第六章热传导方程
- 格式:ppt
- 大小:1.04 MB
- 文档页数:38
热传导方程式(或称热方程)是一个重要的偏微分方程,它描述一个区域内的温度如何随时间变化。
物理动机一维热方程图解(观看动画版)热传导在三维的等方向均匀介质里的传播可用以下方程式表达:其中:u=u(t, x, y, z) 表温度,它是时间变量t 与空间变量(x, y,z) 的函数。
/是空间中一点的温度对时间的变化率。
uxx, uy y与uzz温度对三个空间座标轴的二次导数。
k决定于材料的热传导率、密度与热容。
热方程是傅立叶冷却律的一个推论(详见条目热传导)。
如果考虑的介质不是整个空间,则为了得到方程的唯一解,必须指定u 的边界条件。
如果介质是整个空间,为了得到唯一性,必须假定解的增长速度有个指数型的上界,此假定吻合实验结果。
热方程的解具有将初始温度平滑化的特质,这代表热从高温处向低温处传播。
一般而言,许多不同的初始状态会趋向同一个稳态(热平衡)。
因此我们很难从现存的热分布反解初始状态,即使对极短的时间间隔也一样。
热方程也是抛物线偏微分方程最简单的例子。
利用拉普拉斯算子,热方程可推广为下述形式其中的Δ 是对空间变量的拉普拉斯算子。
热方程支配热传导及其它扩散过程,诸如粒子扩散或神经细胞的动作电位。
热方程也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与Ornstein-Uhlenbeck 过程。
热方程及其非线性的推广型式也被应用于影像分析。
量子力学中的薛定谔方程虽然有类似热方程的数学式(但时间参数为纯虚数),本质却不是扩散问题,解的定性行为也完全不同。
就技术上来说,热方程违背狭义相对论,因为它的解表达了一个扰动可以在瞬间传播至空间各处。
扰动在前方光锥外的影响通常可忽略不计,但是若要为热传导推出一个合理的速度,则须转而考虑一个双曲线型偏微分方程。
[编辑本段]以傅立叶级数解热方程在理想状态下一根棍子的热传导,配上均匀的边界条件。
以下解法首先由约瑟夫·傅里叶在他于1822年出版的著作Théorie analytique de la chaleur(中译:解析热学)给出。
热传导方程引言热传导方程是描述物质内部温度分布随时间演变的一种偏微分方程。
它广泛应用于热传导领域,如材料科学、工程热学、地球科学等。
热传导方程描述了热量在物质内部的传递方式,是研究热传导过程和温度场分布的重要工具。
热传导方程的一维形式考虑物质在一维情况下的热传导,热传导方程可以写作:∂u/∂t = α * ∂²u/∂x²其中,u为物质内部的温度,t为时间,x为空间坐标,α为热扩散系数。
热传导方程的二维形式对于二维的情况,假设热传导方程适用于平面内任意点,可以写作:∂u/∂t = α * (∂²u/∂x² + ∂²u/∂y²)其中,u为物质内部的温度,t为时间,x和y为平面内的空间坐标,α为热扩散系数。
热传导方程的三维形式在三维情况下,热传导方程可以写作:∂u/∂t = α * (∂²u/∂x² + ∂²u/∂y² + ∂²u/∂z²)其中,u为物质内部的温度,t为时间,x、y和z为空间坐标,α为热扩散系数。
定解条件为了求解热传导方程,需要给定一些定解条件。
常见的定解条件有:•初始条件:指定初始时刻的温度分布,即u(x, y, z, 0),其中u是温度,x、y和z分别是空间坐标,0表示初始时刻。
•边界条件:指定物体表面的温度或热流密度。
常见的边界条件有:第一类边界条件(温度指定),即u(x, y, z, t) = g(x, y, z, t);第二类边界条件(热流密度指定),即-k * ∂u/∂n = q(x, y, z, t),其中k为导热系数,n为法向量,q为热流密度。
热传导方程的数值解热传导方程是一个偏微分方程,通常无法得到解析解。
因此,需要借助数值计算方法来求解。
常见的数值方法有有限差分法、有限元法和边界元法等。
在有限差分法中,可以将空间离散为若干个网格点,时间离散为若干个时间步长。
