5.理想化模型 (1)力的角度:简谐运动所受回复力不考虑摩擦阻力. (2)能量角度:简谐运动没有考虑因克服阻力做功带来 的能量损耗.
一、简谐运动的判断
例1:弹簧下端挂一质量为M的钢球,如右图所示,试证 明此系统在竖直方向上做的机械振动为简谐运动.
证明:设弹簧的劲度系数为k,在弹性限度内把钢球向下 拉一段距离至A点.如图甲所示. 在钢球振动中到达平衡位置O点下方某一点B,此时振 子的位移为x. 在平衡位置时,弹簧伸长x0. 由平衡方程Mg-kx0=0. 在B点F回=Mg-k(x+x0)=-kx. 由于B是振动中的任一位置,可见钢球受 合外力与它的位移的关系符合简谐运动 的受力特点.即该振动为简谐运动.
(4)式中“k”虽是系数,但有单位,其单位由F和x的单 位决定,为N/m. (5)简谐运动中,回复力F=-kx,因x=Asin(ωt+φ).故 F=-kAsin(ωt+φ),可见回复力随时间按正弦规律变 化,简谐运动是一个变加速运动. (6)判断一个振动是否为简谐运动可根据此振动的回复 力是否满足F=-kx来判断.如果一个振动系统,它的回 复力满足F=-kx,则此振动一定为简谐运动.
二、简谐运动的回复力
例2:如右图所示,物体A置于物体B上,一轻弹簧一端固定,另一 端与B相连,在弹性限度范围内,A和B在光滑水平面上往复运 动(不计空气阻力),并保持相对静止.则下列说法正确的是( ) A.A和B均做简谐运动 B.作用在A上的静摩擦力大小与弹簧的形变量成正比 C.B对A的静摩擦力对A做功,而A对B的静摩擦力对B不做功 D.B对A的静摩擦力始终对A做正功,而A对B的静摩擦力对B 做负功
置 的 距 离k为mg .
由简谐运动的特点知最高点离平
衡 位 置 的mg距.k离 也 为