热传导(通用版)讲解
- 格式:ppt
- 大小:1.59 MB
- 文档页数:40
第二节热传导一、有关热传导的基本概念只要物体内部有温度差存在,就有热量从高温部分向低温部分传导。
所以研究热传导必须涉及物体内部的温度分布。
1.温度场和等温面温度场:某一瞬间空间中各点的温度分布,称为温度场。
等温面:温度场中同一时刻相同温度各点组成的面称为等温面。
因为空间同一点不能同时具有两个不同的温度,所以不同的等温面彼此不能相交。
2.温度梯度温度梯度是一个点的概念。
温度梯度是一个向量。
方向垂直4tl>二、导热系数1.固体的导热系数九在数值上等于单位温度梯度下的热通量。
九是分子微观运动的宏观表现。
常用的固体导热系数见表4-1。
在所有固体中,金属是最好的导热体。
纯金属的导热系数一般随温度升高而降低。
而金属的纯度对导热系数影响很大,如含碳为1%的普通碳钢的导热系数为45W/m・K,不锈钢的导热系数仅为16W/m・K。
2.液体的导热系数液体分成金属液体和非液体两类,前者导热系数较高,后者较低。
在非金属液体中,水的导热系数最大,除去水和甘油外,绝大多数液体的导热系数随温度升高而略有减小。
一般来说,溶液的导热系数低于纯液体的导热系数。
表4-2和图4-6列出了几种液体的导热系数值。
表4-2液体的导热系数液体温度,°C导热系数,久W/m*K 醋酸50% 20 0.353.气体的导热系数气体的导热系数随温度升高而增大。
在通常的压力范围内,其导热系数随压力变化很小气体的导热系数很小,故对导热不利,但对保温有利。
常见的几种气体的导热系数值见表4-3。
表4-3气体的导热系数三、对流传热1.对流传热的基本概念对流传热是在流体流动进程中发生的热量传递现象,它是依靠流体质点的移动进行热量传递的,帮与流体的流动情况密切相关。
工业上遇到的对流传热,常指间壁式换热器中两侧流体与固体壁面之间的热交换,变化即流体将热量传给固体壁面或者由壁面将热量传给流体的过程称之为对流传热(或称对流给热、放热)。
在第一章流体流动中已指出,流体产生流动的原因可以是流体以外力(如泵、鼓风机等)作用下而造成的强制对流,亦可是由流体内部的温度差而引起流体的密度差产生的自然对流。
热传导的基本原理与计算公式热传导是热量在物质中由高温区域传递到低温区域的过程,它是热能传递的重要方式之一。
热传导的基本原理是通过物质内部的分子或电子振动和碰撞来传递热量。
在这篇文章中,我们将介绍热传导的基本原理和计算公式。
1. 热传导的基本原理热传导是由物质内部的分子或电子之间的振动和碰撞而产生的热量传递方式。
当一个物体的一部分受热时,其分子或电子开始振动,并将热能传递给相邻的分子或电子。
这些分子或电子再次传递给周围的分子或电子,从而形成热传导的过程。
热传导的速率取决于以下因素:- 温度梯度:温度梯度是指物体内不同位置的温度差异。
温度梯度越大,热传导速率越快。
- 材料的导热性:不同材料的导热性能不同。
导热性能好的材料能够更快地传递热量。
- 材料的厚度:厚度越小,热传导速率越快。
2. 热传导的计算公式热传导的速率可以用热流密度来描述,热流密度单位为瓦特每平方米(W/m²)。
热流密度可使用以下公式计算:热流密度 = 热传导系数 ×温度梯度其中,热传导系数是材料的物理特性,反映了材料传导热量的能力。
它的单位是瓦特每米开尔文(W/(m·K))。
热传导系数越大,材料的导热性能越好。
当温度梯度恒定时,热传导的速率与物体的厚度成反比。
这意味着,在相同的温度梯度下,较薄的物体热传导速率会更高。
3. 加强热传导的方法在某些情况下,我们需要增强热传导的速率,以满足特定的需求。
以下是一些常用的方法:- 使用导热性能好的材料:选择导热系数较大的材料,如金属,可以提高热传导速率。
