山东省诸城市树一中学2015-2016学年八年级数学下学期第一次学情检测试题(扫描版) 新人教版
- 格式:doc
- 大小:5.64 MB
- 文档页数:8
2015-2016学年山东省潍坊市诸城市树一中学九年级(下)第一次学情检测数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.在|﹣2|,20,2﹣1,这四个数中,最大的数是()A.|﹣2| B.20C.2﹣1D.2.若∠α的余角是30°,则cosα的值是()A.B.C.D.3.下列运算正确的是()A.2a﹣a=1 B.a+a=2a2C.aa=a2D.(﹣a)2=﹣a2 4.下列图形是轴对称图形,又是中心对称图形的有()A.4个B.3个C.2个D.1个5.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=()A.40°B.50°C.60°D.80°6.已知二次函数y=ax2的图象开口向上,则直线y=ax﹣1经过的象限是()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限7.如图,你能看出这个倒立的水杯的俯视图是()A.B.C.D.8.如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A.28℃,29℃B.28℃,29.5℃C.28℃,30℃D.29℃,29℃9.已知拋物线y=﹣x2+2,当1≤x≤5时,y的最大值是()A.2 B.C.D.10.小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是()A.2 B.C.2D.311.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲于A、B两点,若S△AOB=2,则k2﹣k1的值是()A.1 B.2 C.4 D.812.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是()A.升B.升C.升D.升二、填空题(本大题共6小题,每小题4分,共24分)13.方程的根是.14.把3.016保留两个有效数字为.15.分解因式:(a+2)(a﹣2)+3a=.16.如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为.17.如图,等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则的值为.18.如图,AB是半圆O的直径,以0A为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E.则下列四个结论:①点D为AC的中点;②S△O′OE=S△AOC;③;④四边形O′DEO是菱形.其中正确的结论是.(把所有正确的结论的序号都填上)三、解答题(本大题共6小题,满分共60分)19.已知:x1、x2是一元二次方程x2﹣4x+1=0的两个实数根,求:(x12+x22)÷(+)的值.20.数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m,经测量,得到其它数据如图所示.其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算GH的长.(≈1.73,要求结果精确到0.1m)21.如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.(1)求证:AB是⊙O的切线;(2)若D为OA的中点,阴影部分的面积为﹣,求⊙O的半径r.22.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?23.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=,求EB的长.24.已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标.2015-2016学年山东省潍坊市诸城市树一中学九年级(下)第一次学情检测数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.在|﹣2|,20,2﹣1,这四个数中,最大的数是()A.|﹣2| B.20C.2﹣1D.【考点】实数大小比较;零指数幂;负整数指数幂.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,首先求出|﹣2|,20,2﹣1的值是多少,然后根据实数比较大小的方法判断即可.【解答】解:|﹣2|=2,20=1,2﹣1=0.5,∵,∴,∴在|﹣2|,20,2﹣1,这四个数中,最大的数是|﹣2|.故选:A.【点评】(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.2.若∠α的余角是30°,则cosα的值是()A.B.C.D.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据题意求得α的值,再求它的余弦值.【解答】解:∠α=90°﹣30°=60°,cosα=cos60°=.故选A.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.互余角的性质:两角互余其和等于90度.3.下列运算正确的是()A.2a﹣a=1 B.a+a=2a2C.aa=a2D.(﹣a)2=﹣a2【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【专题】计算题.【分析】利用合并同类项、同底数幂的乘法、积的乘方法则进行计算.【解答】解:A、2a﹣a=a,此选项错误;B、a+a=2a,此选项错误;C、aa=a2,此选项正确;D、(﹣a)2=a2,此选项错误.故选C.【点评】本题考查了合并同类项,同底数幂的乘法,积的乘方,理清指数的变化是解题的关键.4.下列图形是轴对称图形,又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【专题】几何图形问题.【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:第①个图形不是轴对称图形,是中心对称图形,不符合题意;第②个图形是轴对称图形,不是中心对称图形,不符合题意;第③个图形既是轴对称图形,又是中心对称图形,符合题意;第④个图形是轴对称图形,又是中心对称图形,符合题意.所以既是轴对称图形,又是中心对称图形的有③④两个.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=()A.40°B.50°C.60°D.80°【考点】平行四边形的性质.【分析】根据平行四边形的对边平行和角平分线的定义,以及平行线的性质求∠1的度数即可.【解答】解:∵AD∥BC,∠B=80°,∴∠BAD=180°﹣∠B=100°.∵AE平分∠BAD∴∠DAE=∠BAD=50°.∴∠AEB=∠DAE=50°∵CF∥AE∴∠1=∠AEB=50°.故选B.【点评】此题主要考查平行四边形的性质和角平分线的定义,属于基础题型.6.已知二次函数y=ax2的图象开口向上,则直线y=ax﹣1经过的象限是()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限【考点】二次函数图象与系数的关系;一次函数图象与系数的关系.【专题】函数思想.【分析】二次函数图象的开口向上时,二次项系数a>0;一次函数y=kx+b(k≠0)的一次项系数k>0、b<0时,函数图象经过第一、三、四象限.【解答】解:∵二次函数y=ax2的图象开口向上,∴a>0;又∵直线y=ax﹣1与y轴交于负半轴上的﹣1,∴y=ax﹣1经过的象限是第一、三、四象限.故选D.【点评】本题主要考查了二次函数、一次函数图象与系数的关系.二次函数图象的开口方向决定了二次项系数a的符号.7.如图,你能看出这个倒立的水杯的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】几何图形问题.【分析】找到倒立的水杯从上面看所得到的图形即可.【解答】解:从上面看应是一个圆环,都是实心线.故选B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8.如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A.28℃,29℃B.28℃,29.5℃C.28℃,30℃D.29℃,29℃【考点】众数;中位数.【分析】根据中位数和众数的定义解答.【解答】解:从小到大排列为:28,28,28,29,29,30,31,28出现了3次,故众数为28,第4个数为29,故中位数为29.故选A.【点评】本题考查了中位数和众数的概念.解题的关键是正确识图,并从统计图中整理出进一步解题的信息.9.已知拋物线y=﹣x2+2,当1≤x≤5时,y的最大值是()A.2 B.C.D.【考点】二次函数的最值.【专题】函数思想.【分析】根据抛物线的解析式推断出函数的开口方向、对称轴、与y轴的交点,从而推知该函数的单调区间与单调性.【解答】解:∵拋物线y=﹣x2+2的二次项系数a=﹣<0,∴该抛物线图象的开口向下;又∵常数项c=2,∴该抛物线图象与y轴交于点(0,2);而对称轴就是y轴,∴当1≤x≤5时,拋物线y=﹣x2+2是减函数,=﹣+2=.∴当1≤x≤5时,y最大值故选C.【点评】本题主要考查了二次函数的最值.解答此题的关键是根据抛物线方程推知抛物线图象的增减性.10.小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是()A.2 B.C.2D.3【考点】垂径定理的应用;勾股定理.【专题】网格型.【分析】在网格中找点A、B、D(如图),作AB,BD的中垂线,交点O就是圆心,故OA即为此圆的半径,根据勾股定理求出OA的长即可.【解答】解:如图所示,作AB,BD的中垂线,交点O就是圆心.连接OA、OB,∵OC⊥AB,OA=OB∴O即为此圆形镜子的圆心,∵AC=1,OC=2,∴OA===.故选B.【点评】本题考查的是垂径定理在实际生活中的运用,根据题意构造出直角三角形是解答此题的关键.11.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲于A、B两点,若S△AOB=2,则k2﹣k1的值是()A.1 B.2 C.4 D.8【考点】反比例函数系数k的几何意义.【分析】设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出cd﹣ab=4,即可得出答案.【解答】解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=2,∴cd﹣ab=2,∴cd﹣ab=4,∴k2﹣k1=4,故答案为:4.【点评】本题主要考查了对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出cd﹣ab=4是解此题的关键.12.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是()A.升B.升C.升D.升【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】根据题目中第1次倒出升水,第2次倒出水量是升的,第3次倒出水量是升的,第4次倒出水量是升的…第10次倒出水量是升的…,可知按照这种倒水的方法,这1升水经10次后还有1﹣﹣×﹣×﹣×…×升水.【解答】解:∵1﹣﹣×﹣×﹣×…﹣×=1﹣﹣+﹣+﹣+…﹣+=.故按此按照这种倒水的方法,这1升水经10次后还有升水.故选D.【点评】考查了规律型:数字的变化,此题属于规律性题目,解答此题的关键是根据题目中的已知条件找出规律,按照此规律再进行计算即可.注意=﹣.二、填空题(本大题共6小题,每小题4分,共24分)13.方程的根是x=0.【考点】解分式方程.【专题】计算题.【分析】方程两边都乘以(x+1)把分式方程化为整式方程,然后再进行检验.【解答】解:方程两边都乘以(x+1)得,x2+x=0,解得x1=0,x2=﹣1,检验:当x=0时,x+1=0+1=1≠0,当x=﹣1时,x+1=1﹣1=0,所以,原方程的解是x=0.故答案为:x=0.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.把3.016保留两个有效数字为 3.0.【考点】近似数和有效数字.【分析】根据有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字解答即可.【解答】解:3.016保留两个有效数字为3.0,故答案为:3.0.【点评】本题考查学生对有效数字的运用.关键是有效数字的方法的掌握.15.分解因式:(a+2)(a﹣2)+3a=(a﹣1)(a+4).【考点】因式分解-十字相乘法等.【分析】首先利用平方差公式计算,进而利用因式分解法分解因式即可.【解答】解:(a+2)(a﹣2)+3a=a2+3a﹣4=(a﹣1)(a+4).故答案为:(a﹣1)(a+4).【点评】本题主要考查了整式的因式分解,在解题时要注意因式分解的方法和公式的应用是本题的关键.16.如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为144°.【考点】扇形统计图.【专题】计算题.【分析】先根据图求出九年级学生人数所占扇形统计图的百分比为40%,又知整个扇形统计图的圆心角为360度,再由360乘以40%即可得到答案.【解答】解:由图可知九年级学生人数所占扇形统计图的百分比为:1﹣35%﹣25%=40%,∴九年级学生人数所占扇形的圆心角的度数为360×40%=144°,故答案为144°.【点评】本题考查了扇形统计图的知识,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,读懂图是解题的关键.17.如图,等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则的值为2﹣.【考点】旋转的性质;等边三角形的性质;解直角三角形.【专题】压轴题.【分析】等边△ABC绕点B逆时针旋转30°时,则△BCD是直角三角形,根据三角函数即可求解.【解答】解:设等边△ABC的边长是a,图形旋转30°,则△BCD是直角三角形.BD=BCcos30°=a,则C′D=a﹣a=a,CD= a∴==2﹣故答案是:2﹣.【点评】本题主要考查了图形旋转的性质,以及直角三角形的性质,正确确定△BCD是直角三角形是解题的关键.18.如图,AB是半圆O的直径,以0A为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E.则下列四个结论:①点D为AC的中点;②S△O′OE=S△AOC;③;④四边形O′DEO是菱形.其中正确的结论是①③④.(把所有正确的结论的序号都填上)【考点】圆周角定理;平行线的性质;菱形的判定;圆心角、弧、弦的关系.【专题】压轴题.【分析】①连接DO,利用园中角定理以及垂径定理求出即可;②利用相似三角形的性质,面积比等于相似比的平方求出即可;③利用弧长计算公式求出即可;④根据菱形的判定得出即可.【解答】解:①连接DO,∵AO是半圆直径,∴∠ADO=90°,∵OD⊥AC,∴AD=DC,∴①正确.②∵O′E∥AC,∴△EO′O∽△AOC,∴=,∴S△O′OE=S△AOC,∴②错误.③∵OD⊥AC,AD=DC,∴∠AOD=∠DOC,∴∠AO′D=∠AOC,AO=2AO′,∴;∴③正确;④∵D为AC中点,O′为AO中点,∴DO′是△AOC中位线,∴DO′∥CO,∵O′E∥AC,∴O′为AO中点,∵D为AC中点,∴DE∥AO,∴四边形DO′OE是平行四边形,∵DO′=O′O,∴四边形O′DEO是菱形.∴④正确.综上所述,只有①③④正确.故答案为:①③④.【点评】此题主要考查相似三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理,等腰三角形的性质,三角形内角和定理等知识点的灵活运用,此题步骤繁琐,但相对而言,难易程度适中,很适合学生的训练是一道典型的题目.三、解答题(本大题共6小题,满分共60分)19.已知:x1、x2是一元二次方程x2﹣4x+1=0的两个实数根,求:(x12+x22)÷(+)的值.【考点】根与系数的关系.【专题】计算题.【分析】根据根与系数的关系得到x1+x2=4,x1x2=1,再利用完全平方公式和通过把原式变形得到[(x1+x2)2﹣2x1x2]÷,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=4,x1x2=1,所以原式=[(x1+x2)2﹣2x1x2]÷=(42﹣2×1)÷=14÷4=.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.也考查了代数式的变形能力.20.数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m,经测量,得到其它数据如图所示.其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算GH的长.(≈1.73,要求结果精确到0.1m)【考点】解直角三角形的应用.【专题】几何综合题.【分析】首先构造直角三角形,得出AE=(x+2),BE=x,进而求出x的长,进而得出GH的长.【解答】解:根据已知画图,过点D作DE⊥AH于点E,设DE=x,则CE=x+2,在Rt△AEC和Rt△BED中,有tan30°=,tan60°=,∴AE=(x+2),BE=x,∴(x+2)﹣x=10,∴x=5﹣3,∴GH=CD+DE=2+5﹣3=5﹣1≈7.7(m)答:GH的长为7.7m.【点评】此题主要考查了解直角三角形的应用,根据已知构造直角三角形得出DE 的长是解题关键.21.如图,△OAB 的底边经过⊙O 上的点C ,且OA=OB ,CA=CB ,⊙O 与OA 、OB 分别交于D 、E 两点.(1)求证:AB 是⊙O 的切线;(2)若D 为OA 的中点,阴影部分的面积为﹣,求⊙O 的半径r .【考点】切线的判定与性质;勾股定理;扇形面积的计算.【专题】计算题.【分析】(1)连OC ,由OA=OB ,CA=CB ,根据等腰三角形的性质得到OC ⊥AB ,再根据切线的判定定理得到结论;(2)由D 为OA 的中点,OD=OC=r ,根据含30度的直角三角形三边的关系得到∠A=30°,∠AOC=60°,AC=r ,则∠AOB=120°,AB=2r ,利用S 阴影部分=S △OAB ﹣S 扇形ODE ,根据三角形的面积公式和扇形的面积公式得到关于r 的方程,解方程即可.【解答】(1)证明:连OC ,如图,∵OA=OB ,CA=CB , ∴OC ⊥AB ,∴AB 是⊙O 的切线;(2)解:∵D 为OA 的中点,OD=OC=r , ∴OA=2OC=2r ,∴∠A=30°,∠AOC=60°,AC=r ,∴∠AOB=120°,AB=2r ,∴S 阴影部分=S △OAB ﹣S 扇形ODE =OCAB ﹣=﹣,∴r2r ﹣r 2=﹣,∴r=1,即⊙O的半径r为1.【点评】本题考查了切线的判定定理:过半径的外端点与半径垂直的直线为圆的切线.