抛物线的焦点弦性质
- 格式:ppt
- 大小:374.50 KB
- 文档页数:20
抛物线焦点弦性质总结基本性质已知抛物线22y px =的图像如图所示,则有以下基本结论:1、以AB 为直径的圆与准线L 相切;2、2124p x x ⋅=且212y y p ⋅=-;3、90AC B '∠=︒,90A FB ''∠=︒;4、123222()2sin p p AB x x p x α=++=+=;5、112AF BF P +=;6A 、O 、B '三点共线,B 、O 、A '三点共线;7、22sin AOB p S α=△,322AOB S p AB ⎛⎫= ⎪⎝⎭△(定值); 8、1cos p AF α=-,1cos p BF α=+; 9、BC '垂直平分B F ',AC '垂直平分A F ', C F AB '⊥;10、2AB p ≥;11、11()22CC AB AA BB '''==+; 12、3AB p k y =,22tan 2y p x α=-; 13、24A B AF BF ''=⋅,12C F A B '''=. 14、切线方程:()x x m y y +=00性质深究一、焦点弦与切线结论1、过抛物线焦点弦的两端点作抛物线的切线,两切线交点在准线上.特别地,当弦x AB ⊥轴时,则点P 的坐标为,02p ⎛⎫- ⎪⎝⎭. 结论2、切线交点与弦中点连线平行于对称轴结论3、弦AB 不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴.结论4、过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点. 特别地,过准线与x 轴的交点作抛物线的切线,则过两切点AB 的弦必过焦点.结论5、过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径.AB 是抛物线px y 22=(p >0)焦点弦,Q 是AB 的中点,l 是抛物线的准线,l AA ⊥1,l BB ⊥1,过A ,B 的切线相交于P ,PQ 与抛物线交于点M .则有结论6、PA ⊥PB .结论7、PF ⊥AB . 结论8、M 平分PQ . 结论9、PA 平分∠A 1AB ,PB 平分∠B 1BA .结论102FB FA =结论11、PAB S ∆2min p =二、非焦点弦与切线 当弦AB 不过焦点,切线交于P 点时,也有与上述结论类似结果:结论12、①p y y x p 221=,221y y y p += 结论13、PA 平分∠A 1AB ,同理PB 平分∠B 1BA .结论14、PFB PFA ∠=∠结论15、点M 平分PQ结论162PF FB FA =。
抛物线焦点弦性质及推导过程抛物线是一种二次函数图像,其标准方程为 y = ax^2 + bx + c,其中 a、b、c 是实数且a ≠ 0。
抛物线具有很多特性,其中之一就是焦点弦性质。
现在来介绍抛物线焦点弦性质及其推导过程。
首先,我们需要明确焦点和焦点弦的概念。
焦点:抛物线上的所有点到定点F的距离与相应的焦准线上的所有点到定直线l的距离之比保持不变,这个定点F称为抛物线的焦点。
焦点弦:焦点的直角坐标系中的述焦线称为焦点弦。
接下来,我们通过几何推导来证明焦点弦性质。
假设抛物线的焦点为F,焦准线为l。
取抛物线上的任意一点P,并以焦点F为中心,做半径为FP的圆,交抛物线于点A,焦准线上一点为B。
根据焦点定义,有AP/PF=AB/BF。
根据圆的性质,AF是正切段,即∠FAP=90°。
考虑三角形ABP,根据直角三角形性质,我们有∠FAB=∠BAP。
将这个角度关系应用于三角形ABF,我们可以得出∠ABF=∠BFA。
因此,△ABF是一个等腰三角形。
由等腰三角形的性质,我们得到AB=AF。
而且,根据直角三角形性质,∠FBA=∠BAF。
因此,折线APB是一个等角三角形。
结合等腰三角形的性质,我们可以得出∠AFP=∠PFA=∠FAP。
根据角度对应定理,∠AFP=∠PFA=∠FAP=∠ABF。
而∠AFP+∠PFA+∠FAP+∠ABF=360°,因此∠AFP=360°/4=90°。
综上所述,我们可以得出结论:焦点弦AP是一个垂直于抛物线的直线。
因此,我们成功地证明了抛物线焦点弦性质的推导过程。
焦点弦性质的重要性在于我们可以利用该性质来确定一些几何问题中的未知量。
另外,在物理学和工程领域,焦点弦性质也有广泛的应用。
抛物线的焦点弦经典性质及其证明过程抛物线所示的是具有经典性质的几何图形,其定义为一个特别的二次函数:当其焦点在原点上时,抛物线形式为y = ax2;当其焦点在非原点处时,抛物线形式为 y = a(x - h)\pt2 + k,其中h是抛物线的焦点的横坐标位置,k是焦点的纵坐标位置,a是抛物线的斜率系数。