热方程1.1简介我们今天要讨论的基本问题的解决方案涉及部分差速器壳体等式中,这类问题在各个领域出现的科学和 工程。
一个偏微分方程(PDE )是一个数学方程含有偏导数,例如30u u t x∂∂+=∂∂ (1.1.1) 我们可以开始我们的研究,通过确定哪些函数(,)u x t 满足(1.1.1)。
但是,我们更愿意通过调查物理问题开始。
我们这样做原因有两个。
第一,我们的数学技术可能会对你很实用当它变得清晰,这些方法分析物理问题;第二,我们实际上会发现物理的考虑对我们的数学发展有很大的激励。
许多不同的学科领域工程和物理科学以偏微分方程的研究为主。
没有列表可能是可以全部包含在内的。
然而,以下的例子给你的感觉是不同类型领域都高度依赖偏微分方程研究:声学,空气动力学,弹性力学,电动力学,流体动力学,地球物理学 (地震波传播),换热设备, 气象学,海洋学,光学,石油工程,等离子体物理(离子液体和气体),量子力学。
我们将会按照一定的应用数学哲学分析的一个问题将会有三个阶段:1. 构想规划2. 解决方案3. 详细解释我们首先拟定描述的传球热能的热流量方程。
热能是由分子物质搅拌引起的。
热能移动的顺序发生的两个基本流程:传导和对流。
在其中的一个分子的振动动能被转移到最相邻分子传导结果。
因此,热能被传导即使分子本身并不移动自己的位置。
此外,如果一个振动的分子从一个区域移动到另一个,伴随着热能。
这种类型的热能运动被称为对流。
以相对简单的问题开始我们的研究,我们学习热流仅仅是因为热能的传导比对流更为重要。
因此,我们会觉得热流量主要是在固体的情况下。
虽然热传递在流体(液体和气体)也主要是通过传导如果流体速度足够小。
1.2 在一维棒中的热传导的取得1、热能量密度 我们首先考虑杆变截面积A 在x 方向 (从0x =,则 x L =) 如图中所示。
1.2.1我们临时地以相当数量热能每个单位体积作为一未知变量,并且称它热能密度:(,)e x t ≡热能量密度。
热传导方程热传导方程:恒温下,物体各部分之间的传热量与传热面积成正比,这一规律称为热传导定律。
通过查表得知,温度为45摄氏度时,传热系数为0.038,即0.038KJ/m2。
1。
恒温,可求各处温度2。
标准大气压下,可以忽略体积功3。
利用表面传热系数4。
在同样的条件下,用比较实验数据,并将其写成表格,求出平均值: 5。
画出热传导图: 1-2。
4。
45度,可视为理想化,假设为零(或忽略) 5。
利用物理关系求传热速率: 0.038kJ/m2*s=12.2kJ/( m2。
s*s) =16.4KJ/s1。
查热传导方程2。
三次的不同结果都是温度,说明所得数据有误差,故采用插值法,用x表示x分之一,代入上式,解出p= 0.0383。
绘制热传导方程图4。
求各个点的传热速率( p。
m。
) 5。
根据平均值求传热速率( 4。
15KJ/s*s= 2。
28KJ/s*s=1。
6。
45度,可视为理想化,假设为零(或忽略) 5。
利用物理关系求传热速率: 0。
15KJ/m2*s=4。
33KJ/s*s= 1。
4。
当然也可求每个点的温度6。
实际上任何一个热力学系统,除了整个系统处于热平衡外,总还存在着各种各样的内能变化和相变。
内能是能量转化和守恒的量度。
对于一个孤立系统,由于能量在各处是不相互作用的,而且系统和环境都是绝热的,因此系统的内能只取决于系统本身的性质。
温度对内能有着直接的影响。
从能量观点看来,温度是物体分子热运动平均动能的标志。
在绝热条件下,热运动总是从高温区向低温区单方向地进行。
而分子热运动的平均动能是温度的量度,温度越高,分子平均动能就越大,分子平均动能越大,反应速度也就越快。
4。
利用表面传热系数5。
在同样的条件下,用比较实验数据,并将其写成表格,求出平均值: 6。
画出热传导图: 1-2。
4。
45度,可视为理想化,假设为零(或忽略) 5。
利用物理关系求传热速率: 0。
15KJ/m2*s=3。
第六章 习题答案6.1-1 求解下列本征值问题的本征值和本征函数。