也考查了含30度的直角三角形三边的关系以及扇形的面积公式.22.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.【解答】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得x(25﹣2x+1)=80,化简,得x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,答:所围矩形猪舍的长为10m、宽为8m.【点评】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.23.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=,求EB的长.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【专题】几何综合题;压轴题.【分析】(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,得到∠GAD=∠EAB从而△GAD≌△EAB,即EB=GD;(2)EB⊥GD,由(1)得∠ADG=∠ABE则在△BDH中,∠DHB=90°所以EB⊥GD;(3)设BD与AC交于点O,由AB=AD=2在Rt△ABD中求得DB,所以得到结果.【解答】(1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD∴∠GAD=∠EAB,∵四边形EFGA和四边形ABCD是正方形,∴AG=AE,AB=AD,在△GAD和△EAB中,∴△GAD≌△EAB(SAS),∴EB=GD;(2)解:EB⊥GD.理由如下:∵四边形ABCD是正方形,∴∠DAB=90°,∴∠AMB+∠ABM=90°,又∵△AEB≌△AGD,∴∠GDA=∠EBA,∵∠HMD=∠AMB(对顶角相等),∴∠HDM+∠DMH=∠AMB+∠ABM=90°,∴∠DHM=180°﹣(∠HDM+∠DMH)=180°﹣90°=90°,∴EB⊥GD.(3)解:连接AC、BD,BD与AC交于点O,∵AB=AD=2,在Rt△ABD中,DB=,在Rt△AOB中,OA=OB,AB=2,由勾股定理得:2AO2=22,OA=,即OG=OA+AG=+=2,∴EB=GD=.【点评】本题考查了正方形的性质,考查了利用其性质证得三角形全等,并利用证得的条件求得边长.24.已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标.【考点】抛物线与x轴的交点.【分析】(1)利用对称轴公式求得b的值,即得到抛物线l1的解析式,然后根据解析式求得点A的坐标,所以利用点A、点E、点D的坐标来求抛物线l2的函数表达式;(2)设P(1,y),由(1)可得C(0,3).利用两点间的距离公式进行解答即可.【解答】解:(1)∵抛物线l1:y=﹣x2+bx+3的对称轴为x=1,∴﹣=﹣1,解得b=2,∴抛物线l1的解析式为:y=﹣x2+2x+3,或者y=﹣(x﹣1)(x+3),∴点A的坐标是(﹣1,0).又∵抛物线l2经过点A,与x轴的另一个交点为E(5,0),∴可设抛物线l2的解析式为:y=a(x+1)(x﹣5),又∵抛物线l2经过点D(0,﹣),∴﹣5a=﹣,解得a=.则抛物线l2的函数表达式为:y=(x+1)(x﹣5)或y=x2﹣2x﹣;(2)设P(1,y),由(1)可得C(0,3).∴PC2=12+(y﹣3)2=y2﹣6y+10,PA2=[1﹣(﹣1)]2+y2=4+y2.∵PA=PC,∴y2﹣6y+10=4+y2,解得y=1.∴点P的坐标是P(1,1).【点评】本题考查了抛物线与x轴的交点坐标.二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).。
一、选择题1.下列计算正确的是( )A 1BCD ±2.下列二次根式中,是最简二次根式的是( )ABC .D 3.下列各式中,运算正确的是( )A =﹣2B +C 4D .=24.下列运算中,正确的是( )A =3B .=-1C D .35.a b =--则( ) A .0a b +=B .0a b -=C .0ab =D .220a b +=6.已知226a b ab +=,且a>b>0,则a ba b+-的值为( )A B C .2D .±27.下列各式中,不正确的是( )A ><C > D 5=8.有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限C .第三象限D .第四象限9.以下运算错误的是( )A =B .2= CD 2=a >0)10.下列运算中正确的是( )A .=B===C 3===D 1==二、填空题11.已知412x =-,则()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________ 12.已知2216422x x ---=,则22164x x -+-=________. 13.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 14.120654010144152118+++235a b c +的形式(,,a b c 为正整数),则abc =______.15222a a ++的最小值是______. 16.计算:200820092+323⋅-=_________.17.4102541025-+++=_______.18.若a 、b 都是有理数,且2222480a ab b a -+++=ab .19.1+x有意义,则x 的取值范围是____.20.函数y =42xx --中,自变量x 的取值范围是____________. 三、解答题21.(1111242-=112393-=113416-=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想. 【答案】(11142=52555-=1156366-=;(22111n n n n--=;(3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④=25,(2)如果n 为正整数,用含nn, (3)证明:∵n 是正整数,n .n.故答案为5=256;n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.22.解:设x222x =++2334x =+,x 2=10 ∴x =10.0.【分析】根据题意给出的解法即可求出答案即可. 【详解】设x两边平方得:x 2=2+2+即x 2=4+4+6, x 2=14∴x =.0,∴x.【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.23.小明在解决问题:已知2a2﹣8a+1的值,他是这样分析与解的:∵=2∴a﹣2=∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a =-- 24(211)3=+--4235=⨯-=点睛:(1)把分母+a b 有理化的方法:分子分母同乘以分母的有理化因式a b -, 得22()()()()+-=-=-a b a b a b a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.24.阅读下列材料,然后回答问题: 在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==--- . 以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-. (1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1. 【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案. 【详解】 (1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.25.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.26.先化简,再求值:24224x xx x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =.【答案】22x x +-,1 【分析】先把分式化简,然后将x 、y 的值代入化简后的式子求值即可. 【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==.【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.27.已知a ,b (1)求a 2﹣b 2的值; (2)求b a +ab的值.【答案】(1);(2)10 【分析】(1)先计算出a+b 、a-b 的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵ab,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.28.计算:(1;(2)))213【答案】(1)2)1-.【分析】(1)根据二次根式的混合运算法则可以算得答案.(2)结合整式的乘法公式和二次根式的运算法则计算.【详解】(1)原式==(2)原式=212---=1-.【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】2÷故选A.2.D解析:D 【分析】根据最简二次根式的特点解答即可. 【详解】A ,故该选项不符合题意;B =C 、=3,故该选项不符合题意;D 不能化简,即为最简二次根式, 故选:D . 【点睛】此题考查最简二次根式,掌握最简二次根式的特点:①被开方数中不含分母;②被开方数中不含能再开方的因式或因数,牢记特点是解题的关键.3.C解析:C 【分析】根据二次根式的性质对A 进行判断;根据二次根式的加减法法则对B 、D 进行判断;根据二次根式的乘法法则对C 进行判断. 【详解】A 、原式=2,故该选项错误;B =,故该选项错误;C 4,故该选项正确;D 故选:C . 【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式乘法、性质及加减法运算法则是解题关键.4.D解析:D 【分析】根据二次根式的加减乘除法则逐项判断即可得.【详解】A 314=+=,此项错误B 、2==,此项错误C 2428===⨯=,此项错误D 、3=,此项正确故选:D . 【点睛】本题考查了二次根式的加减乘除运算,熟记二次根式的运算法则是解题关键.5.C解析:C 【分析】直接利用二次根式的性质 ,将已知等式左边化简,可以得到a 与b 中至少有一个为0,进而分析得出答案即可. 【详解】解:∵a b =--, ∴a-b=-a-b , 或b-a=-a-b∴a= -a ,或b=-b, ∴a=0,或b=0, ∴ab=0, ∴0ab =. 故选:C . 【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.6.A解析:A 【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案. 【详解】∵a 2+b 2=6ab , ∴(a+b )2=8ab ,(a-b )2=4ab , ∵a >b >0,∴∴a b a b +-= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a、b的大小关系以及本身的正负关系.7.B解析:B【解析】=-3,故A正确;=4,故B不正确;根据被开方数越大,结果越大,可知C正确;=,可知D正确.5故选B.8.A解析:A【解析】试题分析:根据二次根式的概念,可知a≥0,ab>0,解得a>0,b>0,因此可知A(a,b)在第一象限.故选A9.C解析:C【分析】利用二次根式的乘法法则对A、B进行判断;利用二次根式的化简对C、D进行判断.【详解】A.原式=所以A选项的运算正确;B.原式=所以,B选项的运算正确;C.原式==5,所以C选项的运算错误;D.原式=2,所以D选项的运算正确.故选C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.B解析:B【分析】根据二次根式的乘除法则求出每个式子的值,再判断即可.【详解】=⨯==42,故本选项不符合题意;解: A. 67===,故本选项,符合题意;===,故本选项不符合题意;D. ==3,故本选项不符合题意;故选B .【点睛】本题考查二次根式的性质和二次根式的乘除法则,能灵活运用二次根式的乘除法则进行计算是解题关键.二、填空题11.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x ===== ()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 12.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.13.(1)2a -2b +1;(2)3;(3)130°或50°. 【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1, ∴222(1)4a a ab b +--+=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵32016p q +=, ∴20163p q =-,p=2016-62016+9q,∴p=14x 3(其中x 为正整数),同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数)∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。
某某省潍坊市诸城市树一中学2015-2016学年八年级数学下学期第一次学情检测试题一、选择题(每小题3分,共30分)1.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④∠A=∠C.从这四个条件中任选两个,能推出四边形ABCD为平行四边形的组合有()A.3组B.4组C.5组D.6组2.以三角形的一条中位线和第三边上的中线为对角线的四边形是()A.梯形 B.平行四边形C.菱形 D.矩形3.若菱形两条对角线的长分别为12cm和16cm,则这个菱形的周长为()A.10cm B.20cm C.28cm D.40cm4.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:15.如图,在矩形ABCD中,对角线AC、BD交于点O,若∠AOB=60°,AB=3,则对角线BD的长是()A.6 B.3 C.5 D.46.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE 的周长()A.4 B.6 C.8 D.107.已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形8.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE 的长等于()A.3.5 B.4 C.7 D.149.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF中正确的有()A.4个B.3个C.2个D.1个10.点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()A.75° B.60° C.45° D.30°二、填空题(每小题3分,共24分)11.如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是.12.如图,在▱ABCD中,∠B=80°,∠ADC的角平分线DE与BC交于点E.若BE=CE,则∠DAE=度.13.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).14.菱形ABCD中,AC=8cm,BD=6cm,则菱形的面积是,周长是.15.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为.16.如图,平行四边形ABCD的对角线AC、BD相交于点O,BC=9,AC=8,BD=14,则△AOD 的周长为.17.如图,在菱形ABCD中,E、F分别在AD、BD上,且AE=CF.连接EF并取EF的中点G,连接CG、DG.若∠ADG=42°,则∠GCB=.18.如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上.其中正确的结论的序号是(把所有正确结论的序号都填在横线上).三、解答题(共46分)19.如图,在▱ABCD中,点E,F分别是边AD,BC的中点,求证:AF=CE.20.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.21.如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.22.如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连接DF、AE,AE的延长线交DF于点M.求证:AM⊥DF.23.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.24.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE 的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.2015-2016学年某某省潍坊市诸城市树一中学八年级(下)第一次学情检测数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④∠A=∠C.从这四个条件中任选两个,能推出四边形ABCD为平行四边形的组合有()A.3组B.4组C.5组D.6组【考点】平行四边形的判定.【分析】根据平行四边形的判定定理可得出答案.【解答】解;当①③时,四边形ABCD为平行四边形;当①②时,四边形ABCD为平行四边形;当③④时,四边形ABCD为平行四边形;当①④时,四边形ABCD为平行四边形;故选:B.2.以三角形的一条中位线和第三边上的中线为对角线的四边形是()A.梯形 B.平行四边形C.菱形 D.矩形【考点】平行四边形的判定.【分析】因为这四边形其中的三顶点分别是原三角形的三边的中点,所以这四边形的其中两条邻边是原三角形的中位线,另两条邻边在原三角形的两边上,因此这四边形的两组对边分别平行,所以它是平行四边形.【解答】解:如右图:∵D、E、F分别是三角形的三边的中点∴DF∥AC,EF∥AB∵AE、AD分别在AC、AB上∴DF∥AE,EF∥AD∴四边形是平行四边形.故选B.3.若菱形两条对角线的长分别为12cm和16cm,则这个菱形的周长为()A.10cm B.20cm C.28cm D.40cm【考点】菱形的性质.【分析】根据菱形的对角线互相垂直平分,利用勾股定理即可解决.