抛物线具有许多经典性质,最为重要的是焦点弦性质,它是抛物线的几何和数学基础。
焦点弦的定义是连接抛物线上任意两点的直线都与焦点构成直角,或者说从焦点连接到抛物线上任意点都构成直角三角形。
证明抛物线经典性质焦点弦证明:抛物线具有经典性质焦点弦可以应用三角函数定理证明。
设点P(x,y)位于抛物线上,则有 y = a(x - h)² + k;设F为抛物线的焦点,则有 F (h,k) ;∠FPQ 为钝角,则有:tan∠FPQ = /FP/ \cos∠FPQ/PQ/即 /FP/\ G(x-h, y-k)/PQ/由已知:FP:((h - x), (k - y))PQ:((x' - x), (y' - y))可得:/(h-x)(y'-y)-(k-y)(x'-x)\tan∠FPQ = ----------------------/(x'-x)²+(y'-y)²\\式子两边同乘以(x'-x)²+(y’-y)²即 /(h-x)(y'-y)-(k-y)(x'-x)(x'-x)²+(y'-y)²\t an∠FPQ = ------------------------------------/ (x'-x)²+(y'-y)²)²\\即/(h-x)y'+(k-y)x'-(h-x)y-(k-y)x\tan∠FPQ = -----------------------------------/ (x'-x)²+(y'-y)²\\将已知带入即可得tan∠FPQ = 0即点F、P、Q三点构成的三角形为钝角,即证明了抛物线具有经典性质的焦点弦性质。
过抛物线的焦点的弦的一般性质
不妨设抛物线方程为)0(22>=p px y ,则焦点)0,2(p F ,准线l 的方程:2p x -=. 过焦点F 的直线交抛物线于A(x 1,y 1)、B(x 2,y 2)两点,又作AA 1⊥l ,BB 1⊥l ,垂足分别为A 1、B 1. 基本概念:
1.若AB 垂直于抛物线的对称轴,则称线段AB 为抛物线的通径。
|AB|=.
2.设P(x 0,y 0)是抛物线y 2=2px(p>0)上的一点,则P 到抛物线焦点F 的距离|PF|称为P 点的焦半径。
|PF|=;直线AB 经过抛物线y 2=2px(p>0)的焦点,且与抛物线相交于A(x 1,y 1)、B(x 2,y 2)(AB 则为抛物线的焦点弦). 结论1:4221p x x =⋅(定值),22212k
p p k x x +=+. 结论2:221p y y -=⋅(定值),k p y y 221=
+.
结论3:(1)弦长p x x p x p x BB AA BF AF AB ++=+++=+=+=2121112
2||||||||||. (2)若AB 所在的直线的倾斜角为α,则α
2sin 2||p AB =.
结论4:若此焦点弦AB 被焦点F 分成n m ,两部分,则p
n m 211=+. 结论5:抛物线)0(22>=p px y 的焦点弦中通径最小.
结论6:以焦点弦AB 为直径的圆与抛物线的准线l 相切.
结论7:以抛物线焦半径||AF 为直径的圆与y 轴相切.
结论8:F B F A 11⊥.
结论9:若M 为11B A 的中点,则AB MF ⊥.
结论10:在梯形AA 1B 1B 中,两对角线AB 1与BA 1相交于点抛物线顶点O .。
抛物线焦点弦性质总结30条
抛物线焦点弦性质总结
本文总结了抛物线焦点弦的30条性质,其中包括基础回顾和性质深究两部分。
基础回顾:
1.以AB为直径的圆与准线L相切;
2.x1/x2 = 4p/(p2 + (y1-y2)2);
3.y1/y2 = -(p/(p2 + (x1-x2)2));
4.∠AC'B = 90;
5.∠A'FB' = 90;
6.AB = x1+x2+p = 2(x3+p/2);
7.p2 = 2sin2α/1+2sinα;
8.A、O、B三点共线;
9.B、O、A三点共线;
10.S△AOB = p;
11.AB2 = 4p(AA'+BB')/22;
性质深究:
一)焦点弦与切线
1.过抛物线焦点弦的两端点作抛物线的切线,两切线交点在准线上;
2.切线交点与弦中点连线平行于对称轴;
3.过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点;
4.过准线上任一点作抛物线的切线,则过两切点的弦最短时,即为通径;
5.当弦AB是抛物线y=2px(p>0)的焦点弦,且Q为AB的中点,l是抛物线的准线,AA'⊥l,BB'⊥l,过A,B的切线相交于P,PQ与抛物线交于点M,则有PA⊥PB,
PF⊥AB,M平分PQ,PA平分∠A1AB,PB平分∠B1BA,FA·FB=PF2.
