第五章 数组,集合和矩阵
- 格式:ppt
- 大小:601.00 KB
- 文档页数:27
高等代数第五章知识点总结高等代数是数学中的一个重要分支,主要研究代数结构、线性代数、群论等数学领域。
第五章主要涉及线性方程组、矩阵、向量空间、线性变换等知识点。
以下是对这些知识点的总结:1. 线性方程组:线性方程组是一组线性方程的集合,其中每个方程都是一次多项式。
线性方程组的解称为线性方程组的解,可以用矩阵和向量来表示。
2. 矩阵:矩阵是一种特殊的数组,可以表示线性方程组、线性变换和向量空间等数学对象。
矩阵的加法、数乘等运算符合矩阵的定义,并且矩阵具有一些特殊的性质,如行列式、秩等。
3. 向量空间:向量空间是一个线性空间,其中添加了一个标量值域。
向量空间的元素称为向量,向量空间的基和维数是重要概念。
向量空间的加法、数乘等运算符合向量空间的定义。
4. 线性变换:线性变换是一个将一个线性空间映射到另一个线性空间的函数。
线性变换的特征是保持向量空间的加法和数乘运算。
线性变换的矩阵表示是一个方阵,其中每行每列都是一个向量。
5. 特征值和特征向量:特征值和特征向量是两个重要的概念,用于描述矩阵的性质。
矩阵的特征值是指矩阵在乘以某个向量后得到的值,而特征向量是指与特征值相关的向量。
6. 相似矩阵:相似矩阵是指具有相同特征值的矩阵。
相似矩阵之间具有一些相似性质,如行列式、秩等。
相似矩阵可以用来表示线性变换的缩放比例和旋转角度。
7. 克莱默法则:克莱默法则是一个用于求解线性方程组的公式,可以将线性方程组的系数矩阵转换为阶梯形矩阵或行最简矩阵,从而求解线性方程组的解。
8. 特征值分解:特征值分解是将矩阵分解成一组特征向量的乘积,从而求解矩阵的特征值和特征向量。
特征值分解在矩阵的分解和求解中发挥着重要作用。
9. 二次型:二次型是一种特殊的矩阵,其元素是二次多项式。
二次型可以用来表示线性变换的对称矩阵和非对称矩阵,并且具有一些重要的性质,如行列式、秩等。
以上是第五章的主要知识点总结,这些知识点是高等代数中的重要基础,对于理解代数结构、线性代数和群论等数学领域具有重要意义。
《数据结构与算法》第五章数组和广义表本章介绍的数组与广义表可视为线性表的推广,其特点是数据元素仍然是一个表。
本章讨论多维数组的逻辑结构和存储结构、特殊矩阵、矩阵的压缩存储、广义表的逻辑结构和存储结构等。
5.1 多维数组5.1.1 数组的逻辑结构数组是我们很熟悉的一种数据结构,它可以看作线性表的推广。
数组作为一种数据结构其特点是结构中的元素本身可以是具有某种结构的数据,但属于同一数据类型,比如:一维数组可以看作一个线性表,二维数组可以看作“数据元素是一维数组”的一维数组,三维数组可以看作“数据元素是二维数组”的一维数组,依此类推。
图5.1是一个m行n列的二维数组。
5.1.2 数组的内存映象现在来讨论数组在计算机中的存储表示。
通常,数组在内存被映象为向量,即用向量作为数组的一种存储结构,这是因为内存的地址空间是一维的,数组的行列固定后,通过一个映象函数,则可根据数组元素的下标得到它的存储地址。
对于一维数组按下标顺序分配即可。
对多维数组分配时,要把它的元素映象存储在一维存储器中,一般有两种存储方式:一是以行为主序(或先行后列)的顺序存放,如BASIC、PASCAL、COBOL、C等程序设计语言中用的是以行为主的顺序分配,即一行分配完了接着分配下一行。
另一种是以列为主序(先列后行)的顺序存放,如FORTRAN语言中,用的是以列为主序的分配顺序,即一列一列地分配。
以行为主序的分配规律是:最右边的下标先变化,即最右下标从小到大,循环一遍后,右边第二个下标再变,…,从右向左,最后是左下标。
以列为主序分配的规律恰好相反:最左边的下标先变化,即最左下标从小到大,循环一遍后,左边第二个下标再变,…,从左向右,最后是右下标。
例如一个2×3二维数组,逻辑结构可以用图5.2表示。
以行为主序的内存映象如图5.3(a)所示。
分配顺序为:a11 ,a12 ,a13 ,a21 ,a22,a23 ; 以列为主序的分配顺序为:a11 ,a21 ,a12 ,a22,a13 ,a23 ; 它的内存映象如图5.3(b)所示。
《数据结构》第五章 数组 习题基本概念题:5-1 分别写出一维数组和二维数组的存储映象公式。