【解答】解:如图,四边形ABCD是菱形,AC=12,BD=16,∵四边形ABCD是菱形,∴AC⊥BC,AB=BC=CD=AD,AO=OC=6,OB=OD=8,在RT△AOB中,AB===10,∴菱形ABCD周长为40.故选D.4.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:1【考点】菱形的性质;含30度角的直角三角形.【分析】根据已知可求得菱形的边长,再根据三角函数可求得其一个内角从而得到另一个内角即可得到该菱形两邻角度数比.【解答】解:如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1.故选C.5.如图,在矩形ABCD中,对角线AC、BD交于点O,若∠AOB=60°,AB=3,则对角线BD的长是()A.6 B.3 C.5 D.4【考点】矩形的性质;含30度角的直角三角形.【分析】根据矩形的对角线互相平分且相等可得OA=OB,然后判断出△AOB是等边三角形,根据等边三角形的性质可得OB=AB,然后根据矩形的对角线互相平分可得BD=2OB.【解答】解:在矩形ABCD中,OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=3,∴BD=2OB=2×3=6.故选A.6.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE 的周长()A.4 B.6 C.8 D.10【考点】菱形的判定与性质;矩形的性质.【分析】首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.【解答】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故选C.7.已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【考点】平行四边形的判定;矩形的判定;正方形的判定.【分析】由平行四边形的判定方法得出A不正确、B正确;由矩形和正方形的判定方法得出C、D不正确.【解答】解:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选:B.8.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE 的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质.【分析】根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=AB=×7=3.5.故选A.9.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF中正确的有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;正方形的性质.【分析】根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF=S△DAE,则S△ABF ﹣S△AOF=S△DAE﹣S△AOF,即S△AOB=S四边形DEOF.【解答】解:∵四边形ABCD为正方形,∴AB=AD=DC,∠BAD=∠D=90°,而CE=DF,∴AF=DE,在△ABF和△DAE中,∴△ABF≌△DAE,∴AE=BF,所以(1)正确;∴∠ABF=∠EAD,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE⊥BF,所以(2)正确;连结BE,∵BE>BC,∴BA≠BE,而BO⊥AE,∴OA≠OE,所以(3)错误;∵△ABF≌△DAE,∴S△ABF=S△DAE,∴S△ABF﹣S△AOF=S△DAE﹣S△AOF,∴S△AOB=S四边形DEOF,所以(4)正确.故选:B.10.点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()A.75° B.60° C.45° D.30°【考点】正方形的性质;全等三角形的判定与性质.【分析】过E作AB的延长线AF的垂线,垂足为F,可得出∠F为直角,又四边形ABCD为正方形,可得出∠A为直角,进而得到一对角相等,由旋转可得∠DPE为直角,根据平角的定义得到一对角互余,在直角三角形ADP中,根据两锐角互余得到一对角互余,根据等角的余角相等可得出一对角相等,再由PD=PE,利用AAS可得出三角形ADP与三角形PEF全等,根据确定三角形的对应边相等可得出AD=PF,AP=EF,再由正方形的边长相等得到AD=AB,由AP+PB=PB+BF,得到AP=BF,等量代换可得出EF=BF,即三角形BEF为等腰直角三角形,可得出∠EBF为45°,再由∠CBF为直角,即可求出∠CBE的度数.【解答】解:过点E作EF⊥AF,交AB的延长线于点F,则∠F=90°,∵四边形ABCD为正方形,∴AD=AB,∠A=∠ABC=90°,∴∠ADP+∠APD=90°,由旋转可得:PD=PE,∠DPE=90°,∴∠APD+∠EPF=90°,∴∠ADP=∠EPF,在△APD和△FEP中,∵,∴△APD≌△FEP(AAS),∴AP=EF,AD=PF,又∵AD=AB,∴PF=AB,即AP+PB=PB+BF,∴AP=BF,∴BF=EF,又∠F=90°,∴△BEF为等腰直角三角形,∴∠EBF=45°,又∠CBF=90°,则∠CBE=45°.故选C.二、填空题(每小题3分,共24分)11.如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是答案不唯一,如:AB=CD或A D∥BC或∠A=∠C或∠B=∠D或∠A+∠B=180°或∠C+∠D=180°等.【考点】平行四边形的判定.【分析】已知AB∥CD,可根据有一组边平行且相等的四边形是平行四边形来判定,也可根据两组分别平行的四边形是平行四边形来判定.【解答】解:∵在四边形ABCD中,AB∥CD,∴可添加的条件是:AB=DC,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形)故答案为:AB=CD或AD∥BC或∠A=∠C或∠B=∠D或∠A+∠B=180°或∠C+∠D=180°等.12.如图,在▱ABCD中,∠B=80°,∠ADC的角平分线DE与BC交于点E.若BE=CE,则∠DAE= 50 度.【考点】平行四边形的性质.【分析】由在▱ABCD中,∠B=80°,∠ADC的角平分线DE与BC交于点E.易证得△CDE是等腰三角形,又由BE=CE,即可得AB=B,继而求得答案.【解答】解:∵在▱ABCD中,∠B=80°,∴AD∥BC,AB=CD,∴∠ADE=∠CED,∵DE是∠ADC的角平分线,∴∠ADE=∠CDE,∴∠CED=∠CDE,∴CE=CD,∵BE=CE,∴A B=BE,∴∠AEB=∠BAE=50°,∴∠DAE=∠AEB=50°.故答案为:50.13.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是③(只填写序号).【考点】菱形的判定.【分析】首先利用对角线互相平分的四边形是平行四边形判定该四边形为平行四边形,然后结合菱形的判定得到答案即可.【解答】解:由题意得:BD=CD,ED=FD,∴四边形EBFC是平行四边形,①BE⊥EC,根据这个条件只能得出四边形EBFC是矩形,②BF∥CE,根据EBFC是平行四边形已可以得出BF∥CE,因此不能根据此条件得出菱形,③AB=AC,∵,∴△ADB≌△ADC,∴∠BAD=∠CAD∴△AEB≌△AEC(SAS),∴BE=CE,∴四边形BECF是菱形.故答案为:③.14.菱形ABCD中,AC=8cm,BD=6cm,则菱形的面积是24cm2,周长是20cm .【考点】菱形的性质.【分析】根据菱形的面积等于对角线乘积的一半计算面积;再利用勾股定理求出边长,继而求出周长.【解答】解:S菱形ABCD=AC×BD=24cm2.∵四边形ABCD是菱形,∴AO=AC=4cm,OD=BD=3cm,∴AD==5cm,∴菱形ABCD的周长为20cm.故答案为:24cm2,20cm.15.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为 5 .【考点】三角形中位线定理;直角三角形斜边上的中线.【分析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.【解答】解:∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm.故答案为:5.16.如图,平行四边形ABCD的对角线AC、BD相交于点O,BC=9,AC=8,BD=14,则△AOD 的周长为20 .【考点】平行四边形的性质.【分析】首先根据平行四边形的对边相等、对角线互相平分,求出AD、OA、OD的长度,代入AD+OA+OD计算即可求出所填答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,OA=OC,OB=OD,∵BC=9,BD=14,AC=8,∴AD=9,OA=4,OD=7,∴△AOD的周长为:AD+OA+OD=20.故答案为:20.17.如图,在菱形ABCD中,E、F分别在AD、BD上,且AE=CF.连接EF并取EF的中点G,连接CG、DG.若∠ADG=42°,则∠GCB=48°.【考点】菱形的性质.【分析】连接BG,易证△EGD≌△FGB,利用全等三角形的性质和菱形的性质即可求出∠GCB 的度数.【解答】解:连接BG,∵四边形ABCD是菱形,∴AB=BC=CD=AD,AD∥BC,∵AE=CF,∴DE=BF,∵AD∥BC,∵G是EF中点,∴EG=FG,在△EGD和△FGB中,,∴△EGD≌△FGB,∴BG=DG,∠ADG=∠CBG=42°,∴CG⊥BD,∴∠GCB=90°﹣42°=48°,故答案为:48°.18.如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上.其中正确的结论的序号是②和④(把所有正确结论的序号都填在横线上).【考点】矩形的性质.【分析】根据三角形面积求法以及矩形性质得出S1+S3=矩形ABCD面积,以及=,=,即可得出P点一定在AC上.【解答】解:如右图,过点P分别作PF⊥AD于点F,PE⊥AB于点E,∵△APD以AD为底边,△PBC以BC为底边,∴此时两三角形的高的和为AB,即可得出S1+S3=矩形ABCD面积;同理可得出S2+S4=矩形ABCD面积;∴S2+S4=S1+S3(故②正确);当点P在矩形的两条对角线的交点时,S1+S2=S3+S4.但P是矩形ABCD内的任意一点,所以该等式不一定成立.(故①不一定正确);③若S3=2S1,只能得出△APD与△PBC高度之比,S4不一定等于2S2;(故③错误);④若S1=S2,×PF×AD=PE×AB,∴△APD与△PBA高度之比为: =,∵∠DAE=∠PEA=∠PFA=90°,∴四边形AEPF是矩形,∴此时矩形AEPF与矩形ABCD相似,∴=,∴P点在矩形的对角线上.(故④选项正确)故答案为:②和④.三、解答题(共46分)19.如图,在▱ABCD中,点E,F分别是边AD,BC的中点,求证:AF=CE.【考点】平行四边形的判定与性质.【分析】根据“平行四边形ABCD的对边平行且相等的性质”证得四边形AECF为平行四边形,然后由“平行四边形的对边相等”的性质证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∵点E,F分别是边AD,BC的中点,∴AE=CF.∴四边形AECF是平行四边形.∴AF=CE.20.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.【考点】三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.【解答】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.21.如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.【考点】菱形的判定;线段垂直平分线的性质.【分析】(1)证明△ADC≌△ABC后利用全等三角形的对应角相等证得结论;(2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可.【解答】(1)证明:∵在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠1=∠2;(2)四边形BCDE是菱形;证明:∵∠1=∠2,CD=BC,∴AC垂直平分BD,∵OE=OC,∴四边形DEBC是平行四边形,∵AC⊥BD,∴四边形DEBC是菱形.22.如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连接DF、AE,AE的延长线交DF于点M.求证:AM⊥DF.【考点】正方形的性质;全等三角形的判定与性质.【分析】根据DE=CF,可得出OE=OF,继而证明△AOE≌△DOF,得出∠OAE=∠ODF,然后利用等角代换可得出∠DME=90°,即得出了结论.【解答】证明:∵四边形ABCD是正方形,∴AO=DO,又∵DE=CF,∴OD﹣DE=OC﹣CF,即OF=OE,在△AOE和△DOF中,,∴△AOE≌△DOF(SAS),∴∠OAE=∠ODF,∵∠OAE+∠AEO=90°,∠AEO=∠DEM,∴∠ODF+∠DEM=90°,即可得AM⊥DF.23.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.【考点】矩形的判定;全等三角形的判定与性质;等腰三角形的性质;平行四边形的性质.【分析】(1)根据平行四边形的性质、等腰三角形的性质,利用全等三角形的判定定理SAS 可以证得△ADC≌△ECD;(2)利用等腰三角形的“三合一”性质推知AD⊥BC,即∠ADC=90°;由平行四边形的判定定理(对边平行且相等是四边形是平行四边形)证得四边形ADCE是平行四边形,所以有一个角是直角的平行四边形是矩形.【解答】证明:(1)∵四边形ABDE是平行四边形(已知),∴AB∥DE,AB=DE(平行四边形的对边平行且相等);∴∠B=∠EDC(两直线平行,同位角相等);又∵AB=AC(已知),∴AC=DE(等量代换),∠B=∠ACB(等边对等角),∴∠EDC=∠ACD(等量代换);∵在△ADC和△ECD中,,∴△ADC≌△ECD(SAS);(2)∵四边形ABDE是平行四边形(已知),∴BD∥AE,BD=AE(平行四边形的对边平行且相等),∴AE∥CD;又∵BD=CD,∴AE=CD(等量代换),∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);在△ABC中,AB=AC,BD=CD,∴AD⊥BC(等腰三角形的“三合一”性质),∴∠ADC=90°,∴▱ADCE是矩形.24.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE 的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【考点】正方形的判定;全等三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)由E是AD的中点,AF∥BC,易证得△AEF≌△DEB,即可得AD=BD,又由在△ABC中,∠BAC=90°,AD是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD=BD=CD=BC,即可证得:AD=AF;(2)由AF=BD=DC,AF∥BC,可证得:四边形ADCF是平行四边形,又由AB=AC,根据三线合一的性质,可得AD⊥BC,AD=DC,继而可得四边形ADCF是正方形.【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF;(2)解:四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.。
八年级(下)学期 第一次 质量检测数学试卷含答案一、选择题1.下列式子为最简二次根式的是( )A B C D 2.下列各式成立的是( )A 3=B 3=C .22(3=- D .2-=3.下列运算正确的是( )A 2=B 5=-C 2=D 012= 4.下列计算正确的是( )A =B 1-=C =D 6==5.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:S =,其中2a b cp ++=,若一个三角形的三边长分别为2,3,4,则其面积( )A B C D6.已知m 、n m ,n )为( ) A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是7.已知226a b ab +=,且a>b>0,则a ba b+-的值为( )A B C .2D .±28.已知实数x 、y 满足2y =,则yx 值是( )A .﹣2B .4C .﹣4D .无法确定9.使式子214x -x 的取值范围是( ) A .x≥﹣2B .x >﹣2C .x >﹣2,且x ≠2D .x≥﹣2,且x ≠210.x ≥3是下列哪个二次根式有意义的条件( )A B C D11.下列各式计算正确的是( )A .23= B 5=± C =D .3=12.的值应在( ) A .1和2之间B .3和4之间C .4和5之间D .5和6之间二、填空题13.比较实数的大小:(1)______ ;(2_______1214.已知a ,b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有____对.15.2==________.16.计算(π-3)0-21-2()的结果为_____. 17.设12211112S =++,22211123S =++,32211134S =++,设...S =S=________________ (用含有n 的代数式表示,其中n 为正整数).18.+的形式(,,a b c 为正整数),则abc =______. 19.已知整数x ,y 满足y =,则y =__________.20.下列各式: 是最简二次根式的是:_____(填序号)三、解答题21.阅读下面问题: 阅读理解:==1;==2==-.应用计算:(1(21(n 为正整数)的值.归纳拓展:(398++【答案】应用计算:(12 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1==(1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9 【分析】(1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案. 【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.23.(112===;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=55==;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果;(2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④=25,6,(2)如果n 为正整数,用含nn, (3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.24.