- 增加温度梯度:通过提高高温和低温之间的温度差异,可以增加热传导的速率。
- 减小物体的厚度:通过减小物体的厚度,可以提高热传导的速率。
总结:热传导是热量通过物质内部传递的过程,基于分子或电子的振动和碰撞。
热传导的速率由温度梯度、材料的导热系数和厚度决定。
热传导速率可以使用热流密度来描述,其公式为热流密度=热传导系数×温度梯度。
4.2.1 傅立叶定律Fourier’s Law法国数学家Fourier: 法国拿破仑时代的高级官员。
曾于1798-1801追随拿破仑去埃及。
后期致力于传热理论,1807年提交了234页的论文,但直到1822年才出版。
1822年,法国数学家傅里叶(Fourier)在实验研究基础上,发现导热基本规律——傅里叶定律23n t A Q ∂∂λd d −=式中d Q ──热传导速率,W 或J/s ;dA ──导热面积,m 2;∂t/∂n ──温度梯度,℃/m 或K/m ;λ─导热系数,W/(m·℃)或W/(m·K)。
傅里叶定律:系统中任一点的热流密度与该点的温度梯度成正比而方向相反gradtq λ−= x y z t t t q q i q j q k i j k x y zλλλ∂∂∂=++=−−−∂∂∂r u r u u r u u r u r u u r u u r4负号表示传热方向与温度梯度方向相反q Q A t n ==−d d λ∂∂λ表征材料导热性能的物性参数λ越大,导热性能越好用热通量来表示对一维稳态热传导dxdt A Q d d λ−=注:傅里叶定律只适用于各向同性材料各向同性材料:热导率在各个方向是相同的5(2) λ是分子微观运动的宏观表现,反映了物质微观粒子传递热量的特性。
4.2.2 导热系数thermal conductivityλ∂∂=−q t n/(1) λ在数值上等于单位温度梯度下的热通量。
λ= f(物质的种类、材料成分、温度、湿度、压力、密度等)导热系数与物质几何形状无关,实验测定。
6λ金属固体> λ非金属固体> λ液体> λ气体0˚C 时:C m w °•=/22.2冰λCm w °•=/551.0水λCm w °•=/0183.0蒸汽λ(3) 各种物质的导热系数; λλλ>>固相液相气相不同物质热导率的差异:构造差别、导热机理不同Jack 的死因7)1(0at +=λλ在一定温度范围内:式中λ0, λ──0℃, t ℃时的导热系数,W/(m·K);a ──温度系数。
热传导的过程热传导是物体之间或物体内部传递热量的过程。
热量是物体内部分子或原子的热运动能量。
当两个物体或者物体内部存在温度差异时,热量将从高温区传导到低温区。
本文将介绍热传导的机制、公式、影响因素以及一些实际应用。
一、热传导的机制热传导分为三种机制:导热、对流和辐射。
导热是物质内部分子或原子之间的热量传递,通常在固体和液体中发生。
对流是通过流体的流动传递热量,常见于液体和气体中。
辐射是指由物体表面发出的热电磁波传递热量,无需介质。
二、热传导的公式1. 导热传导公式导热传导通过四个主要的物理量来描述:热传导率、温度差、传热距离以及传热面积。
热传导率(λ)是物质传导热量的特性,单位为瓦特每米开尔文(W/(m·K))。
热传导率越大,物质的导热性能越好。
温度差(ΔT)是指两个物体或物体内部不同位置的温度差异,单位为开尔文(K)。
传热距离(L)是指热量传递的距离,例如物体的长度、厚度或者两个物体之间的距离,单位为米(m)。
传热面积(A)是指热量通过的表面积,单位为平方米(m²)。
根据这四个物理量,可以使用以下导热传导公式计算热传导率:Q = λ × A × ΔT / L其中,Q表示热量,单位为瓦特(W)。
2. 对流传热公式对流传热一般采用牛顿冷却定律来描述:Q = h × A × ΔT其中,Q表示热量,单位为瓦特(W);h表示对流换热系数,单位为瓦特每平方米开尔文(W/(m²·K))。