5-2 什么叫二维数组的行序优先存储?什么叫二维数组的列序优先存储?C 语言采用的是行序优先存储还是列序优先存储?5-3 什么叫随机存储结构?为什么说数组是一种随机存储结构?5-4 动态数组和静态数组在使用方法上有什么不同?5-5 什么样的矩阵叫特殊矩阵?特殊矩阵压缩存储的基本思想是什么?5-6 什么样的矩阵叫稀疏矩阵?稀疏矩阵压缩存储的基本思想是什么?5-7 什么叫稀疏矩阵的三元组?什么叫稀疏矩阵的三元组线性表?5-8 稀疏矩阵主要有哪些压缩存储结构?复杂概念题:5-9 设一个系统中二维数组采用以行序为主的存储方式存储,已知二维数组a[n][m]中每个数据元素占k 个存储单元,且第一个数据元素的存储地址是Loc(a[0][0]),求数据元素a[i][j](0≤i≤n -1, 0≤j≤m -1)的存储地址。
5-10 设一个系统中二维数组采用以行序为主的存储方式存储,已知二维数组a[10][8]中每个数据元素占4个存储单元,且第一个数据元素的存储地址是1000,求数据元素a[4][5]的存储地址。
5-11 画出一个3行3列二维动态数组存储结构示意图。
5-12 对于如下所示的稀疏矩阵A(1)写出该稀疏矩阵的三元组线性表;(2)画出稀疏矩阵A 的三元组顺序表结构;(3)画出稀疏矩阵A 的带头结点单链表结构;(4)画出稀疏矩阵A 的行指针数组链表结构;(5)画出稀疏矩阵A 的三元组十字链表结构。
算法设计题:5-13 为节省内存,n 阶对称矩阵采用压缩存储,要求:(1)编写实现C = A + B 操作的函数。
设矩阵A 、矩阵B 和矩阵C 均采用压缩存储方式存储,矩阵元素均为整数类型。
(2)编写一个采用压缩存储的n 阶对称矩阵的输出函数,要求输出显示成矩阵形式,设矩阵元素均为整数类型。
(3)设矩阵A 和矩阵B 为如下所示的矩阵,编写一个用矩阵A 和矩阵B 作为测试例子的测试上述函数的主程序。
矩阵和数组矩阵和数组是计算机科学中非常重要的概念。
它们是用于存储和处理数据的基本数据结构。
在本文中,我们将探讨矩阵和数组的定义、特点、应用以及它们之间的区别。
矩阵是一个由数值排列成的矩形阵列。
它由行和列组成,每个元素都有一个唯一的位置。
矩阵可以用于表示线性方程组、图像处理、机器学习等领域。
矩阵的特点是它们可以进行加、减、乘、转置等操作。
矩阵的加法和减法是按元素进行的,而矩阵的乘法是按照矩阵乘法规则进行的。
矩阵的转置是将矩阵的行和列互换。
数组是一组相同类型的数据元素的集合。
数组可以用于存储和处理大量的数据。
数组的特点是它们可以进行索引、遍历、排序等操作。
数组的索引是从0开始的,可以通过索引访问数组中的元素。
数组的遍历是按照顺序访问数组中的元素。
数组的排序是将数组中的元素按照一定的规则进行排序。
矩阵和数组在应用中有很多相似之处。
它们都可以用于存储和处理数据。
例如,矩阵可以用于图像处理,而数组可以用于存储图像数据。
矩阵可以用于机器学习中的矩阵分解,而数组可以用于存储机器学习中的数据集。
矩阵和数组都可以用于科学计算、金融分析、工程设计等领域。
尽管矩阵和数组有很多相似之处,但它们之间也有一些区别。
最明显的区别是它们的形状。
矩阵是一个矩形阵列,而数组可以是一维或多维的。
另一个区别是它们的操作。
矩阵的操作是按照矩阵乘法规则进行的,而数组的操作是按照数组的规则进行的。
此外,矩阵和数组在内存中的存储方式也不同。
矩阵和数组是计算机科学中非常重要的概念。
它们是用于存储和处理数据的基本数据结构。
矩阵和数组在应用中有很多相似之处,但它们之间也有一些区别。
了解矩阵和数组的定义、特点、应用以及它们之间的区别,可以帮助我们更好地理解计算机科学中的数据结构和算法。
第五章矩阵分析(改)第五章矩阵分析本章将介绍矩阵微积分的⼀些内容.包括向量与矩阵序列的收敛性、矩阵的三种导数和矩阵微分与积分的概念,简要介绍向量与矩阵范数的有关知识.§5.1 向量与矩阵的范数从计算数学的⾓度看,在研究计算⽅法的收敛性和稳定性问题时,范数起到了⼗分重要的作⽤.⼀、向量的范数定义1 设V 是数域F 上n 维(数组)向量全体的集合,x 是定义在V 上的⼀个实值函数,如果该函数关系还满⾜如下条件:1)⾮负性对V 中任何向量x ,恒有0x ≥,并且仅当0=x 时,才有x =0;2)齐次性对V 中任意向量x 及F 中任意常数k ,有;x k kx = 3)三⾓不等式对任意V y x ∈,,有y x y x +≤+,则称此函数x (有时为强调函数关系⽽表⽰为?)