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13, ∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.25.计算(1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差.【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.试题解析:(1)原式=4﹣3+2=6﹣3;(2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点:二次根式的混合运算;方差.26.先化简,再求值:a,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可.【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.27.计算②)21-【答案】① 【分析】①根据二次根式的加减法则计算; ②利用平方差、完全平方公式进行计算. 【详解】解:①原式=②原式=(5-2-= 【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.28.观察下列各式:11111122=+-=11111236=+-=111113412=+-= 请你根据上面三个等式提供的信息,猜想:(1=_____________ (2)请你按照上面每个等式反映的规律,写出用n (n 为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析 【分析】(1)仿照已知等式确定出所求即可; (2)归纳总结得到一般性规律,写出即可; (3)原式变形后,仿照上式得出结果即可. 【详解】解:(1111114520=+-=; 故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++;(31156== 【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.29.计算(1(2)(()21-【答案】(1);(2)24+ 【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案. 【详解】解:(1=2+=(2-+=2(2)(()21-=22(181)---=452181--+=24+.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.30.一样的式子,其实我====,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2)12.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式=122n ++++=. 考点:分母有理化.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察. 【详解】AB |a |,可以化简,故不是最简二次根式;C =D 2=,可以化简,故不是最简二次根式; 故选:A . 【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.A解析:A 【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题. 【详解】解:A 3=,故A 正确;B -不能合并,故B 错误;C、22(3=,故C错误;D、=D错误;故选:A.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.3.C解析:C【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案.【详解】解:A A错误;B5=,故B错误;C2==,故C正确;D01213=+=,故D错误;故选:C.【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.4.A解析:A【分析】本题涉及二次根式化简,在计算时,需要针对每个选项分别进行计算,然后根据实数的运算法则求得计算结果.【详解】=D. 6===,故本项错误;故选:A.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的运算.5.A解析:A【分析】根据公式解答即可.【详解】根据题意,若一个三角形的三边长分别为2,3,4,则2+349=222a b c p +++== ∴其面积为S ====故选:A .【点睛】本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键.6.C解析:C【分析】根据二次根式的性质分析即可得出答案.【详解】解:∵m 、n 是正整数, ∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20),故选:C .【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.7.A解析:A【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案.【详解】∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab ,∵a >b >0,∴∴a ba b +-= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a、b的大小关系以及本身的正负关系.8.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】y=,∵实数x、y满足2∴x=2,y=﹣2,-⨯=-4.∴yx=22故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.9.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】≠,解:由题意得:2x-40∴≠±,2xx+≥,又∵20∴x≥-2.x≠.∴x的取值范围是:x>-2且2故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.10.D解析:D【分析】根据二次根式有意义的条件逐项求解即可得答案.【详解】A、x+3≥0,解得:x≥-3,故此选项错误;B、x-3>0,解得:x>3,故此选项错误;C、x+3>0,解得:x>-3,故此选项错误;D、x-3≥0,解得:x≥3,故此选项正确,故选D.【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于0.11.A解析:A【分析】根据二次根式的性质和运算法则逐一计算可得.【详解】A、23=此选项计算正确,符合题意;B、5=此选项计算错误,不符合题意;C-不是同类二次根式,不能合并,此选项计算错误,不符合题意;D、-=故选:A.【点睛】本题主要考查了利用二次根式的性质化简以及二次根式的加减运算,准确利用二次根式的性质计算是解题的关键.12.B解析:B【分析】原式利用多项式除以单项式法则计算,估算确定出范围即可.【详解】=∵1<2<4,∴1<2,即3<<4,则原式的值应在3和4之间.故选:B.【点睛】本题考查了二次根式的混合运算,以及无理数的估算,解题的关键是熟练掌握运算法则进行解题.二、填空题13.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为: ,.解析:< <【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<(2)113424-=∵3=0<< 12 故答案为:< ,<. 【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键. 14.7【解析】解:∵=+,∴a、b 的值为15,60,135,240,540.①当a=15,b=15时,即=4;②当a=60,b=60时,即=2;③当a=15,b=60时,即=3;④当a=60解析:7【解析】解:∵2,∴a 、b 的值为15,60,135,240,540.①当a=15,b=15时,即2=4;②当a=60,b=60时,即2=2;③当a=15,b=60时,即2=3;④当a=60,b=15时,即2=3;⑤当a=240,b=240时,即2=1;⑥当a=135,b=540时,即2=1;⑦当a=540,b=135时,即2=1;故答案为:(15,15)、(60、60)、(15,60)、(60,15)、(240,240)、(135,540)、(540,135).所有满足条件的有序数对(a,b)共有7对.故答案为:7.点睛:本题考查了二次根式的性质和化简,解决此题的关键是分类讨论思想,得出a、b可能的取值.15.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m=,n=,那么m−n=2①,m2+n2=()2+()2=34②.由①得,m=2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m n那么m−n=2①,m 2+n 2=2+2=34②.由①得,m =2+n ③,将③代入②得:n 2+2n−15=0,解得:n =−5(舍去)或n =3,因此可得出,m =5,n =3(m≥0,n≥0).n +2m =13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.16.﹣6【解析】根据零指数幂的性质,二次根式的性质,负整指数幂的性质,可知(π-3)0=1﹣(3﹣2)﹣4×﹣4=1﹣3+2﹣2﹣4=﹣6.故答案为﹣6.解析:﹣6【解析】根据零指数幂的性质01(0)a a =≠,二次根式的性质,负整指数幂的性质1(0)p p a a a -=≠,可知(π-3)0-21-2()=1﹣(3﹣)﹣﹣4=1﹣﹣﹣4=﹣6. 故答案为﹣6.17.【分析】先根据题目中提供的三个式子,分别计算的值,用含n 的式子表示其规律,再计算S 的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题 解析:221n n n ++ 【分析】n 的式子表示其规律,再计算S 的值即可.【详解】 解:∵1221191=124S =++311122===+-; ∵222114912336S =++=7111116623===+=+-; ∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n n n n n n n n ++===+=+-+++;∴...S =1111111112231n n =+-++-++-+…+ 111n n =+-+. 221n n n +=+ 故答案为:221n n n ++ 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 18.【解析】根据题意,可得到=,利用平方关系把根号去掉,根据、、的系数相等的关系得到关于a ,b ,c 的三元方程组,解方程组即可.【详解】∵=∴,即.解得.【点睛】本题考查了解析:【解析】【分析】a ,b ,c 的三元方程组,解方程组即可.【详解】∴(22118=,即2222118235a b c =+++++. 2222352118,2120,2540,2144,a b c ab ac bc ⎧++=⎪=⎪∴⎨=⎪⎪=⎩ 解得15,4,18.a b c =⎧⎪=⎨⎪=⎩154181080abc ∴=⨯⨯=.【点睛】本题考查了二次根式的加减,解本题的关键是将等式平方去根号,利用等量关系中等式左、.19.2018【解析】,令,,显然,∴,∴,∵与奇偶数相同,∴,∴,∴.故答案为:2018.解析:2018【解析】 试题解析:y ===令a =b = 显然0a b >≥,∴224036a b -=,∴()()4036a b a b +-=,∵()a b +与()-a b 奇偶数相同,∴20182a b a b +=⎧⎨-=⎩, ∴10101008a b =⎧⎨=⎩, ∴2018y a b =+=.故答案为:2018.20.②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】② ③ 是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,解析:②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
一、选择题1.如图,ABC 是等边三角形,点D .E 分别为边BC .AC 上的点,且CD AE =,点F 是BE 和AD 的交点,BG AD ⊥,垂足为点G ,已知75∠=︒BEC ,1FG =,则2AB 为( )A .4B .5C .6D .72.已知:△ABC 中,BD 、CE 分别是AC 、AB 边上的高,BQ =AC ,点F 在CE 的延长线上,CF =AB ,下列结论错误的是( ).A .AF ⊥AQB .AF=AQC .AF=AD D .F BAQ ∠=∠3.“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在ABC 中,90ACB ∠=︒,分别以ABC 的三条边为边向外作正方形,连结EB ,CM ,DG ,CM 分别与AB ,BE 相交于点P ,Q .若30ABE ∠=︒,则DG QM 的值为( )A .32B .53C .45D 314.在直角三角形中,自两锐角所引的两条中线长分别为5和10,则斜边长为( )A .10B .410C .13D .2135.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( )A .3B .154C .5D .1526.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( )A .222b a c =-B .;C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c =7.以下列各组数为边长,能构成直角三角形的是( )A .236、、B .3、4、5C .3、4、7D .2、3、4 8.已知一个三角形的两边长分别是5和13,要使这个三角形是直角三角形,则这个三角形的第三条边可以是( )A .6B .8C .10D .129.如图,正方体的棱长为4cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( )A .9B .10C .326+D .1210.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A =90°,BD =4,CF =6,设正方形ADOF 的边长为x ,则210x x +=( )A .12B .16C .20D .24二、填空题11.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.12.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =13S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.13.在ABC ∆中,10AB cm =,17AC cm =,BC 边上的高为8cm ,则ABC ∆的面积为______2cm .14.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______ 15.在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,且a +b 5c =5,则ab 的值为______.16.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.17.如图,在□ABCD 中,AC 与BD 交于点O ,且AB =3,BC =5.①线段OA 的取值范围是______________;②若BD -AC =1,则AC •BD = _________.18.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.19.一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为____m 2.20.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则2________BD =.三、解答题21.如图,△ABC 和EDC ∆都是等边三角形,7,3,2AD BD CD ===求:(1)AE长;(2)∠BDC 的度数:(3)AC 的长.22.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.23.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由.24.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.25.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B 的二分割线,且DBC ∠角度是 ;(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).26.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .(1)则BC =____________cm ;(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________?(3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.27.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.28.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .(1)直接写出BC =__________,AC =__________;(2)求证:ABD ∆是等边三角形;(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;(4)P是直线AC上的一点,且13CP AC,连接PE,直接写出PE的长.29.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC,其顶点A,B,C都在格点上,同时构造长方形CDEF,使它的顶点都在格点上,且它的边EF经过点A,ED经过点B.同学们借助此图求出了△ABC的面积.(1)在图(1)中,△ABC的三边长分别是AB=,BC=,AC=.△ABC 的面积是.(2)已知△PMN中,PM=17,MN=25,NP=13.