和提高检测灵敏度,它一般包括样品的提取、洗脱、浓缩和纯化等步骤。
在提取中,可以利用溶剂把样品中的目标化合物转移到有机相中,去除其他杂质。
浓缩和纯化则是为了提高样品中目标化合物的浓度和纯度,这样可以增加检测灵敏度和准确度。
分离是色谱分析的核心,它是通过不同组分在色谱柱中的相互作用特性来实现物质之间的分离。
富集则是为了提高检测灵敏度和准确度,采用加强色谱性能、提高目标化合物在柱中保留时间的方法,比如固定相和流动相的配比调整、温度控制等。
最后,检测是为了确定分离的组分及其含量,这可以使用不同的检测器进行检测,如荧光检测器、紫外线检测器和电导检测器等。
Ⅱ 基本概念和理论一、基本概念和术语1.色谱图和峰参数⊕色谱图(chromatogram)--样品流经色谱柱和检测器,所得到的信号-时间曲线,又称色谱流出曲线(elution profile).⊕基线(base line)--流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。
一般应平行于时间轴。
⊕噪音(noise)――基线信号的波动。
通常因电源接触不良或瞬时过载、检测器不稳定、流动相含有气泡或色谱柱被污染所致。
⊕漂移(drift)基线随时间的缓缓变化。
主要由于操作条件如电压、温度、流动相及流量的不稳定所引起,柱内的污染物或固定相不断被洗脱下来也会产生漂移。
⊕色谱峰(peak)--组分流经检测器时相应的连续信号产生的曲线。
流出曲线上的突起部分。
正常色谱峰近似于对称性正态分布曲线(高斯Gauss曲线)。
不对称色谱峰有两种:前延峰(leading peak)和脱尾峰(tailing peak ).前者少见。
⊕拖尾因子(tailing factor,T)--T=B/A,用以衡量色谱峰的对称性。
也称为对称因子(symmetry factor)或不对称因子(asymmetry factor)《中国药典》规定T应为0.95~1.05。
T<0.95为前延峰,T>1.05为拖尾峰。
⊕峰底――基线上峰的起点至终点的距离。
⊕峰高(Peak height,h)――峰的最高点至峰底的距离。
⊕峰宽(peak width,W)--峰两侧拐点处所作两条切线与基线的两个交点间的距离。
W=4σ。
⊕半峰宽(peak width at half-height,Wh/2)--峰高一半处的峰宽。
W h/2=2.355σ。
⊕标准偏差(standard deviation, σ)--正态分布曲线x=±1时(拐点)的峰宽之半。
正常峰宽的拐点在峰高的0.607倍处。
标准偏差的大小说明组分在流出色谱柱过程中的分散程度。
色谱分析方法基本理论一、保留时光理论保留时光是样品从进入色谱柱到流精彩谱柱所需要的时光,不同的物质在不同的色谱柱上以不同的流淌相洗脱会有不同的保留时光,因此保留时光是色谱分析法比较重要的参数之一。
保留时光由物质在色谱中的分配系数打算: tR=t0(1+KVs/Vm)式中:tR —某物质的保留时光; t0—色谱系统的死时光,即流淌相进入色谱柱到流精彩谱柱的时光,这个时光由色谱柱的孔隙、流淌相的流速等因素打算; K-分配系数; Vs,Vm—固定相和流淌相的体积。
这个公式又叫做色谱过程方程,是色谱学最基本的公式之一。
在薄层色谱中没有样品进入和流出固定相的过程,因此人们用比移值标示物质的色谱行为。
比移值是一个与保留时光相对应的概念,它是样品点在色谱过程中移动的距离与流淌相前沿移动距离的比值。
与保留时光一样,比移值也由物质在色谱中的分配系数打算: Rf=Vm/(Vm+KVs) 式中:Rf—比移值;K一色谱分配系数; Vs,Vm—固定相和流淌相的体积。
二、塔板理论塔板理论是色谱学的基础理论。
塔板理论将色谱柱看作一个分馏塔,待分别组分在分馏塔的塔板间移动,在每一个塔板内组分分子在固定相和流淌相之间形成平衡,随着流淌相的流淌,组分分子不断从一个塔板移动到下一个塔板并不断形成新的平衡。
色谱柱的塔板数越多,其分别效果越好。
按照塔板理论,待分别组分流精彩谱柱时的浓度随时光展现二项式分布,当色谱柱的塔板数很高时,二项式分布趋于正态分布。