为V 上的⼀种向量范数.例1 对n C 中向量()T n x x x x ,,,21 =,定义222212nx x x x+++=则2x 为n C 上的⼀种向量范数[i x 表⽰复数i x 的模].证⾸先,2n x C 是上的实值函数,并且满⾜1)⾮负性当0x ≠时,0x >;当0x =时,0x =; 2)齐次性对任意k C ∈及n x C ∈,有22||||||kx k x ==;3)三⾓不等式对任意复向量1212(,,,),(,,,)T T n n x x x x y y y y ==,有222221122||||||||()n n x y x y x y x y +=++++++2221122()()()n n x y x y x y ≤++++++22111||2||||||nnni i i i i i i x x y y ====++∑∑∑(由Cauchy-ВуНЯКОВСКИЙ不等式)222222222||||2||||||||||||(||||||||),x x y y x y ≤++=+因此 222||||||||||||x y x y +≤+所以 2||||x 确为n C 上的⼀种向量范数例2 对n C [或n R ]上向量12(,,,)T n x x x x =定义112||||||||||n x x x x =+++,1max i i nxx ∞≤≤=,则1||||x 及x ∞都是n C [或n R ]上的向量范数,分别称为1-范数和∞-范数.证仅对后者进⾏证明. 1)⾮负性当0x ≠时,max 0i ixx ∞=>,⼜显然有00∞=;2)齐次性对任意向量()T n x x x x ,,,21 =及复数k ,max max ;i i iikxkx k x k x ∞∞===3)三⾓不等式对任意向量1212(,,,),(,,,),T T n n x x x x y y y y ==()i i ii i iy x y x yx +≤+=+∞max maxi ii iy x max max +≤ =∞∞+y x .综上可知∞x 确为向量范数.上两例中的∞x x x ,,21是常⽤的三种向量范数.⼀般地,对于任何不⼩于1的正数p ,向量()T n x x x x ,,,21 =的函数pni p i px x11??=∑= 也构成向量范数,称为向量的p -范数.注(1)当1p =时,1;pxx =(2)当2p =时,2x 为2-范数,它是⾣空间范数;当i x 为实数时,12221()ni i x x ==∑为欧⽒空间范数;由p -范数的存在,可知向量的范数有⽆穷多种,⽽且,向量的范数并不仅限于p -范数.在验证向量的范数定义中,三⾓不等式的过程中常涉及到两个著名的不等式,即:1、H?lder 不等式设正实数,p q 满⾜111,p q+=则对任意的,,n x y C ∈有11111()()nnnpq pqi ii i i i i x yx y ===≤∑∑∑2、Minkowski 不等式对任意实数1p ≥,及,,n x y C ∈有(111111()()()nnnpp ppppi i i i i i i x y x y ===+≤+∑∑∑).例3 设()T n 1,,1,1 =为n 维向量,则1,,21===∞xn x n x各种范数值差距很⼤.但是,各种范数之间却存在着内在的制约关系,称为范数的等价性.定理1 设βα??,为有限维线性空间V 的任意两种向量范数(它们不限于p -范数),则存在正的常数12,C C ,使对⼀切向量x ,恒有βαβx C x xC 21≤≤ (1)证如果范数x α和x β都与⼀固定范数譬如2-范数2x 满⾜式(1)的关系,则这两种范数之间也存在式(1)的关系,这是因为若存在正常数12,C C ''和12,C C '''',使 1222122,C x x C x C xx C x αββ''≤≤''''≤≤成⽴,则显然有1122||||||||||||C C x x C C x βαβ''''''≤≤ 令111222,C C C C C C ''''''==,则得式(1),因此只要对2β=证明或(1)成⽴即可.