请你根据启航小组的思路,在图(2)中画出△PMN,并直接写出△RMN的面积.30.2ABCD中,点O是对角线AC的中点,E是线段OA上一动点(不包括两个端点),连接BE.(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】结合等边三角形得性质易证△ABE ≌△CAD ,可得∠FBG =30°,BF =2FG =2,再求解∠ABE =15°,进而两次利用勾股定理可求解.【详解】∵△ABC 为等边三角形∴∠BAE =∠C =60°,AB =AC ,CD =AE∴△ABE ≌△CAD (SAS )∴∠ABE=∠CAD∴∠BFD =∠ABE+∠BAD =∠CAD+∠BAF =∠BAC =60°,∵BG ⊥AD ,∴∠BGF =90°,∴∠FBG =30°,∵FG =1,∴BF =2FG =2,∵∠BEC =75°,∠BAE =60°,∴∠ABE =∠BEC ﹣∠BAE =15°,∴∠ABG =45°,∵BG ⊥AD ,∴∠AGB =90°,∴AG=BG=222221BF FG -=-=3,AB 2=AG 2+BG 2=(3)2+(3)2=6.故选C .【点睛】本题考查全等三角形的判定与性质,等边三角形的性质,勾股定理,证明△ABG 为等腰直角三角形是解题关键.2.C解析:C【分析】根据BD 、CE 分别是AC 、AB 边上的高,推导出EBH DCH ∠=∠;再结合题意,可证明FAC AQB △≌△,由此可得F BAQ ∠=∠,AF AQ =;再经90AEF ∠=得90F FAE ∠+∠=,从而证明AF ⊥AQ ;最后由勾股定理得222AQ AD QD =+,从而得到AF AD ≠,即可得到答案.【详解】如图,CE 和BD 相较于H∵BD 、CE 分别是AC 、AB 边上的高∴CE AB ⊥,BD AC ⊥∴90BEC BDC AEF ADQ ∠=∠=∠=∠=∴90EBH EHB DHC DCH ∠+∠=∠+∠=∵EHB DHC ∠=∠∴EBH DCH ∠=∠又∵BQ =AC 且CF =AB∴FAC AQB △≌△∴F BAQ ∠=∠,AF AQ =,故B 、D 结论正确;∵90AEF ∠=∴90F FAE ∠+∠=∴90BAQ FAE F FAE ∠+∠=∠+∠=∴AF ⊥AQ 故A 结论正确;∵90ADQ ∠=∴222AQ AD QD =+∵0QD ≠∴AQ AD ≠∴AF AD ≠故选:C .【点睛】本题考查了全等三角形、直角三角形、勾股定理、三角形的高等知识;解题的关键是熟练掌握全等三角形、直角三角形、勾股定理、三角形的高的性质,从而完成求解.3.D解析:D【分析】先用已知条件利用SAS 的三角形全等的判定定理证出△EAB ≌△CAM ,之后利用全等三角形的性质定理分别可得30EBA CMA ==︒∠∠,60BPQ APM ==︒∠∠,12PQ PB =,然后设1AP =,继而可分别求出2PM =,12PQ =,所以32QM QP PM =+=;易证Rt △ACB ≌Rt △DCG (HL),从而得DG AB ==然后代入所求数据即可得DG QM 的值. 【详解】解:∵在△EAB 和△CAM 中 ,AE AC EAB CAM AB AM =⎧⎪=⎨⎪=⎩∠∠,∴△EAB ≌△CAM (SAS ),∴30EBA CMA ==︒∠∠,∴60BPQ APM ==︒∠∠,∴90BQP ∠=︒,12PQ PB =, 设1AP =,则AM =2PM=,1PB =,12PQ =,∴2QM QP PM =+=+=; ∵ 在Rt △ACB 和Rt △DCG 中,CG BC AC CD =⎧⎨=⎩, Rt △ACB ≌Rt △DCG (HL ), ∴3DG AB ==;∴33133DG GM==-+. 故选D .【点睛】 本题主要考查了勾股定理,三角形全等的判定定理和性质定理等知识.4.D解析:D【分析】根据已知设AC =x ,BC =y ,在Rt △ACD 和Rt △BCE 中,根据勾股定理分别列等式,从而求得AC ,BC 的长,最后根据勾股定理即可求得AB 的长.【详解】如图,在△ABC 中,∠C =90°,AD 、BE 为△ABC 的两条中线,且AD =210,BE =5,求AB 的长.设AC =x ,BC =y ,根据勾股定理得:在Rt △ACD 中,x 2+(12y )2=(210)2, 在Rt △BCE 中,(12x )2+y 2=52, 解之得,x =6,y =4,∴在Rt △ABC 中,2264213AB =+= ,故选:D .【点睛】此题考查勾股定理的运用,在直角三角形中,已知两条边长时,可利用勾股定理求第三条边的长度.5.C解析:C【解析】将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y ,∵正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=15, ∴得出S 1=8y+x ,S 2=4y+x ,S 3=x ,∴S 1+S 2+S 3=3x+12y=15,即3x+12y=15,x+4y=5,所以S 2=x+4y=5,故答案为5.点睛:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y ,用x ,y 表示出S 1,S 2,S 3,再利用S 1+S 2+S 3=15求解是解决问题的关键.6.C解析:C【分析】此题考查的是直角三角形的判定方法,大约有以下几种:①勾股定理的逆定理,即三角形三边符合勾股定理;②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;根据上面两种情况进行判断即可.【详解】解:A 、由222b a c =-得a 2=b 2+c 2,符合勾股定理的逆定理,能够判定△ABC 为直角三角形,不符合题意;B 、由C A B ∠=∠-∠得∠C +∠B=∠A ,此时∠A 是直角,能够判定△ABC 是直角三角形,不符合题意;C 、∠A :∠B :∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC 不是直角三角形,故此选项符合题意;D 、a :b :c=5:12:13,此时c 2=b 2+ a 2,符合勾股定理的逆定理,△ABC 是直角三角形,不符合题意;故选:C .【点睛】此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.7.C解析:C【分析】利用勾股定理的逆定理依次计算各项后即可解答.【详解】选项A ,222+≠,不能构成直角三角形;选项B ,222+≠,不能构成直角三角形;选项C ,222+=,能构成直角三角形;选项D ,222(2)(3)(4)+≠,不能构成直角三角形.故选C .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8.D解析:D【分析】此题要分两种情况:当5和13都是直角边时;当13是斜边长时;分别利用勾股定理计算出第三边长即可求解.【详解】当5和13都是直角边时,第三边长为:22513194+=;当13是斜边长时,第三边长为:2213512-=;故这个三角形的第三条边可以是12.故选:D .【点睛】本题主要考查了勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.9.B解析:B【分析】将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB =22(24)2210++=.故选:B .【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.10.D解析:D【分析】设正方形ADOF 的边长为x ,在直角三角形ACB 中,利用勾股定理可建立关于x 的方程,整理方程即可.【详解】解:设正方形ADOF的边长为x,由题意得:BE=BD=4,CE=CF=6,∴BC=BE+CE=BD+CF=10,在Rt△ABC中,AC2+AB2=BC2,即(6+x)2+(x+4)2=102,整理得,x2+10x﹣24=0,∴x2+10x=24,故选:D.【点睛】本题考查了正方形的性质、全等三角形的性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.二、填空题11.(0,21009)【解析】【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【详解】∵∠OAA1=90°,OA=AA1=1,以OA1为直角边作等腰Rt△OA1A2,再以OA2为直角边作等腰Rt△OA2A3,…,∴OA1,OA2=)2,…,OA2018=)2018,∵A1、A2、…,每8个一循环,∵2018=252×8+2∴点A2018的在y轴正半轴上,OA2018=2018=21009,故答案为(0,21009).【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.12.【分析】根据S△PAD=13S矩形ABCD,得出动点P在与AD平行且与AD的距离是4的直线l上,作A关于直线l的对称点E,连接DE,BE,则DE的长就是所求的最短距离.然后在直角三角形ADE中,由勾股定理求得DE的值,即可得到PA+PD的最小值.【详解】设△PAD中AD边上的高是h.∵S△PAD=13S矩形ABCD,∴12AD•h=13AD•AB,∴h=23AB=4,∴动点P在与AD平行且与AD的距离是4的直线l上,如图,作A关于直线l的对称点E,连接BE,DE,则DE的长就是所求的最短距离.在Rt△ADE中,∵AD=8,AE=4+4=8,DE22228882AE AD++=即PA+PD的最小值为2.故答案2.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.13.36或84【分析】过点A作AD⊥BC于点D,利用勾股定理列式求出BD、CD,再分点D在边BC上和在CB的延长线上两种情况分别求出BC的长度,然后根据三角形的面积公式列式计算即可得解.【详解】解:过点A作AD⊥BC于点D,∵BC边上的高为8cm,∴AD=8cm,∵AC=17cm,由勾股定理得:22221086BD AB AD=-=-=cm,222217815CD AC AD=-=-=cm,如图1,点D在边BC上时,BC=BD+CD=6+15=21cm,∴△ABC的面积=12BC AD=12×21×8=84cm2,如图2,点D在CB的延长线上时,BC= CD−BD=15−6=9cm,∴△ABC的面积=12BC AD=12×9×8=36 cm2,综上所述,△ABC的面积为36 cm2或84 cm2,故答案为:36或84.【点睛】本题考查了勾股定理,作辅助线构造出直角三角形是解题的关键,难点是在于要分情况讨论.14.322或11或5或109 5【分析】分别就E,F在AC,BC上和延长线上,分别画出图形,过D作DG⊥AC,DH⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.【详解】解:①过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D是AB的中点,∴DG=12 BC同理:DH=12 AC又∵BC=AC∴DG=DH在Rt△DGE和Rt△DHF中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL)∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=GC -GE=CH-HF=CF=AB-BF=3 ∴EF=223332+=②过D 作DG ⊥AC,DH⊥BC,垂足为G ,H∴DG∥BC,∠CDG=∠CDH=45°又∵D 是AB 的中点,∴DG=12BC 同理:DH=12AC 又∵BC=AC∴DG=DH 在Rt△DGE 和Rt△DHF 中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL ) ∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=CF=AC+AE=AB+BF=7+4=11221111112+=③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作DH⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形,∴∠1+∠2=45°∴∠EDF=2(∠1+∠2)=90°∴△EDF 为等腰直角三角形可证AED CFD △△≌∴AE=CF=3,CE=BF=4∴2222435EF CE CF =+=+=④有第③知,EF=5,且△EDF 为等腰直角三角形,∴ED=DF=522,可证△E CF E DE ''∆∽,2223y x +=5252x =+综上可得:422x =∴2222E F DE DF DE '''''=+=1095E F ''= 【点睛】本题考查了全等三角形和勾股定理方面的知识,做出辅助线、运用数形结合思想是解答本题的关键.15.10【分析】先根据勾股定理得出a 2+b 2=c 2,利用完全平方公式得到(a +b )2﹣2ab =c 2,再将a +b =5c =5代入即可求出ab 的值.【详解】解:∵在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,∴a 2+b 2=c 2,∴(a+b)2﹣2ab=c2,∵a+b=35,c=5,∴(35)2﹣2ab=52,∴ab=10.故答案为10.【点睛】本题考查勾股定理以及完全平方公式,灵活运用完全平方公式是解题关键.16.2【分析】连接CE.根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE,【详解】解:(1)如图,连接CD、CF.∵Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,∴BD=CD=1.2 ,∵由翻折可知BD=DF,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC,∴∠DCF-∠DCA=∠DFC-∠DFE,即∠GCF=∠GFC,∴GC=GF,∴EG+CG=EG+GF=EF=BE,∴△ECG的周长2,2.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..17.①1<OA<4.②672.【解析】(1)由三角形边的性质5-3<2OA <5+3,1<OA <4.(2)过A 作AF BC ,F ⊥于过D 作DE BC ⊥于E,可知,ABF 全等DCE ,由题意知,22BD DE =+()2BC CE +=2DE +()24CE +, ()()222225AC DE BC CE DE CE ∴=+-=+-,2AC ∴+ 2BD=2DE +()()22245CE DE CE +++-=2(22)5018DE CE ++=+50=68,BD -AC =1,两边平方2AC ∴+ 2BD -2AC •BD =1, ∴AC •BD =672.18.12013【解析】 ∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD ,∴B 点,C 点关于AD 对称, 如图,过C 作CF ⊥AB 于F ,交AD 于E ,则CF=BE+FF 的最小值,根据勾股定理得,AD=12,利用等面积法得:AB ⋅CF=BC ⋅AD ,∴CF=BC AD AB ⋅=101213⨯=12013故答案为12013. 点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF ⊥AB 时,CF 有最小值是解题的关键.19.8或10或12或25 3【详解】解:①如图1:当BC=CD=3m时,AB=AD=5m,AC⊥BD,此时等腰三角形绿地的面积:12×6×4=12(m2);②如图2:当AC=CD=4m时,AC⊥CB,此时等腰三角形绿地的面积:12×4×4=8(m2);③如图3:当AD=BD时,设AD=BD=xm,在Rt△ACD中,CD=(x-3)m,AC=4m,由勾股定理,得AD2=DC2+CA2,即(x-3)2+42=x2,解得x=256,此时等腰三角形绿地的面积:12BD·AC=12×256×4=253(m2);④如图4,延长BC 到D ,使BD=AB=5m ,故CD=2m , 此时等腰三角形绿地的面积:12BD·AC=12×5×4=10(m 2); 综上所述,扩充后等腰三角形绿地的面积为8m 2或12m 2或10m 2或253m 2. 点睛:此题主要考查了等腰三角形的性质以及勾股定理的应用,解决问题的关键是根据题意正确画出图形.20.41【解析】作AD′⊥AD ,AD′=A D ,连接CD′,DD ′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD ′中,;BA CA BAD CAD AD AD ===⎧⎪∠∠'⎨⎪⎩∴△BAD ≌△CAD′(SAS ), ∴BD=CD′,∠DAD′=90°,由勾股定理得22AD AD +' ,∠D′DA+∠ADC=90°,由勾股定理得22DC DD +'∴BD=CD′=41,即BD 2=41. 故答案是:41.三、解答题21.(1)3;(2)150°;(3)13.【分析】(1)根据等边三角形的性质可利用SAS 证明△BCD ≌△ACE ,再根据全等三角形的性质即得结果;(2)在△ADE 中,根据勾股定理的逆定理可得∠AED =90°,进而可求出∠AEC 的度数,再根据全等三角形的性质即得答案;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,根据等边三角形的性质和勾股定理可得PE 与CP 的长,进而可得AE =CP ,然后即可根据AAS 证明△AEG ≌△CPG ,于是可得AG =CG ,PG =EG ,根据勾股定理可求出AG 的长,进一步即可求出结果.【详解】解:(1)∵△ABC 和△EDC 都是等边三角形,∴BC =AC ,CD =CE =DE =2,∠ACB =∠DCE =60°,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,∵BC =AC ,∠BCD =∠ACE ,CD =CE ,∴△BCD ≌△ACE ,∴AE =BD =3;(2)在△ADE 中,∵7,3,2AD AE DE ===, ∴DE 2+AE 2=()()222237+==AD 2, ∴∠AED =90°,∵∠DEC =60°,∴∠AEC =150°,∵△BCD ≌△ACE ,∴∠BDC =∠AEC =150°;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,∵△CDE 是等边三角形,∴PE =12DE =1,CP =,∴AE =CP ,在△AEG 与△CPG 中,∵∠AEG =∠CPG =90°,∠AGE =∠CGP ,AE =CP ,∴△AEG ≌△CPG ,∴AG =CG ,PG =EG =12,∴AG ==,∴AC =2AG【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、勾股定理及其逆定理等知识,熟练掌握上述知识、灵活应用全等三角形的判定与性质是解题的关键.22.(1)AE BD =,AE BD ⊥;(2)成立,理由见解析;(3)14或2.