三、热传导的影响因素热传导率是影响热传导的关键因素之一。
不同物质具有不同的热传导率,如铜和铝的热传导率远高于木材和塑料。
物质的结构和组成也会影响热传导率。
温度差是另一个重要因素。
温度差越大,热量传递得越快。
传热距离和传热面积也会影响热传导速率。
传热距离越长,热量传递越慢。
传热面积越大,热量传递越快。
材料的密度和导热性能也会对热传导产生影响。
高密度和导热性能良好的物质通常有更高的热传导率。
《热传导》讲义一、热传导的基本概念热传导是由物质内部分子、原子和自由电子等微观粒子的热运动而产生的热量传递现象。
简单来说,就是热量从温度高的地方向温度低的地方传递。
这种传递是由于分子之间的相互碰撞和振动引起的。
当高温区域的分子具有较高的动能时,它们与低温区域的分子碰撞,将一部分能量传递给低温区域的分子,从而实现热的传导。
热传导在我们的日常生活和各种工业领域中都非常常见。
比如,我们用手握住一杯热水,热量会从热水通过杯子传递到我们的手上,这就是热传导的一个例子。
二、热传导的基本定律——傅里叶定律傅里叶定律是描述热传导现象的基本定律。
它表明,在热传导过程中,通过某一给定面积的热流量与温度梯度和垂直于热流方向的截面积成正比,其数学表达式为:$q = k\frac{dT}{dx}$其中,$q$ 表示热流密度(单位时间内通过单位面积的热量),$k$ 是材料的热导率,$\frac{dT}{dx}$是温度梯度。
热导率$k$ 是材料的一个重要热物性参数,它反映了材料导热能力的大小。
不同的材料具有不同的热导率,例如金属通常具有较高的热导率,而空气的热导率则相对较低。
三、影响热传导的因素1、材料的性质材料的热导率是决定热传导性能的关键因素。
一般来说,金属的热导率较高,如铜、铝等;非金属固体的热导率较低,如玻璃、塑料等;液体的热导率通常比固体小,而气体的热导率最小。
2、温度温度对热导率也有一定的影响。
大多数材料的热导率随温度的升高而略有减小,但也有一些材料在特定温度范围内热导率会有所增加。
3、几何形状和尺寸物体的几何形状和尺寸会影响热传导的路径和效率。
例如,细长的物体在热传导时,热量更容易沿着长度方向传递;而厚壁物体的热传导则相对较慢。
4、接触情况在两个物体接触的界面处,如果接触不良,会存在较大的接触热阻,从而影响热传导的效果。
四、热传导的应用1、散热器在电子设备中,如电脑的 CPU 会产生大量的热量。
为了保证其正常工作,需要使用散热器将热量快速传递出去。
《热传导》讲义一、热传导的基本概念热传导,简单来说,就是由于温度差引起的热能传递现象。
当物体的不同部分存在温度差异时,热能就会从高温部分向低温部分转移。
这是自然界中一种常见且重要的热传递方式。
想象一下,在寒冷的冬天,我们握住一杯热咖啡。
手会逐渐感到温暖,这就是热传导在起作用。
热咖啡的热能通过杯子传递到我们的手上,使得手的温度升高。
二、热传导的基本原理热传导的发生基于热力学的基本原理。
热总是从高温区域向低温区域流动,以达到热力学平衡状态。
在微观层面上,热传导是通过分子或原子的热运动和相互碰撞来实现的。
当物体的一部分分子具有较高的能量(即温度较高)时,它们会与邻近温度较低的分子发生碰撞和能量交换。
这样,热能就逐渐从高温区域传递到低温区域。
热传导的速率取决于多个因素,其中最重要的是物体的导热系数、温度差以及物体的几何形状和尺寸。
导热系数是衡量物质导热能力的一个重要参数。
不同的物质具有不同的导热系数。
例如,金属通常具有较高的导热系数,所以它们能够迅速传导热量;而空气、塑料等物质的导热系数较低,热传导的速度相对较慢。
三、热传导的数学表达式为了定量描述热传导现象,科学家们推导出了热传导的数学表达式——傅里叶定律。