设V 是n 维的,它的⼀个基是12,,,n x x x ,于是V 中的任意向量x 可表⽰为1122n n x x x x ξξξ=+++从⽽,1122n n x x x x ααξξξ=+++可视为n 个变量12,,,n ξξξ的函数,记为12(,,,)n x α?ξξξ=,易证12(,,,)n ?ξξξ是连续函数,事实上,若令1122nn x x x x V ξξξ''''=+++∈,则 12(,,,)nx α?ξξξ''''=. 1212(,,,)(,,,)n n x x x x αααξξξ?ξξξ'''''-=-≤- 11111()()nn n nn n x x x x αααξξξξξξξξ''''=-++-≤-++-. 由于ix α(1,2,,)i n =是常数,因此i ξ'与i ξ充分接近时,12(,,,)nξξξ'''就与12(,,,)n ?ξξξ充分接近,所以12(,,,)n ?ξξξ是连续函数.所以在有界闭集{1212(,,,)1n S ξξξξξξ=+++=上,函数12(,,,)n ?ξξξ可达到最⼤值2C 及最⼩值1C .因此在S 中,i ξ不能全为零,所以10C >.记向量1212222nn y x x x xxxξξξ=+++,则其坐标分量满⾜22212122221nx x xxxξξξ+因此,y S ∈.从⽽有 11122220,,n C yC xx x αξξξ<≤=≤ ? ???. 但2,xy x =故 122x C C x α'≤≤. 即 12222C x x C x ≤≤.⼆、矩阵的范数定义 2 设V 是数域F 上所有n m ?矩阵的集合,A 是定义在V 上的⼀个实值函数,如果该函数关系还满⾜如下条件:对V 中任意矩阵A 、B 及F 中任意常数k 总有1)⾮负性 0≥A 并且仅当0=A 时,才有0=A ; 2)齐次性 A kkA =;3)三⾓不等式 B A B A +≤+;则称()?A是V 上的⼀种矩阵范数.例4 对n m C ?(或n m R ?)上的矩阵A ()ij a =定义∑∑===mi nj ij M a A111,∑∑===m i nj ijM aA1122,11max ij M i m j nA a ∞≤≤≤≤=,则∞M M M ,,21都是n m C ?(或n m R ?)上的矩阵范数.实⽤中涉及较多的是⽅阵的范数,即m n =的情形.定义 3 设F 是数域,?是n n F ?上的⽅阵范数.如果对任意的,n n A B F ?∈,总有AB A B ≤?,则说⽅阵范数?具有乘法相容性.注意:在某些教科书上,往往把乘法相容性直接纳⼊⽅阵范数的定义中作为第4个条件,在读书时,只要注意到各⾃定义的内涵就可以了.例 5 对n n C ?上的矩阵][A ij a =定义ij nj i a n A ≤≤?=,1max ,则?是⼀种矩阵范数,并且具备乘法相容性.证⾮负性与齐次性显然成⽴,另两条证明如下:三⾓不等式ij ij b a n B A +?=+max()max max ij ij n a b ≤+ B A +=;乘法相容性≤?=∑∑==n k kj ik nk kj ik b a n b a n AB 11max max()()B A b n a n ij ij =?≤max max ,证得A 为矩阵范数且具有乘法相容性.并不是所有的⽅阵范数都具有乘法相容性.例如对于22?R 上的⽅阵范数.M ∞就不具备相容性条件.此时ij j i M a A2,1m ax ≤≤=∞.取 1110,0111A B== ? ?????,∞M M BA ,⽽ 2M M M ABA B∞∞∞=>.定义4 如果n 阶矩阵A 的范数A 与n 维向量x 的范数x ,使对任意n 阶矩阵A 及任意n 维向量x 均有x A Ax ≤,则称矩阵范数A 与向量范数x是相容的.定理2 设x 是某种向量范数,对n 阶矩阵A 定义AxxAx A x x 1max max=≠==(2)则A 为⽅阵范数,称为由向量范数x 导出的矩阵范数,⽽且它具有乘法相容性并且与向量范数x 相容.证⾸先可证,由(2)式定义的函数关系||||A 满⾜与向量范数||||x 的相容性.对于任意n 阶矩阵A 及n 维向量x ,当0x ≠时,有0||||||||max ||||||||||||y Ax Ay A x y ≠≤=,即 ||||||||||||;Ax A x ≤(3)⽽当0x =时,||||0||||||||Ax A x ==,于是总有(3)式成⽴.