【分析】(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒,由此即可得;(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒,由此即可得;(3)先利用勾股定理求出AB =,再分①点,,A E D 在直线上,且点E 位于中间,②点,,A E D 在直线上,且点D 位于中间两种情况,结合(1)(2)的结论,利用勾股定理求解即可得.【详解】(1)AE BD =,AE BD ⊥,理由如下:如图1,延长AE 交BD 于H ,由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =, ∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90DBC BDC ∠+∠=︒,∴90EAC BDC ∠+∠=︒,∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,即AE BD ⊥,故答案为:AE BD =,AE BD ⊥;(2)成立,理由如下:如图2,延长AE 交BD 于H ,交BC 于O ,∵90ACB ECD ∠=∠=︒,∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,在ACE △和BCD 中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90ACB ∠=︒,∴90EAC AOC ∠+∠=︒,∵AOC BOH ∠=∠,∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,即AE BD ⊥;(3)设AD x =,10,90AC BC ACB ==∠=︒,2102AB AC ∴==,由题意,分以下两种情况:①如图3-1,点,,A E D 在直线上,且点E 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==-=-,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x +-=,解得14x =或2x =-(不符题意,舍去),即14AD =,②如图3-2,点,,A E D 在直线上,且点D 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==+=+,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x ++=,解得2x =或14x =-(不符题意,舍去),即2AD =,综上,AD 的长为14或2.【点睛】本题考查了三角形全等的判定与性质、勾股定理等知识点,较难的是题(3),正确分两种情况讨论,并画出图形是解题关键.23.(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析【分析】(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC=45°,可得AE ⊥BD ; (2)由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长; (3)分两种情况讨论,由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC ,可得AE ⊥BD ,由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长.【详解】解:(1)AE=BD ,AE ⊥BD ,理由如下:∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE ⊥BD ;(2)∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;(3)如图3,若点D 在AB 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3--,EQ AE∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE⊥BD是本题的关键.24.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE≌△BCD,∴∠CAE=∠CBD,又∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=∠CAE=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,且AE=BD,∴BD2+AD2=ED2,∵ED2CD,∴BD2+AD2=2CD2,(3)解:连接EF,设BD=x,∵BD :AF =1:22,则AF =22x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF =22AF AE +=22(22)x x +=3x ,∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=+,解得x =1,∴AB =22+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.25.(1)作图见解析,20DBC ∠=︒;(2)作图见解析,35BAC ∠=︒;(3)∠A =45°或90°或90°-2α或1452α︒-,或α=45°时45°<∠BAC <90°.【分析】(1)根据二分割线的定义,只要把∠ABC 分成90°角和20°角即可;(2)可以画出∠A=35°的三角形;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.【详解】解:(1)ABC ∆关于点B 的二分割线BD 如图4所示,20DBC ∠=︒;故答案为:20°;(2)如图所示:∠BAC=35°;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角, ∴∠DBC =∠C =α.当∠A =90°时,△ABC 存在二分分割线;当∠ABD =90°时,△ABC 存在二分分割线,此时∠A =90°-2α;当∠ADB =90°时,△ABC 存在二分割线,此时α=45°且45°<∠A <90°;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形,当∠DBC =90°时,若BD =AD ,则△ABC 存在二分割线,此时1809014522A αα︒-︒-∠==︒-; 当∠BDC =90°时,若BD =AD ,则△ABC 存在二分割线,此时∠A =45°, 综上,∠A =45°或90°或90°-2α或1452α︒-,或α=45°时,45°<∠BAC <90°.【点睛】本题考查的是二分割线的理解与作图,属于新定义题型,主要考查了等腰三角形的性质、直角三角形的性质和三角形的内角和定理等知识,正确理解二分割线的定义、熟练掌握等腰三角形和直角三角形的性质是解答的关键.26.(1)12;(2)t=12.5s 时,13 cm ;(3)11s 或12s 或13.2s【分析】(1)由勾股定理即可得出结论;(2)由线段垂直平分线的性质得到PC = PA =t ,则PB =16-t .在Rt △BPC 中,由勾股定理可求得t 的值,判断出此时,点Q 在边AC 上,根据CQ =2t -BC 计算即可;(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分BQ =BC 、CQ =BC 和BQ =CQ 三种情况,分别得到关于t 的方程,可求得t 的值.【详解】(1)在Rt △ABC 中,BC 2222212016AC AB =-=-=(cm ).故答案为:12;(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,∴PC = PA =t ,PB =16-t . 在Rt △BPC 中,222BC BP CP +=,即2221216)t t +-=(, 解得:t =252. ∵Q 从B 到C 所需的时间为12÷2=6(s ),252>6,∴此时,点Q在边AC上,CQ=25212132⨯-=(cm);(3)分三种情况讨论:①当CQ=BQ时,如图1所示,则∠C=∠CBQ.∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11(s).②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12(s).③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE121648205 AB BCAC⋅⨯===,∴CE 365====7.2. ∵BC =BQ ,BE ⊥CQ ,∴CQ =2CE =14.4,∴BC +CQ =26.4,∴t =26.4÷2=13.2(s ).综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.27.(1)3;(2)见解析.【分析】(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.【详解】解:(1)在△ACD 中,∵90ACB ∠=︒,1CD =,AD =∴2AC ==,∵2BC AC =,∴BC=4,BD =3,∴1132322ABD S BD AC ∆=⋅=⨯⨯=; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则∠CBG +∠CBH =90°, ∵BE BC ⊥,∴∠EBH +∠CBH =90°,∴∠CBG =∠EBH ,∵BE BC ⊥,90ACB ∠=︒,∴BE ∥AC ,∴∠E =∠EFC ,∵CG EF ⊥,90ACB ∠=︒,∴∠EFC +∠FCG =90°,∠BCG +∠FCG =90°,∴∠EFC =∠BCG ,∴∠E =∠BCG ,在△BCG 和△BEH 中,∵∠CBG =∠EBH ,BC=BE ,∠BCG =∠E ,∴△BCG ≌△BEH (ASA ), ∴BG =BH ,CG =EH ,∴GH ==,∴EG GH EH CG =+=+.【点睛】本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.28.(1)2,232)证明见解析(3)2217(423221【分析】(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;(3)由(1)(2)可知,=23AC AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.【详解】(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =, ∴122BC AB ==,∴22=23AC AB BC =- (2)∵ED 为AB 垂直平分线,∴ADB=DA ,在Rt △BDE 中, ∵122BE AE AB ===,23DE = ∴22=4BD BE DE =+,∴BD=2BE ,∴∠BDE 为60°,∴ABD ∆为等边三角形;(3))由(1)(2)可知,=23AC ,AD=4, ∴22=27CD AC AD =+∵BCD ACD ACBD S SS =+四边形, ∴111()222BC AD AC AC AD BF CD +⨯=⨯+⨯,。
一、选择题1.如图,ABC 是等边三角形,点D .E 分别为边BC .AC 上的点,且CD AE =,点F是BE 和AD 的交点,BG AD ⊥,垂足为点G ,已知75∠=︒BEC ,1FG =,则2AB 为( )A .4B .5C .6D .72.在ABC 中,AB 边上的中线3,6,8CD AB BC AC ==+=,则ABC 的面积为( ) A .6B .7C .8D .93.如图,所有的四边形都是正方形,所有的三角形都是直角三角形。
若正方形A 、B 、C 、D 的边长是3、5、2、3,则最大正方形E 的面积是A .13B .225+C .47D .134.如图,在Rt ABC 中,90BAC ︒∠=,以Rt ABC 的三边为边分别向外作等边三角形'A BC ,'AB C △,'ABC △,若'A BC ,'AB C △的面积分别是10和4,则'ABC △的面积是( )A .4B .6C .8D .95.A 、B 、C 分别表示三个村庄,AB 1700=米,800BC =米,AC 1500=米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( ) A .AB 的中点 B .BC 的中点C .AC 的中点D .C ∠的平分线与AB 的交点6.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A .甲、乙都可以B .甲、乙都不可以C .甲不可以、乙可以D .甲可以、乙不可以7.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是( )A .245B .5C .6D .88.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .2B .4C .3D 109.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长. AC 的长为( )A .3尺B .4.2尺C .5尺D .4尺10.下列四组数据不能作为直角三角形的三边长的是 ( )A .6,8,10B .5,12,13C .3,5,6D .2,3,5二、填空题11.将一副三角板按如图所示摆放成四边形ABCD ,发现只要知道其中一边的长就可以求出其它各边的长,若已知AD =32,则AB 的长为__________.12.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.13.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.14.如图是由边长为1的小正方形组成的网格图,线段AB ,BC ,BD ,DE 的端点均在格点上,线段AB 和DE 交于点F ,则DF 的长度为_____.15.如图,O 为坐标原点,四边形OABC 为矩形,()20,0A ,()0,8C ,点D 是OA 的中点,点P 在边BC 上运动,当ODP ∆是以OD 为腰的等腰三角形时,则P 点的坐标为______.16.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD ,则线段BD 的长为_____.17.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.18.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.19.如图,由两个直角三角形和三个正方形组成的图形,已知25AB = ,24AC = 其中阴影部分面积是_____________平方单位.20.已知,在△ABC 中,BC=3,∠A=22.5°,将△ABC 翻折使得点B 与点A 重合,折痕与边AC 交于点P ,如果AP=4,那么AC 的长为_______三、解答题21.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.22.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)23.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF ①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.24.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .25.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求ADAB的值.26.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述); (2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.27.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.28.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.29.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证:四边形AFCE 为菱形. (2)如图1,求AF 的长.(3)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,点P 的速度为每秒1cm ,设运动时间为t 秒.①问在运动的过程中,以A 、P 、C 、Q 四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t 和点Q 的速度;若不可能,请说明理由.②若点Q 的速度为每秒0.8cm ,当A 、P 、C 、Q 四点为顶点的四边形是平行四边形时,求t的值.30.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.(体验)(1)从特殊入手许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:的大小的形状…直角三角形…直角三角形…请仔细体会其中的道理,并填空:_____,_____;(2)猜想一般结论在中,设,,(),①若为直角三角形,则满足;②若为锐角三角形,则满足____________;③若为钝角三角形,则满足_____________.(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面(如图1),设,,,请帮助小慧说明为锐角三角形的道理.(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是()A.一定是锐角三角形B.可能是锐角三角形或直角三角形,但不可能是钝角三角形C.可能是锐角三角形或直角三角形或钝角三角形【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】结合等边三角形得性质易证△ABE≌△CAD,可得∠FBG=30°,BF=2FG=2,再求解∠ABE =15°,进而两次利用勾股定理可求解.【详解】∵△ABC为等边三角形∴∠BAE=∠C=60°,AB=AC,CD=AE∴△ABE≌△CAD(SAS)∴∠ABE=∠CAD∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAF=∠BAC=60°,∵BG ⊥AD ,∴∠BGF =90°,∴∠FBG =30°,∵FG =1,∴BF =2FG =2,∵∠BEC =75°,∠BAE =60°,∴∠ABE =∠BEC ﹣∠BAE =15°,∴∠ABG =45°,∵BG ⊥AD ,∴∠AGB =90°,∴=AB 2=AG 2+BG 22)2=6.