(1)0=+''X X λ ()00=X ()0='l X(2)0=+''X X λ ()00='X ()0='l X (3)0=+''X X λ ()00='X ()0=l X (4)0=+''X X λ()0=a X()0=b X解:(1)0=λ时,()b ax x X +=,代入边界条件得 ()00==b X 和()0=='a l X 得到()0=x X ,不符合,所以0≠λ0>λ时,()x b x a x X λλsin cos +=,代入边界条件得()00==a X ,()()2224120sin ln l b l X nπλλ+=⇒==',2,1,0=n所以:()()21sin 2n n X x x lπ+=,2,1,0=n(2)0=λ时,()b ax x X +=,代入边界条件得 ()00=='a X 和()0=='a l X ,所以()b x X =存在。
0>λ时,()x b x a x X λλsin cos +=,代入边界条件得()000=⇒=='b b X λ,() ,2,10sin 222==⇒=-='n ln l a l X n πλλλ综合:本征值:222ln n πλ=,2,1,0=n本征函数:()x ln x X n πcos = ,2,1,0=n(3)0=λ时,()b ax x X +=,代入边界条件得 ()00=='a X 和()0==b l X ,()0=x X 不符合。
0>λ时,()x b x a x X λλsin cos +=,代入边界条件得()000=⇒=='b b X λ,()() ,2,1,04120cos 222=+=⇒==n ln l a l X nπλλ本征函数:()()21cos 2n n X x x lπ+= ,2,1,0=n(4)0=λ时,()d cx x X +=,代入边界条件得 ()0=+=d ca a X 和()0=+=d cb l X ,得到b a =,故0≠λ。
第六章热量传热微分方程一、单相对流传热的一般数学模型对流传热是一种与流体运动及流体内部导热规律均有关的一种传热现象。
所以,对此过程的描述,需要同时采用描述流体流动和传热两方面的基本方程,即传热微分方程、导热微分方程、运动微分方程、连续性方程以及相应的单值条件。
下面分别介绍。
1.传热微分方程当流体流过固体壁面时,总存在一层很薄的流体粘附在表面上,这层流体总是处于静止状态(u=0),则热量只能依靠导热在该表而层传递。
因此,在此流体层任一微元面积dA的传热量dq,可以根据付立叶定律计算:d q = -lrf— dA—— (1)和So紧结固体壁面处(11=0)的流体层屮温度梯度,kf——流体的导热系数。
另外,根据对流传热基木方程,壁面与流体之间的传热量dg乂可写为:dq = h[t s -t f^dA = hAtdA (2)式中:M = t s-t f——固体壁面与流体间的温差。
h——对流传热系数。
由⑴,(2)两式相等得:(3)h亠並丽n=0此式即为传热微分方程。
欲求出对流传热膜系数h,则应先得出在该流体中的温度分布。
其温度分布可由导热微分方程描述。
2.导热微分方程:流体内导热微分方程在前面已有推导,在无内热源时为:上式常称为能量方程。
对于稳态的温度场,里=0。
oO因此式包括有未知量代,仏,冬,因此,欲求解上式,必须知道流体内的速度分布,这就需求解流体的运动微分方程。
3•运动微分方程:粘性流体的运动微分方程,即是奈斯方程:上述三个方程中有4个未知量:u x ,u y ,u :及P,所以述应引入一个方程,才能求解。
该方程就是连续性方程。
4.连续性方程:一般流体的连续性方程在前而已经导出,即:讪 | °(刊J |。
(刊J | 讥以J 二°— (6)dxdydz对于不可压缩性流体lp =常数),稳态流动(叟=0 )时,有:30通过对上述四种方程求解,便可得出对流传热系数h 的一般解。
再加上单值 条件,便可求得具体问题的解。
热传导方程的解析解及应用热传导方程是描述物体内部热量传递的一种数学模型。
它在工程、物理学和数学等领域中有着广泛的应用。