容易验证||||A 满⾜范数定义中的⾮负性、齐次性及三⾓不等式三个条件,因⽽A 是⼀种⽅阵范数.并且,对任意n 阶矩阵,A B ,利⽤(2)式和(3)式可得maxmaxmaxx x x A BxABx Bx AB A A B xxx即说矩阵范数A 具备乘法相容性.⼀般地,把由向量p -范数p x 导出的矩阵范数记作p A .下⾯看常⽤的三种矩阵范数:例6 证明:对n 阶复矩阵[]i j A a =,有 1)11max nij j ni Aa ∞≤≤==∑,称为A 的列和范数.2)11max nij j nj Aa ∞≤≤==∑,称为A 的⾏和范数.证 1)设111max nnijikj ni i w a a≤≤===∑∑.若A 按列分块为12(,,,)n A ααα=则111max k j j nw αα≤≤==.任意n 维向量12(,,)T n x x x x =,有112211221111112111()max .n n n nn jj nAx x x x x x x x x x x w ααααααα≤≤+++≤+++≤+++≤=于是,对任意⾮零向量x 有11Ax w x ≤. 以下证明存在⾮零向量k e 使11k kAe w e =.事实上,设k e 是第k 个分量为1⽽其余分量全为0的向量,则1k e =1,且1k ik i Ae a w =∑n=1=,即11k kAe w e =.2)的证明与1)相仿,留给读者去完成. 例7 证明对n 阶复矩阵A ,有21max i i nA σ≤≤=,这⾥()n i i ,,2,1 =σ是A 的奇异值,称此范数为A 的谱范数.证设H A A 的全部特征根为12,,n λλλ不妨设11max i i nλλ≤≤=.于是11max i i nσσ≤≤==.因为H A A 为H -矩阵,故有⾣矩阵U ,使得,,H H U A AV diag λλλ=Λ=12n (,).如设12(,,,)n U u u u =则i u 是H A A 相应于特征根i λ的单位特征向量,即有,H i i i A A u u λ= 21iu =.对任意满⾜2||||1x =的复向量12(,,,)T n x x x x = ,有22||||()()H H Ax Ax Ax x ==H令H y U x =,则222222||||||||||||1H y U x x ===,说明y 亦为单位向量.若设12(,,,)T n y y y y =,则2221||||||1nii y y ===∑于是 22211||||||nHi i i Ax y y y λλ==Λ=≤∑.即有12Ax σ≤.由x 的任意性,便得21221max x A Ax σ==≤特别取1x u =,则有211111112H H H Au u A Au u u λλ===,即112Au σ=.这说明2Ax 在单位球⾯{}21,n x x x C =∈上可取到最⼤值1σ,从⽽证明了21221max x A Ax σ===各种矩阵范数之间也具有范数的等价性定理 3 设,a A A β是任意两种矩阵范数则有正实数12,,C C 使对⼀切矩阵A 恒有12a C A A C A ββ≤≤§5.2 向量与矩阵序列的收敛性在这⼀节⾥,我们将把数列极限的概念,扩展到向量序列与矩阵序列上去.可数多个向量(矩阵)按顺序成⼀列,就成为⼀个向量(矩阵)序列,()12(,,,)k k k Tk n x x x x =,1,2,3,k=是⼀个n 维向量序列,记为{}k x ,诸k x 的相应分量则形成数列{}k i x .定义5 设有向量序列()()()12{}:(,,,)k k k Tk k n x x x x x =.如果对1,2,i n =,数列(){}k i x 均收敛且有()lim k i i k x x →∞=,则说向量序列{}k x 收敛.如记12(,,,)T n x x x x =,则称x 为向量序列{}k x 的极限,记为lim k k x x →∞=,或简记为k x x →.如果向量序列{}k x 不收敛,则称为发散.类似于数列的收敛性质,读者不难证明向量序列的收敛性具有如下性质.设{},{}k k x y 是n C 中两个向量序列,,a b 是复常数,n ,m A C ?