故选C .【点睛】本题考查全等三角形的判定与性质,等边三角形的性质,勾股定理,证明△ABG 为等腰直角三角形是解题关键.2.B解析:B【分析】本题考查三角形的中线定义,根据条件先确定ABC 为直角三角形,再根据勾股定理求得228AC BC = ,最后根据12ABC AC BC ∆=⋅求解即可. 【详解】 解:如图,在ABC 中,AB 边上的中线,∵CD=3,AB= 6,∴CD=3,AB= 6,∴CD= AD= DB ,12∠∠∴=,34∠=∠ ,∵1234180∠+∠+∠+∠=︒,∴1390∠+∠=︒,∴ABC 是直角三角形,∴22236AC BC AB +==,又∵8AC BC +=,∴22264AC AC BC BC +⋅+=,∴22264()643628AC BC AC BC ⋅=-+=-=,又∵12ABC AC BC ∆=⋅,∴128722ABC S ∆=⨯=, 故选B.【点睛】本题考查三角形中位线的应用,熟练运用三角形的中线定义以及综合分析、解答问题的能力,关键要懂得:在一个三角形中,如果获知一条边上的中线等于这一边的一半,那么就可考虑它是一个直角三角形,通过等腰三角形的性质和内角和定理来证明一个三是直角三角形.3.C解析:C【分析】根据勾股定理即可得到正方形A 的面积加上B 的面积加上C 的面积和D 的面积是E 的面积.即可求解.【详解】四个正方形的面积的和是正方形E 的面积:即222233=92549=47+5+2++++;故答案为C .【点睛】理解正方形A ,B ,C ,D 的面积的和是E 的面积是解决本题的关键.4.B解析:B【分析】 设AB=c ,AC=b ,BC=a ,用a 、b 、c 分别表示'A BC ,'AB C △,'ABC △的面积,再利用Rt ABC 得b 2+c 2=a 2,求得c 值代入即可求得的面积'ABC △的面积.【详解】设AB=c ,AC=b ,BC=a ,由题意得'A BC 的面积=131022a a ⋅⋅=, 'AB C △的面积=13422b b ⋅⋅= ∴24033a = 21633b =在Rt △ABC 中,∠BAC=90°,b 2+c 2=a 2, ∴c 2=a 2-b 24016338333=∴'ABC △的面积=2133224c c c ⋅⋅==38364⨯= 故此题选B【点睛】 此题考察勾股定理的运用,用直角三角形的三边分别表示三个等边三角形的面积,运用勾股定理的等式求得第三个三角形的面积5.A解析:A【分析】先计算AB 2=2890000,BC 2=640000,AC 2=2250000,可得BC 2+AC 2=AB 2,那么△ABC 是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P 点的位置.【详解】解:如图∵AB 2=2890000,BC 2=640000,AC 2=2250000∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形,∴活动中心P 应在斜边AB 的中点.故选:A .【点睛】本题考查了勾股定理的逆定理.解题的关键是证明△ABC 是直角三角形.6.A解析:A【解析】试题分析:剪拼如下图:乙故选A考点:剪拼,面积不变性,二次方根7.A解析:A【分析】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,由角平分线的性质得出PQ=PM,这时PC+PQ有最小值,为CM的长,然后利用勾股定理和等面积法求得CM的长即可解答.【详解】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,∵AD是∠BAC的平分线,∴PQ=PM,则PC+PQ=PC+PM=CM,即PC+PQ有最小值,为CM的长,∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴由勾股定理得:AB=10,又1122ABCS AB CM AC BC==△,∴6824105 CM⨯==,∴PC+PQ的最小值为245,故选:A.【点睛】本题考查了角平分线的性质、最短路径问题、勾股定理、三角形等面积法求高,解答的关键是掌握线段和最短类问题的解决方法:一般是运用轴对称变换将直线同侧的点转化为异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短,使两条线段之和转化为一条直线来解决.8.A解析:A【分析】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出=AF FC .再根据ASA 证明FOA BOC ∆≅∆,那么==3AF BC ,等量代换得到==3FC AF ,利用线段的和差关系求出==1FD AD AF -.然后在直角FDC ∆中利用勾股定理求出CD 的长.【详解】解:如图,连接FC ,则=AF FC .AD BC ∵∥,FAO BCO ∴∠=∠.在FOA ∆与BOC ∆中,FAO BCO OA OCAOF COB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()FOA BOC ASA ∴∆≅∆,3AF BC ∴==,3FC AF ∴==,431FD AD AF =-=-=.在FDC ∆中,90D ︒∠=,222CD DF FC ∴+=,22213CD ∴+=,22CD ∴=.故选A .【点睛】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.9.B解析:B【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 尺,则斜边为(10)x -尺,利用勾股定理解题即可.【详解】解:设竹子折断处离地面x 尺,则斜边为(10)x -尺,根据勾股定理得:2224(10)x x +=-.解得: 4.2x =,∴折断处离地面的高度为4.2尺,故选:B .【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.10.C解析:C【分析】求出两小边的平方和长边的平方,再看看是否相等即可.【详解】A 、62+82=102,此时三角形是直角三角形,故本选项不符合题意;B 、52+122=132,此时三角形是直角三角形,故本选项不符合题意;C 、32+52≠62,此时三角形不是直角三角形,故本选项符合题意;D 、222+=,此时三角形是直角三角形,故本选项不符合题意; 故选:C .【点睛】本题主要考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形,必须满足较小两边平方的和等于最大边的平方才能做出判断.二、填空题11.【分析】利用勾股定理求出AC=6,在Rt △ABC 中,∠BAC=30°,得到12BC AB =,再利用勾股定理得到222AC BC AB +=,即可求出AB .【详解】在Rt △ACD 中,CD=AD=∴6=,在Rt △ABC 中,∠BAC=30°, ∴12BC AB =, ∵222AC BC AB +=,∴22216()2AB AB +=,解得AB=故答案为:【点睛】此题考查勾股定理,直角三角形30度角所对的直角边等于斜边的一半,正确理解勾股定理的三边的数量关系是解题的关键.12.48【分析】用a 和b 表示直角三角形的两个直角边,然后根据勾股定理列出正方形面积的式子,求出2S 的面积. 【详解】解:本图是由八个全等的直角三角形拼成的,设这个直角三角形两个直角边中较长的长度为a ,较短的长度为b ,即图中的AE a =,AH b =,则()221S AB a b ==+,2222S HE a b ==+,()223S TM a b ==-, ∵123144S S S ++=,∴()()2222144a b a b a b ++++-= 22222222144a b ab a b a b ab ++++++-=2233144a b +=2248a b +=,∴248S =.故答案是:48.【点睛】本题考查勾股定理,解题的关键是要熟悉赵爽弦图中勾股定理的应用.13.(0,21009)【解析】【分析】本题点A 坐标变化规律要分别从旋转次数与点A 所在象限或坐标轴、点A 到原点的距离与旋转次数的对应关系.【详解】∵∠OAA 1=90°,OA=AA 1=1,以OA 1为直角边作等腰Rt △OA 1A 2,再以OA 2为直角边作等腰Rt △OA 2A 3,…,∴OA 1,OA 2=)2,…,OA 2018=)2018,∵A 1、A 2、…,每8个一循环,∵2018=252×8+2∴点A 2018的在y 轴正半轴上,OA 2018=2018=21009,故答案为(0,21009).【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.14.2【分析】连接AD 、CD ,由勾股定理得:22435AB DE ==+=,224225BD =+=,22125CD AD ==+=,得出AB =DE =BC ,222BD AD AB +=,由此可得△ABD 为直角三角形,同理可得△BCD 为直角三角用形,继而得出A 、D 、C 三点共线.再证明△ABC ≌△DEB ,得出∠BAC =∠EDB ,得出DF ⊥AB ,BD 平分∠ABC ,再由角平分线的性得出DF =DG =2即可的解.【详解】连接AD 、CD ,如图所示:由勾股定理可得,22435AB DE ==+=,224225BD =+=22125CD AD ==+, ∵BE=BC=5,∴AB=DE =AB =BC ,222BD AD AB +=,∴△ABD 是直角三角形,∠ADB =90°,同理可得:△BCD 是直角三角形,∠BDC =90°,∴∠ADC =180°,∴点A 、D 、C 三点共线,∴225AC AD BD ===,在△ABC 和△DEB 中,AB DE BC EB AC BD =⎧⎪⎨⎪=⎩=,∴△ABC ≌△DEB(SSS),∴∠BAC =∠EDB ,∵∠EDB+∠ADF =90°,∴∠BAD+∠ADF =90°,∴∠BFD =90°,∴DF ⊥AB ,∵AB=BC ,BD ⊥AC ,∴BD 平分∠ABC ,∵DG ⊥BC ,∴DF =DG =2.【点睛】本题考查全等三角形的性质与判定以及勾股定理的相关知识,解题的关键是熟练掌握勾股定理和过股定理的逆定理.15.()4,8或()6,8或()16,8【分析】当ODP ∆是以OD 为腰的等腰三角形时,分为两种情况①点O 是顶角顶点时,②D 是顶角顶点时,根据勾股定理求出CP ,PM 即可.【详解】解:OD 是等腰三角形的一条腰时:①若点O 是顶角顶点时,P 点就是以点O 为圆心,以10为半径的弧与CB 的交点, 在直角△OPC 中,CP=22221086OP OC -=-=,则P 的坐标是(6,8). ②若D 是顶角顶点时,P 点就是以点D 为圆心,以10为半径的弧与CB 的交点, 过D 作DM ⊥BC 于点M ,在直角△PDM 中,22221086PD DM -=-= ,当P 在M 的左边时,CP=10-6=4,则P 的坐标是(4,8);当P 在M 的右侧时,CP=10+6=16,则P 的坐标是(16,8).故P 的坐标为:(6,8)或(4,8)或(16,8).故答案为:(6,8)或(4,8)或(16,8).【点睛】本题主要考查等腰三角形的性质及勾股定理的运用,注意正确地进行分类,考虑到所有的可能情况是解题的关键.16.72965【分析】分三种情形讨论:(1)如图1中,以点C 所在顶点为直角时;(2)如图2中,以点D 所在顶点为直角时;(3)如图3中,以点A 所在顶点为直角时.【详解】(1)如图1中,以点C 所在顶点为直角时.∵AC =CD =4,BC =3,∴BD =CD +BC =7;(2)如图2中,以点D 所在顶点为直角时,作DE ⊥BC 与E ,连接BD .在Rt △BDE 中DE =2,BE =5,∴BD 2229DE BE +(3)如图3中,以点A 所在顶点为直角时,作DE ⊥BC 于E , 在Rt △BDE 中,DE =4.BE =7,∴BD 2265DE BE + 故答案为:72965【点睛】本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.17.120 13【解析】∵AB=AC,AD是角平分线,∴AD⊥BC,BD=CD,∴B点,C点关于AD对称,如图,过C作CF⊥AB于F,交AD于E,则CF=BE+FF的最小值,根据勾股定理得,AD=12,利用等面积法得:AB⋅CF=BC⋅AD,∴CF=BC ADAB⋅=101213⨯=12013故答案为120 13.点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF⊥AB时,CF有最小值是解题的关键.18.22-【分析】根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.【详解】解:如图所示,在AB 上取AM=AC=2,∵90ACB ∠=,2AC BC ==,∴∠CAB=45°,又∵45EAD ∠=,∴∠EAC+∠CAD=∠DAB+∠CAD=45°,∴∠EAC =∠DAB ,∴在△EAC 与△DAB 中AE=AD ,∠EAF =∠DAB ,AC =AM ,∴△EAC ≌△DAM (SAS )∴CE=MD ,∴当MD ⊥BC 时,CE 的值最小,∵AC=BC=2, 由勾股定理可得2222AB AC BC =+=,∴222=-BM ,∵∠B=45°,∴△BDM 为等腰直角三角形,∴DM=BD ,由勾股定理可得222+BD DM =BM∴DM=BD=22-∴CE=DM=22-故答案为:22-【点睛】本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE 最小时的状态,化动为静.19.49【分析】先计算出BC 的长,再由勾股定理求出阴影部分的面积即可.【详解】∵∠ACB=90︒,25AB = ,24AC =,∴22222252449BC AB AC =-=-=,∴阴影部分的面积=249BC =,故答案为:49.【点睛】此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC 的平方是解题的关键.20.522,322++【分析】过B 作BF ⊥CA 于F ,构造直角三角形,分两种情况讨论,利用勾股定理以及等腰直角三角形的性质,即可得到AC 的长.【详解】分两种情况:①当∠C 为锐角时,如图所示,过B 作BF ⊥AC 于F ,由折叠可得,折痕PE 垂直平分AB ,∴AP=BP=4,∴∠BPC=2∠A=45°,∴△BFP 是等腰直角三角形,∴BF=DF=22, 又∵BC=3,∴Rt △BFC 中,CF=221BC BF -=,∴AC=AP+PF+CF=5+22;②当∠ACB 为钝角时,如图所示,过B 作BF ⊥AC 于F ,同理可得,△BFP 是等腰直角三角形,∴BF=FP=22又∵BC=3,∴Rt △BCF 中,221BC BF -=,∴AC=AF-CF=3+22故答案为:5+223+22本题主要考查了折叠问题以及勾股定理的运用,解决问题的关键是分两种情况画出图形进行求解.解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题21.BF 的长为32【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中, BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3∴222232BF BD FD BD =+==本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.22.(1)见解析;(2)CD=2AD+BD,理由见解析;(3)CD=3AD+BD【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE=2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=3AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD=2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH =30°,∴AH =12AD ,∴DH , ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∴CD =DE +EC =2DH +BD +BD ,故答案为:CD +BD .【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.23.(1)①见解析;②DE =297;(2)DE 的值为 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.24.作图见解析,32 5【分析】作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,连接AN,首先用等积法求出AH的长,易证△ACH≌△A'NH,可得A'N=AC=4,然后设NM=x,利用勾股定理建立方程求出NM的长,A'M的长即为AN+MN的最小值.【详解】如图,作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,最小值为A'M 的长.连接AN ,在Rt △ABC 中,AC=4,AB=8,∴2222AB AC =84=45++ ∵11AB AC=BC AH 22⋅⋅ ∴8545∵CA ⊥AB ,A 'M ⊥AB ,∴CA ∥A 'M∴∠C=∠A 'NH ,由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,165,A 'M=A 'N+NM=4+x ∴AM 2=AA '2-A 'M 2=()221654-+⎝⎭x ∴()2221654=16-+-⎝⎭x x 解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.25.(1)详见解析;(2)41;(3)3.【分析】(1)证∠EAC=∠DAB.利用SAS 证△ACE ≌△ABD 可得;(2)连接BD ,证1302FEA AED ∠=∠=,证△ACE ≌△ABD 可得30FEA BDA ∠=∠=,CE=BD=5,利用勾股定理求解;(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=,利用勾股定理得AE 2AB =,BE=3AB ,根据(1)思路得AD=BE=3AB .【详解】(1) 证明:∵∠DAE=∠BAC ,∴∠DAE+∠CAD=∠BAC+∠CAD ,即∠EAC=∠DAB.