傅里叶定律指出:在单位时间内通过垂直于热流方向的单位面积的热量,与温度梯度成正比,其比例系数就是导热系数。
数学表达式为:Q = kA(dT/dx)其中,Q 表示热流量(单位时间内传递的热量),k 是导热系数,A 是传热面积,dT/dx 是温度梯度(温度在空间上的变化率)。
这个定律为我们计算热传导过程中的热量传递提供了重要的理论依据。
四、常见材料的热传导性能在实际生活和工程应用中,了解不同材料的热传导性能是非常重要的。
金属材料,如铜、铝、银等,具有良好的导热性能。
这使得它们在需要高效传热的场合,如散热器、热交换器等中得到广泛应用。
非金属材料的导热性能则差异较大。
例如,陶瓷材料一般具有较低的导热系数,而一些特殊的合成材料,如石墨,却具有较好的导热性。
热传导两点边值问题的通用数值解法热传导两点边值问题的通用数值解法:
1、首先,把待求解的区域分割成若干小区域,即对求解区域进行细分,这一过程叫做网格划分;
2、然后,将每一小区域进行离散,得到一系列离散点,这些离散点间
用一条线段连接,这条线段叫做节点,构成一种网格;
3、接着,对每个小区域采用有限元法,利用积分得到热流密度方程的
解析解,得到每个网格的节点的热功率;
4、之后,用Hotz定理,把大的热功率方程转化为一个矩阵形式的方程,并利用适当的迭代技术得到整个网格中每个节点附近的温度;
5、最后,计算从已知的两点的温度和到从每个节点的热功率,利用积
分方法求得求解区域的温度,从而得到最终的结果。
热传导和热量传递一、热传导:1.热传导的定义:热传导是指热量在物体内部由高温区向低温区传递的过程。
2.热传导的原理:热传导依靠物体内部微观粒子的振动和碰撞,使热量从高温区向低温区传递。
3.热传导的公式:热传导的速率与物体的导热系数、温度差以及物体的厚度有关。
公式为Q=k A(dT/dx)*t,其中Q表示热量,k表示导热系数,A表示传导面积,dT表示温度差,dx表示物体厚度,t表示时间。
4.影响热传导速率的因素:导热系数、温度差、物体厚度和时间。
5.热传导的分类:稳态热传导和非稳态热传导。
稳态热传导是指物体内部温度分布不随时间变化;非稳态热传导是指物体内部温度分布随时间变化。
二、热量传递:1.热量传递的定义:热量传递是指热量在物体之间或物体内部由高温区向低温区传递的过程。
2.热量传递的方式:热传导、热对流和热辐射。
3.热对流的定义:热对流是指流体(液体或气体)在受到温度差的作用下,产生流动,从而实现热量传递的过程。
4.热对流的分类:自然对流和强制对流。
自然对流是由于物体表面温度差引起的流体自发流动;强制对流是由于外部作用力(如风扇、泵等)引起的流体流动。
5.热辐射的定义:热辐射是指物体由于温度差异而发出的电磁波,能够在真空中传播,从而实现热量传递的过程。
6.热辐射的特点:不需要介质,能在真空中传播;辐射强度与物体温度有关,遵循斯特藩-玻尔兹曼定律。
7.热量传递的计算:根据不同传递方式,运用相应的公式和原理进行计算。
三、实际应用:1.热传导在生产生活中的应用:如金属加工、建筑材料、电子设备散热等。
2.热对流在生产生活中的应用:如空调、热水器、烹饪等。
3.热辐射在生产生活中的应用:如红外线加热、太阳能利用、夜视仪等。
四、注意事项:1.在实际应用中,要充分考虑热传导、热对流和热辐射的影响,合理设计产品和设备。
2.了解不同材料和物体的导热系数,以便正确计算热量传递速率。
3.在进行热量传递计算时,要注意单位转换和数值精度。
热传导热传导规律及其在实际中的应用热传导是指热量从高温区域向低温区域传递的过程。
在物质中,热量一般通过三种方式传导:热传导、对流传导和辐射传导。
本文重点介绍热传导的规律以及在实际应用中的相关情况。
一、热传导规律热传导的规律可以通过热传导定律来描述。