∈如果lim ,lim k k k k x x y y →∞→∞==,则1lim();2lim .k k k k k ax by ax by Ax Ax →∞→∞>+=+>=定理 4 对向量序列{}k x ,x x k =∞→k lim 的充分必要条件是0lim =-∞→x x k k ,其中?是任意⼀种向量范数.证明1)先对向量范数i ni x x=1max 证明定理成⽴.有i k i k k k x x x x =?=∞→∞→)(lim lim ,n i ,...,2,1=;,0lim )(=-?∞→i k i k x x n i ,...,2,1=;0max lim )(1=-?≤≤∞→i k i ni k x x ;0lim =-?∞∞→xx k k .2)由向量范数等价性,对任⼀种向量范数?,有正实数21,b b ,使∞∞-≤-≤-x x b x x xx b k k k 21.令∞→k 取极限即知lim 0lim 0k k k k x x x x∞→∞→∞-=?-=.于是定理对任⼀种向量范数都成⽴.根据上述定义,向量序列有极限的根本之处在于各分量形成的数列都有极限.由于m n C ?中矩阵可以看作⼀个mn 维向量,其收敛性可以和mn C 中的向量⼀样考虑.因此,我们可以⽤矩阵各个元素序列的同时收敛来规定矩阵序列的收敛性.定义 6 设有矩阵序列{}n m k ij k k a A A ?=][:)(,如果对任何,(1,1)i j i m j n ≤≤≤≤,均有ij k ij k a a =∞→)(lim 则说矩阵序列{}k A 收敛,如令n m ij a A ?=][,⼜称A 为{}k A 的极限.记为,lim A A k k =∞→或A A k →.矩阵序列不收敛时称为发散.→lim ,则()aA A a k k k =∞→lim .特别,当a 为常数时,()k k k k A a aA ∞→∞→=lim lim .2) 若A A k k =∞→lim ,B B k k =∞→lim ,则()B A B A k k k ±=±∞→lim .3) 若A A k k =∞→lim ,B B k k =∞→lim ,则()AB B A k k k =∞→lim .4) 若A A k k =∞→lim 且诸k A 及A 均可逆,则{}1-k A 收敛,并且11lim --∞→=A A k k .。
第一章绪论一、数据结构包括:逻辑结构、存储结构、运算(操作)三方面内容。
二、线性结构特点是一对一。
树特点是一对多图特点是多对多三、数据结构的四种存储结构:顺序存储、链式存储、索引存储、散列存储顺序存储结构和链式存储结构的区别?线性结构的顺序存储结构是一种随机存取的存储结构。
线性结构的链式存储是一种顺序存取的存储结构。
逻辑结构分类:集合线性树图,各自的特点。
或者分为线性结构和非线性结构。
四、算法的特征P13五、时间复杂度(1) i=1; k=0;while(i<n){ k=k+10*i;i++;}分析:i=1; //1k=0; //1while(i<n) //n{ k=k+10*i; //n-1i++; //n-1}由以上列出的各语句的频度,可得该程序段的时间消耗:T(n)=1+1+n+(n-1)+(n-1)=3n可表示为T(n)=O(n)六、数据项和数据元素的概念。
第二章线性表一、线性表有两种存储结构:顺序存储和链式存储,各自的优、缺点。
二、线性表的特点。
三、顺序表的插入、思想、时间复杂度o(n)、理解算法中每条语句的含义。
(1)插入的条件:不管是静态实现还是动态实现,插入的过程都是从最后一个元素往后挪动,腾位置。
静态是利用数组实现,动态是利用指针实现。
不管静态还是动态,在表中第i个位置插入,移动次数都是n-i+1。
四、顺序表的删除、思想、时间复杂度o(n)、理解算法中每条语句的含义。
(1)删除的条件:不管是静态实现还是动态实现,删除的过程都是从被删元素的下一位置向前挪动。
静态是利用数组实现,动态是利用指针实现。
不管静态还是动态,删除表中第i个元素,移动次数都是n-i。
五、顺序表的优缺点?为什么要引入链表?答:顺序表的优点是可以随机存取,缺点是前提必须开辟连续的存储空间且在第一位置做插入和删除操作时,数据的移动量特别大。
如果有一个作业是100k,但是内存最大的连续存储空间是99K,那么这个作业就不能采用顺序存储方式,必须采用链式存储方式。