二)非焦点弦与切线
当弦AB不过焦点,切线交于P点时,有以下类似的结论:
= y2/(y1+y2);
2.y1/y2 = (x1-x2)/(2p-x1+x2);。
抛物线的焦点与弦有关的几个结论性质在抛物线与直线的关系中,过抛物线焦点的直线与抛物线的关系尤为重要,这是因为在这一关系中具有一些很有用的性质,这些性质常常是高考命题的切入点.不妨设抛物线方程为y2=2px(p>0),则焦点,准线l的方程:.过焦点F的直线交抛物线于A(x1,y1)、B(x2,y2)两点,又作AA1⊥l, BB1⊥l,垂足分别为A1、B1.AB⊥x轴时,, , 此时弦AB叫抛物线的通径,它的长|AB|=2p.AB与x轴不垂直也不平行时,设弦AB所在直线的斜率为k(k≠0),则方程为(如图).由方程组消去y,得, 或消去x, 得.结论1:(定值),,结论2:y1y2=-p2(定值),.结论3:弦长.结论4:若此焦点弦AB被焦点F分成m,n两部分,则为定值.事实上,若AB⊥x轴,则m=n=p,.若AB与x轴不垂直,则..结论5:抛物线y2=2px(p>0)的焦点弦中通径最小.证法1:设弦AB所在的直线方程为.由方程组消去x,得y2-2pmy-p2=0.∴y1+y2=2pm,y1y2=-p2.当且仅当m=0,即弦AB为抛物线的通径时,它的长度最小且为2p.证法2:设过焦点F的弦AB所在直线的倾斜角为,则|AF|=|AA1|=p+|AF|cos, |BF|=|BB1|=p-|BF|cos,∴.,当且仅当=90°时,即弦AB为抛物线的通径时,它的长度最小且为2p.结论6:以焦点弦AB为直径的圆与抛物线的准线l相切(如图).事实上,取弦AB的中点C,作CC1⊥l,垂足为C1. 则.这表明圆心C到准线l的距离等于半径,故以焦点弦AB为直径的圆与抛物线的准线相切.结论7:以抛物线焦半径|AF|为直径的圆与y轴相切.事实上,.设AF的中点为D,则,∴D到y轴的距离.这表明圆心D到y轴的距离等于半径,故以抛物线焦半径|AF|为直径的圆与y轴相切.结论8:A1F⊥B1F(如图)事实上,设,则,。
抛物线焦点弦的性质1、焦点弦定义:过焦点的直线割抛物线所成的相交弦。
2、焦点弦公式:设两交点),(),(2211y x B y x A ,可以通过两次焦半径公式得到: 当抛物线焦点在x 轴上时,焦点弦只和两焦点的横坐标有关:(0)p >若抛物线22y px =,)(21x x p AB ++=抛物线22y px =-,)(21x x p AB +-=当抛物线焦点在y 轴上时,焦点弦只和两焦点的纵坐标有关:(0)p >若抛物线22x py =,)(21y y p AB ++=抛物线22x py =-,)(21y y p AB +-=3、通径:过焦点且垂直于对称轴的相交弦 直接应用抛物线定义,得到通径:p d 2=4、焦点弦常用结论:结论1:韦达定理⎪⎩⎪⎨⎧=-=pxy p x k y 2)2(20222=--⇒p y k p y 和04)2(22222=++-p k x p p k x k 221p y y -=⇒和421px x =结论2:p x x AB ++=21证:p x x px p x BF AF AB ++=+++=+=2121)2()2( 结论3:假设直线L 的倾斜角为θ,那么弦长θ2sin 2pAB = 证: (1)假设2πθ=时,直线L 的斜率不存在,此时AB 为抛物线的通径,结论得证∴=∴p AB 2(2)假设2πθ≠时, 那么⎪⎩⎪⎨⎧=-=px y p x k y 2)2(20222=--⇒p y k p y ⎪⎩⎪⎨⎧-==+⇒221212py y k p y y θsin 24422221p p kp y y =+=-⇒θθ221sin 2sin 1p y y AB =-=⇒ 结论4: 过焦点的弦中通径长最小p p2sin 21sin 22≥∴≤θθ ∴AB 的最小值为p 2,即过焦点的弦长中通径长最短. 