热传导定律表明,在热传导过程中,热流密度(单位时间内通过单位面积的热量)与温度梯度(单位长度内温度的变化率)成正比。
设热流密度为q,温度梯度为∇T,热传导定律可以表示为以下公式:q = -k∇T其中,k为热导率,表示物质导热性能的一个参数。
热导率越大,说明物质的导热性能越好。
二、热传导的影响因素热传导的强弱取决于多种因素,以下是一些常见的影响因素:1. 导热性能:物质的导热性能决定了其传导热量的能力。
金属等导热性能较好的物质会比绝缘体等导热性能较差的物质更容易传导热量。
2. 温度差:温度差指的是两个接触表面之间的温度差异。
温度差越大,热传导强度越大。
3. 距离:热量的传导是通过物质内部的分子或电子碰撞引起的,因此物体之间的距离会影响热传导。
三、热传导的应用热传导在日常生活和工业生产中有广泛的应用,以下是一些常见的应用场景:1. 绝缘材料:根据热传导的规律,选择导热性能较差的绝缘材料可以在一定程度上减少热量的传导,起到隔热的作用。
这在建筑领域中用于保温材料的选择非常重要。
2. 传热设备:热传导在传热设备(如散热器、换热器等)中得到广泛应用。
通过设计合适的材料和结构,可以实现高效的传热,提高设备的散热或加热效果。
3. 热工加工:在一些加工过程中,需要控制材料的温度分布,以实现理想的加工效果。
通过掌握材料的热传导规律,可以有效控制热处理过程中的温度变化,提高产品质量。
4. 热障涂层:热障涂层是一种在工程结构表面喷涂的材料,能够减少热量的传导,提高结构的耐热性能。
这种涂层可以在航空航天、汽车等领域中发挥重要作用。
5. 散热设计:在电子设备等产品的设计中,合理的散热设计是非常重要的。
第一节概述传热在化工生产中的应用(1)传热(2)保温传热的基本方式(1)热传导:纯导热过程:物体各部分之间不发生相对位移。
(2)对流传热对流传热:是指流体各部分质点发生相对位移而引起的热量传递过程。
因而对流只能发生在流体中。
(3)辐射传热因热原因而发出辐射能的过程称为热辐射。
典型的间壁换热器间壁式换热器,就是冷热流体不混合,用固体壁面隔开只进行热量传递。
(1)套管式换热器(2)列管式换热器单程列管式换热器由壳体、管束、接管、封头、管板、挡板等组成双程列管式换热器:由于管程流体在管束内流经两次,故称为双程列管式换热器。
若流体在管束内来回流过多次,则称为多程(如四程、六程等)列管式换热器。
列管式换热器的传热面积:S=nπdl传热速率和热通量传热量:传热速率:指单位时间内通过传热面的热量,用Q表示,单位W热通量:指单位时间、单位传热面积传递的热量。
用q表示,单位w/m2传热速率表达式:传热速率=传热推动力(温度差)/传热阻力=△t/R定态传热和非定态传热第二节热传导一、热传导的基本概念和定律温度场和等温面物体(或空间)各点温度在时空中的分布,称为温度场。
稳定温度场温度相同的点组成的面称为等温面。
温度梯度两等温面的温度差△t与其间的垂直距离△n之比温度梯度傅立叶定律因热传导而产生的热流大小的定律Q:J/S,W; S:m2λ:导热系数,w/mk2.导热系数固体的导热系数金属、非金属:温度系数对大多数金属为负值,对大多数非金属为正值。
1/k液体的导热系数水的导热系数最大气体的导热系数气体的导热系数很小,不利于导热,却对保温有利。
其导热系数实际上与压力无关。
各种物质的导热系数大致范围金属:2.3--420 w/mk建材:0.25--3 w/mk绝缘材料:0.025—0.25 w/mk 液体:0.09—0.6 w/mk气体:0.006—0.4 w/mk三、平壁的稳定热传导单层平壁的稳定热传导:多层平壁的稳定热传导四、圆筒壁的稳定热传导单层圆筒壁:设圆筒壁,内壁半径为r1,温度为t1,外壁半径为r2,温度为t2,圆筒长为L。