流出曲线上组分浓度与时光的关系可以表示如下:式中:Ct—t时刻的组分浓度; C0—组分总浓度,即峰面积;σ—半峰宽,即正态分布的标准差; tR—组分的保留时光。
该方程称作流出曲线方程。
按照流出曲线方程,色谱柱的理论塔板高度被定义为单位柱长度的色谱峰方差: H=σ2/T 理论塔板高度越低,在单位长度色谱柱中的塔板数越多,分别效果越好。
打算理论塔板高度的因素有固定相的材质、色谱柱的匀称程度、流淌相的理化性质以及流淌相的流速等。
色谱法的基本原理
色谱法是一种分离和分析化合物的方法,它基于不同化合物在固定相和流动相
之间的分配系数不同而实现分离。
色谱法广泛应用于化学、生物、环境等领域,是一种重要的分析技术。
本文将从色谱法的基本原理入手,介绍色谱法的工作原理、分类和应用。
色谱法的基本原理是利用不同化合物在固定相和流动相之间的分配系数不同而
实现分离。
固定相是一种固体或涂覆在固体支持物上的液体,而流动相则是气体或液体。
在色谱柱中,样品通过流动相的推动在固定相中进行分离。
当样品中的化合物与固定相和流动相相互作用时,它们将以不同的速率通过色谱柱,从而实现分离。
色谱法根据固定相的不同可以分为气相色谱和液相色谱。
气相色谱主要应用于
气体和挥发性化合物的分离,而液相色谱则主要应用于非挥发性化合物的分离。
在色谱法中,固定相的选择对分离效果起着至关重要的作用,不同的固定相适用于不同类型的化合物。
色谱法的应用非常广泛,它可以用于分离和分析各种化合物,包括有机物、无
机物、生物分子等。
在化学领域,色谱法常用于分析有机合成产物的纯度和结构鉴定;在生物领域,色谱法可以用于分离和分析蛋白质、核酸等生物大分子;在环境领域,色谱法可以用于检测水体和大气中的污染物。
总之,色谱法是一种重要的分离和分析技术,它基于化合物在固定相和流动相
之间的分配系数不同而实现分离。
通过选择合适的固定相和流动相,色谱法可以实现对各种化合物的高效分离和分析。
在实际应用中,色谱法已经成为化学、生物、环境等领域不可或缺的分析工具,为科学研究和工程实践提供了重要的支持。
气相色谱基本理论色谱法是一种分离技术。
它是由俄国植物学家茨(Tswett)在1906年创立的。
一相固定不动,称为;另一相是携带试样混合物流过此固定相的流体(气体或液体),称为。
——实质上是一种物理化学分离方法,即利用不同物质在两相(固定相和流动相)中具有不同的分配系数(或吸附系数),当两相作相对运动时,这些物质在两相中反复多次分配(即组分在两相之间进行反复多次的吸附、脱附或溶解、挥发过程)从而使各物质得到完全分离。
:固定——固定相:固相、液相流动——流动相:液相、气相——流动相是气体的色谱分析法称为气相色谱(GC)按固定相不同:气固色谱(吸附原理);气液色谱(分配原理)——流动相是液体的色谱分析法称为液相色谱(LC)液固色谱(吸附原理);液液色谱(分配原理)色谱法:相色谱(GC)包括:气固色谱 (GSC)、气液色谱(GLC)液相色谱(LC)包括:液固色谱(LSC)、液液色谱(LLC)色谱法:柱色谱、纸色谱、薄层色谱(平板色谱)1 最低检出量为10-7~10-14克是目前灵敏度最高的一种色谱。
(高效液相色谱一般为10-6~10-8克);2 高效能表现在可以分离性质相近的化合物,例如二甲苯的三个异构体、氢的三种同位素;3 一般在几分钟到几十分钟就可完成一次复杂样品的分析。
4沸点低于400?的各种有机或无机试样的分析。
不足之处:对热不稳定的和难挥发的物质不能分析被分离组分的定性较为困难。
由色谱柱流出物经检测器系统时,所产生的响应信号对时间或载气流出体积的曲线。
每个峰代表混合物中的一种组分,理想的峰型是均匀对称的。
(1)基线:在正常操作条件下,只有载气进入检测器时的流出曲线称为基线。
OT (2)峰底:峰的起点与终点之间连接的直线。
CD(3)峰高h:峰顶到基线的垂直间距。
AB(4)峰宽W:峰两侧拐点处作的切线与峰底相交两点间的距离IJ(5)半高峰宽W1/2:峰高一半处的峰宽。
W1/2=2.354 ,(6)峰面积A:峰与峰底之间的面积。