结论4: )(832为定值p AB S oAB =∆011sin sin 22OAB OBF AF S S S OF BF OF AF θϑ∆∆∆=+=⋅⋅+⋅⋅()21112sin sin sin 2222sin p p OF AF BF OF AB θθθθ=⋅+=⋅⋅=⋅⋅⋅22sin p θ=238OABS P AB ∆∴=结论5:以AB 为直径的圆与抛物线的准线相切 证:设M 为AB 的中点,过A 点作准线的垂线AA 1, 过B 点作准线的垂线BB 1, 过M 点作准线的垂线MM 1,由梯形的中位线性质和抛物线的定义知 222111AB BFAF BB AA MM =+=+=故结论得证结论6:连接A 1F 、B 1 F 那么 A 1F ⊥B 1F FA A FO A FO A F AA OF AA AFA F AA AF AA 11111111//,∠=∠∴∠=∠∴∠=∠∴=同理︒=∠∴∠=∠901111FB A FB B FO B ∴A 1F ⊥B 1 F 结论7:〔1〕AM 1⊥BM 1 〔2〕M 1F ⊥AB 〔3〕BF AF F M ⋅=21〔4〕设AM 1 与A 1F 相交于H ,M 1B 与 FB 1相交于Q 那么M 1,Q ,F ,H 四点共圆〔5〕2121214M M B M AM =+证:由结论〔6〕知M 1 在以AB 为直径的圆上∴ AM 1⊥BM 1 11FB A ∆为直角三角形, M 1 是斜边A 1 B 1 的中点111111111AFA F AA F A M FA M F M M A ∠=∠∠=∠∴=∴ ︒=∠=∠+∠9011111M AA M FA F AA ︒=∠+∠∴90111FM A AFA ∴M 1F ⊥ABBF AF FM ⋅=∴21 AM 1⊥BM 1 F B F A 90111⊥︒=∠∴ 又B AM︒=∠∴90FB A 11 所以M 1,Q ,F,H 四点共圆,22121AB B M AM =+()()()2121211242MM MM BB AABFAF ==+=+=结论8: 〔1〕、A O 、B 1 三点共线 〔2〕B ,O ,A 1 三点共线〔3〕设直线AO 与抛物线的准线的交点为B 1,那么BB 1平行于X 轴〔4〕设直线BO 与抛物线的准线的交点为A 1,那么AA 1平行于X 轴证:因为p y p y k y p py y x y k oB oA 2212111122,221-=-====,而221p y y -=所以122222oB oA k p y y p pk =-=-=所以三点共线。
抛物线焦点弦性质及推导过程抛物线是一个非常常见的二次曲线,其方程可以表示为y=ax^2+bx+c,其中a、b和c是常数,a不等于0。
抛物线的焦点是一个特殊的点,它在抛物线的对称轴上,距离抛物线顶点的距离与到抛物线焦点的距离相等。
在本文中,我们将研究抛物线焦点的弦性质及其推导过程。
首先,我们来定义抛物线的焦点和顶点,并给出抛物线方程的标准形式。
我们可以通过完成平方的方式将一般形式的抛物线方程转化为标准形式的方程。
标准形式的抛物线方程为:y=a(x-h)^2+k其中(h,k)是抛物线的顶点,a决定了抛物线的开口方向和形状。
焦点的坐标为:F(h,k+p)其中p是焦距,p=1/(4a)。
现在,我们来研究抛物线焦点的弦性质。
假设抛物线上有两个不同的点P(x1,y1)和Q(x2,y2),我们要证明直线PQ的中垂线经过焦点F。
首先,我们计算点P和点Q到焦点F的距离。
根据平面几何的距离公式,点P和点Q到焦点F的距离分别为:d1=√((x1-h)^2+(y1-k+p)^2)d2=√((x2-h)^2+(y2-k+p)^2)根据抛物线的定义,点P和点Q到抛物线的顶点的距离应该相等。
所以我们有:d1=√((x1-h)^2+(y1-k+p)^2)=√((x1-h)^2+(y1-k-p)^2)d2=√((x2-h)^2+(y2-k+p)^2)=√((x2-h)^2+(y2-k-p)^2)将这两个等式相减,我们得到:(d1)^2-(d2)^2=[(x1-h)^2+(y1-k+p)^2]-[(x2-h)^2+(y2-k-p)^2]=(x1-h)^2+(y1-k+p)^2-(x2-h)^2-(y2-k-p)^2=(x1^2-2x1h+h^2)+(y1^2-2y1k+2y1p+p^2)-(x2^2-2x2h+h^2)-(y2^2-2y2k-2y2p+p^2)=x1^2-2x1h+h^2+y1^2-2y1k+2y1p+p^2-(x2^2-2x2h+h^2)-(y2^2-2y2k-2y2p+p^2)=x1^2-2x1h+y1^2-2y1k+2y1p+p^2-x2^2+2x2h+y2^2-2y2k-2y2p+p^2 =x1^2-2x1h+x2^2-2x2h+y1^2-2y1k-2y2k+2y1p-2y2p=(x1^2+x2^2-2x1h-2x2h)+(y1^2-2y1k-2y2k+2y1p-2y2p)=x1^2+x2^2-2(x1+x2)h+(y1-y2)^2+2(y1p-y2p)=(x1^2+x2^2-2(x1+x2)h+(y1-y2)^2)+2(y1p-y2p)我们知道,抛物线都满足方程y=a(x-h)^2+k。