本文将介绍热传导方程的解析解以及其在实际问题中的应用。
首先,我们来看一下热传导方程的基本形式。
热传导方程可以用偏微分方程的形式表示:∂u/∂t = α∇²u其中,u是温度的分布函数,t是时间,α是热扩散系数,∇²是拉普拉斯算子。
这个方程描述了温度随时间和空间的变化规律。
要解决这个方程,我们需要找到u 关于t和空间坐标的解析解。
解析解是指能够用已知的数学函数表达出来的解。
对于热传导方程,有一些特殊的边界条件和初始条件,可以得到一些已知的解析解。
例如,对于一个无限长的棒状物体,两端保持恒定的温度,我们可以得到如下的解析解:u(x, t) = T1 + (T2 - T1)erf(x/2√(αt))其中,x是空间坐标,T1和T2分别是两端的温度,erf是误差函数。
这个解析解表达了棒状物体内部温度随时间和空间的变化规律。
除了解析解,我们还可以使用数值方法来求解热传导方程。
数值方法通过将空间和时间离散化,将偏微分方程转化为代数方程组的形式,然后利用计算机进行求解。
数值方法的优势在于可以处理较为复杂的边界条件和几何形状。
然而,数值方法的精度和计算效率通常不如解析解。
热传导方程的解析解在实际问题中有着广泛的应用。
例如,在工程中,我们可以利用解析解来分析材料的热传导性能。
通过解析解,我们可以计算出材料内部温度的分布,进而评估材料的热稳定性和热传导性能。
这对于设计高效的散热系统和防止热损伤非常重要。
此外,热传导方程的解析解还可以应用于热传感器的设计和优化。
热传感器是一种用于测量温度变化的装置,常见的应用包括温度计和红外线热像仪。
通过解析解,我们可以计算出热传感器的响应时间、灵敏度和测量精度,从而指导热传感器的设计和制造。
总之,热传导方程的解析解及其应用是一个重要的研究领域。
解析解可以提供物理过程的详细信息,对于理解和优化热传导问题具有重要意义。
前言本文只是针对小白而写,可以使新手对热传导理论由很浅到不浅的认识,如想更深学习热传导知识,请转其它文档。
一、概念与常量1、温度场:指某一时刻τ下,物体内各点的温度分布状态。
在直角坐标系中:t=f(x,y,z,τ);在柱坐标系中:t=f(r,θ,z,τ);在球坐标系中:t=f(r,θ,∅,τ)。
补充:根据温度场表达式,可分析出导热过程是几维、稳态或非稳态的现象,温度场是几维的、稳态的或非稳态的。
2、等温面与等温线:三维物体内同一时刻所有温度相同的点的集合称为等温面;一个平面与三维物体等温面相交所得的的曲线线条即为平面温度场中的等温线。
3、温度梯度:在具有连续温度场的物体内,过任意一点P温度变化率最大的方向位于等温线的法线方向上。
称过点P的最大温度变化率为温度梯度(temperature gradient)。
用grad t表示。
定义为:grad t=∂t∂nn补充:温度梯度表明了温度在空间上的最大变化率及其方向,是向量,其正向与热流方向恰好相反。
对于连续可导的温度场同样存在连续的温度梯度场。
在直角坐标系中:grad t=∂t∂xi+∂t∂yj+∂t∂zk3、导热系数定义式:λ=q-grad t单位W/(m⋅K)导热系数在数值上等于单位温度降度(即1K/m)下,在垂直于热流密度的单位面积上所传导的热流量。
导热系数是表征物质导热能力强弱的一个物性参数。
补充:由物质的种类、性质、温度、压力、密度以及湿度影响。
二、热量传递的三种基本方式热量传递共有三种基本方式:热传导;热对流;热辐射三、导热微分方程式(统一形式:ρc∂t∂τ=λ∇2t+q)直角坐标系:ρc∂t∂τ=∂∂x(λ∂t∂x)+∂∂y(λ∂t∂y)+∂∂z(λ∂t∂z)+q圆柱坐标系:ρc∂t∂τ=1r∂∂r(λr∂t∂r)+1r2∂∂ϕ(λ∂t∂ϕ)+∂∂z(λ∂t∂z)+q球坐标系:ρc∂t∂τ=1r2∂∂r(λr2∂t∂r)+1r2sinθ∂∂θ(λsinθ∂t∂θ)+1r2sin2θ∂∂ϕ(λ∂t∂ϕ)+ q其中,称α=λρc为热扩散系数,单位m2/s,ρ为物质密度,c为物体比热容,λ为物体导热系数,q为热源的发热率密度,h为物体与外界的对流交换系数。