在△ACE 与△ABD 中,AD AE EAC BAB AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ABD(SAS),∴BD CE =;(2)连接BD因为AD AE =, 60DAE BAC ∠=∠=,所以ADE ∆是等边三角形因为60DAE DEA EDA ∠=∠=∠=,ED=AD=AE=4因为CE AD ⊥所以1302FEA AED ∠=∠= 同(1)可知△ACE ≌△ABD(SAS),所以30FEA BDA ∠=∠=,CE=BD=5所以90BDE BDA ADE ∠=∠+∠=所以BE=22225441BD DE +=+=(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=所以AE=222AB AC AC +=因为AB AC =所以AE 2AB =又因为45CAB ∠=所以90ABE ∠=所以()222223BE AE AB AB AB AB =+=+= 因为45CBD CDB ∠=∠=所以BC=CD, 90BCD ∠=因为同(1)可得△ACD ≌△ECB(SAS)所以AD=BE=3AB所以33AD AB AB ==【点睛】考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.26.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.27.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C 之间的距离为333-.理由见解析.【分析】(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.【详解】(1)CF FH =证明:延长DF 交AB 于点G∵在ABC △中,90ACB ∠=︒,6AC BC ==,∴45A B ∠=∠=︒∵DF DE ⊥于点D ,且DE DF =,∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒,∴135CEF FGH ∠=∠=︒,∵点D 是AC 的中点,∴132CD AD AC ===,∴CD DG = ∴CE FG =∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒∴DCF GFH ∠=∠∴CEF FGH ≌∴CF FH =;(2)依然成立理由:设AH,DF交于点G,由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=12BC,DC=12AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中CEF FGHEC GFECF GFH∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FCE≌△HFG(ASA),∴HF=FC.由(1)可知ABC△和CFH△均为等腰直角三角形当他们面积相等时,6CF AC==.∴2233DE DF CF CD==-=∴333CE DE DC=-=-∴点E与点C之间的距离为333-.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.28.(1)45°;(2)GF=AG+CF,证明见解析;(3)①6;②s ab=,理由见解析.【解析】【分析】(1)如图1中,连接BE.利用全等三角形的性质证明EB=ED,再利用等角对等边证明EB=EF即可解决问题.(2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,证明△GDH≌△GDF(SAS)即可解决问题.(3)①设CF=x,则AH=x,BF=6-x,GF=3+x,利用勾股定理构建方程求出x即可.②设正方形边长为x,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.【详解】解:(1)如图1中,连接BE.∵四边形ABCD是正方形,∴CD=CB,∠ECD=∠ECB=45°,∵EC=EC,∴△ECB≌△ECD(SAS),∴EB=ED,∠EBC=∠EDC,∵∠DEF=∠DCF=90°,∴∠EFC+∠EDC=180°,∵∠EFB+∠EFC=180°,∴∠EFB=∠EDC,∴∠EBF=∠EFB,∴EB=EF,∴DE=EF,∵∠DEF=90°,∴∠EDF=45°故答案为45°.(2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,∴∠CDF=∠ADH,DF=DH,CF=AH,∠DAH=∠DCF=90°,∵∠DAC=90°,∴∠DAC+∠DAH=180°,∴H、A、G三点共线,∴GH=AG+AH=AG+CF,∵∠EDF=45°,∴∠CDF+∠ADG=45°,∴∠ADH+∠ADG=45°∴∠GDH=∠EDF=45°又∵DG=DG∴△GDH≌△GDF(SAS)∴GH=GF,∴GF=AG+CF.(3)①设CF=x,则AH=x,BF=6-x,GF=3+x,则有(3+x)2=(6-x)2+32,解得x=2∴S△BFG=12•BF•BG=6.②设正方形边长为x,∵AG=a,CF=b,∴BF=x-b,BG=x-a,GF=a+b,则有(x-a)2+(x-b)2=(a+b)2,化简得到:x2-ax-bx=ab,∴S=12(x-a)(x-b)=12(x2-ax-bx+ab)=12×2ab=ab.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.29.(1)证明见解析;(2)AF=5cm;(3)①有可能是矩形,P点运动的时间是8,Q的速度是0.5cm/s;②t=203.。
八年级物理月考试题 201603一、选择题(每小题只有一个选项正确。
每小题3分,共39分)1. 一个重50N 的木箱放在水平桌面上,在10N 的水平推力作用下静止不动,此时木箱受到的摩擦力为f 1;当推力为22N 时,木箱作匀速直线运动,此时木箱受到的摩擦力为f 2,则( )A 、f 1=0N f 2=22NB 、f 1=0N f 2=50NC 、f 1=50N f 2=22ND 、f 1=10N f 2=22N2.如图所示,当你手握饮料罐时,手和罐都在空中静止,且罐底所在平面是水平的。
各对力属于平衡力的是( )A 手对罐的压力与罐对手的压力B 罐受到的重力与手对罐的压力C 罐受的重力与手对罐的摩擦力D 罐对手的摩擦力与手对罐的摩擦力 3. 小明学习了运动和力的知识后有以下的认识,其中正确的是( ) A .如果两个力的大小相等,方向相同,则这两个力的作用效果一定相同 B .推出去的铅球能继续在空中飞行,是由于铅球受到惯性的作用C .静止在水平课桌上的饮料瓶一定受到平衡力的作用D .如果运动的物体不受外力作用,它将慢慢停下来4.如图所示,甲、乙两物体在A 、B 两水平桌面上做匀速直线运动,可以确定( ) A .甲的速度一定小于乙的速度 B .甲、乙都不是平衡状态 C .甲、乙的运动状态发生了改变D .甲受到的摩擦力一定小于乙受到的摩擦力5. 如图是投掷实心球的场景。
下列情况中实心球受到平衡力作用的是( )A .实心球在空中上升B .实心球从空中下落C .实心球在地上越滚越慢D .实心球停在地面上6.如图,木块竖立在小车上,随小车一起以相同的速度向右作匀速直线运动。
下列分析正确的是( ) A .木块没有受到小车的摩擦力 B .木块运动速度越大,惯性也越大ABC.木块对小车的压力与小车对木块的支持力是一对平衡力D.当小车受到阻力突然停止运动时,如果木块与小车接触面光滑,木块将向右倾倒7.在一艘做匀速直线运动的游轮上,某同学朝各个方向用相同的力进行立定跳远,则下列说法中正确的是()A朝与游轮运动方向一致跳的最远B朝与游轮运动方向相反跳的最远C朝与游轮运动方向一致跳的最近D朝各个方向跳的都一样远8. 如图所示的四幅图中,有利于增大压强的是:()9.做匀速圆周运动的物体()A.一定受平衡力的作用B.它受到的力可能平衡,也可能不平衡C.它受到的力一定不平衡D.它可能不受力的作用10.两个完全相同的容器中分别盛有质量相等的水和酒精,如图,下列说法正确的是()A.两容器底受到压力相等B.液面下深度相同的两处a、b所受液体压强相等C.盛水容器底部受到压强较大D.盛水容器底部受到压强较小11.如图所示三个容器,底面积相等,若都装入相同质量的酒精,则酒精对容器底部的压强()A一样大 B A最大 C B最大 D C最大12.如图所示的“帕斯卡裂桶实验”,木桶内装满水,桶的顶部竖立着一根细管,一人在三楼的阳台上向细管内只倒入了几杯水,木桶就被水压破了,这一实验表明,影响液体内部压强的因素是液体的:()A 质量B 深度C 密度D 体积13.茶壶盖上开一个孔的作用是:()A.好系绳子,防止打碎B.让外面空气流进,不至于壶内空气压强减小使水流不出来C.让热气冒出来,便于热茶冷却D.让外面的空气流进,可保证茶水的新鲜请将选择题答案填在下表中:二.作图(每图4分,共8分)14.如图,一辆重为20N的模型小车,在15N的牵引力作用下在水平面上做匀速直线运动,请作出小车的受力示意图。
2015-2016学年山东省潍坊市诸城市树一中学九年级(下)第一次学情检测数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.在|﹣2|,20,2﹣1,这四个数中,最大的数是()A.|﹣2| B.20C.2﹣1D.2.若∠α的余角是30°,则cosα的值是()A.B.C.D.3.下列运算正确的是()A.2a﹣a=1 B.a+a=2a2C.记分=a2D.(﹣a)2=﹣a2 4.下列图形是轴对称图形,又是中心对称图形的有()A.4个B.3个C.2个D.1个5.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=()A.40°B.50°C.60°D.80°6.已知二次函数y=ax2的图象开口向上,则直线y=ax﹣1经过的象限是()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限7.如图,你能看出这个倒立的水杯的俯视图是()A.B.C.D.8.如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A.28℃,29℃B.28℃,29.5℃C.28℃,30℃D.29℃,29℃9.已知拋物线y=﹣x2+2,当1≤x≤5时,y的最大值是()A.2 B.C.D.10.小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是()A.2 B.C.2D.311.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲于A、B两点,若S△AOB=2,则k2﹣k1的值是()A.1 B.2 C.4 D.812.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是()A.升B.升C.升D.升二、填空题(本大题共6小题,每小题4分,共24分)13.方程的根是.14.把3.016保留两个有效数字为.15.分解因式:(a+2)(a﹣2)+3a=.16.如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为.17.如图,等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则的值为.18.如图,AB是半圆O的直径,以0A为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E.则下列四个结论:①点D为AC的中点;②S△O′OE=S△AOC;③;④四边形O′DEO是菱形.其中正确的结论是.(把所有正确的结论的序号都填上)三、解答题(本大题共6小题,满分共60分)19.已知:x1、x2是一元二次方程x2﹣4x+1=0的两个实数根,求:(x12+x22)÷(+)的值.20.数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m,经测量,得到其它数据如图所示.其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算GH的长.(≈1.73,要求结果精确到0.1m)21.如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.(1)求证:AB是⊙O的切线;(2)若D为OA的中点,阴影部分的面积为﹣,求⊙O的半径r.22.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?23.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=,求EB的长.24.已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标.2015-2016学年山东省潍坊市诸城市树一中学九年级(下)第一次学情检测数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.在|﹣2|,20,2﹣1,这四个数中,最大的数是()A.|﹣2| B.20C.2﹣1D.【考点】实数大小比较;零指数幂;负整数指数幂.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,首先求出|﹣2|,20,2﹣1的值是多少,然后根据实数比较大小的方法判断即可.【解答】解:|﹣2|=2,20=1,2﹣1=0.5,∵,∴,∴在|﹣2|,20,2﹣1,这四个数中,最大的数是|﹣2|.故选:A.【点评】(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.2.若∠α的余角是30°,则cosα的值是()A.B.C.D.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据题意求得α的值,再求它的余弦值.【解答】解:∠α=90°﹣30°=60°,cosα=cos60°=.故选A.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.互余角的性质:两角互余其和等于90度.3.下列运算正确的是()A.2a﹣a=1 B.a+a=2a2C.记分=a2D.(﹣a)2=﹣a2【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【专题】计算题.【分析】利用合并同类项、同底数幂的乘法、积的乘方法则进行计算.【解答】解:A、2a﹣a=a,此选项错误;B、a+a=2a,此选项错误;C、记分=a2,此选项正确;D、(﹣a)2=a2,此选项错误.故选C.【点评】本题考查了合并同类项,同底数幂的乘法,积的乘方,理清指数的变化是解题的关键.4.下列图形是轴对称图形,又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【专题】几何图形问题.【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:第①个图形不是轴对称图形,是中心对称图形,不符合题意;第②个图形是轴对称图形,不是中心对称图形,不符合题意;第③个图形既是轴对称图形,又是中心对称图形,符合题意;第④个图形是轴对称图形,又是中心对称图形,符合题意.所以既是轴对称图形,又是中心对称图形的有③④两个.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=()A.40°B.50°C.60°D.80°【考点】平行四边形的性质.【分析】根据平行四边形的对边平行和角平分线的定义,以及平行线的性质求∠1的度数即可.【解答】解:∵AD∥BC,∠B=80°,∴∠BAD=180°﹣∠B=100°.∵AE平分∠BAD∴∠DAE=∠BAD=50°.∴∠AEB=∠DAE=50°∵CF∥AE∴∠1=∠AEB=50°.故选B.【点评】此题主要考查平行四边形的性质和角平分线的定义,属于基础题型.6.已知二次函数y=ax2的图象开口向上,则直线y=ax﹣1经过的象限是()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限【考点】二次函数图象与系数的关系;一次函数图象与系数的关系.【专题】函数思想.【分析】二次函数图象的开口向上时,二次项系数a>0;一次函数y=kx+b(k≠0)的一次项系数k>0、b<0时,函数图象经过第一、三、四象限.【解答】解:∵二次函数y=ax2的图象开口向上,∴a>0;又∵直线y=ax﹣1与y轴交于负半轴上的﹣1,∴y=ax﹣1经过的象限是第一、三、四象限.故选D.【点评】本题主要考查了二次函数、一次函数图象与系数的关系.二次函数图象的开口方向决定了二次项系数a的符号.7.如图,你能看出这个倒立的水杯的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】几何图形问题.【分析】找到倒立的水杯从上面看所得到的图形即可.【解答】解:从上面看应是一个圆环,都是实心线.故选B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8.如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A.28℃,29℃B.28℃,29.5℃C.28℃,30℃D.29℃,29℃【考点】众数;中位数.【分析】根据中位数和众数的定义解答.【解答】解:从小到大排列为:28,28,28,29,29,30,31,28出现了3次,故众数为28,第4个数为29,故中位数为29.故选A.【点评】本题考查了中位数和众数的概念.解题的关键是正确识图,并从统计图中整理出进一步解题的信息.9.已知拋物线y=﹣x2+2,当1≤x≤5时,y的最大值是()A.2 B.C.D.【考点】二次函数的最值.【专题】函数思想.【分析】根据抛物线的解析式推断出函数的开口方向、对称轴、与y轴的交点,从而推知该函数的单调区间与单调性.【解答】解:∵拋物线y=﹣x2+2的二次项系数a=﹣<0,∴该抛物线图象的开口向下;又∵常数项c=2,∴该抛物线图象与y轴交于点(0,2);而对称轴就是y轴,∴当1≤x≤5时,拋物线y=﹣x2+2是减函数,=﹣+2=.∴当1≤x≤5时,y最大值故选C.【点评】本题主要考查了二次函数的最值.解答此题的关键是根据抛物线方程推知抛物线图象的增减性.10.小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是()A.2 B.C.2D.3【考点】垂径定理的应用;勾股定理.【专题】网格型.【分析】在网格中找点A、B、D(如图),作AB,BD的中垂线,交点O就是圆心,故OA即为此圆的半径,根据勾股定理求出OA的长即可.【解答】解:如图所示,作AB,BD的中垂线,交点O就是圆心.连接OA、OB,∵OC⊥AB,OA=OB∴O即为此圆形镜子的圆心,∵AC=1,OC=2,∴OA===.故选B.【点评】本题考查的是垂径定理在实际生活中的运用,根据题意构造出直角三角形是解答此题的关键.11.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲于A、B两点,若S△AOB=2,则k2﹣k1的值是()A.1 B.2 C.4 D.8【考点】反比例函数系数k的几何意义.【分析】设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出cd﹣ab=4,即可得出答案.【解答】解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=2,∴cd﹣ab=2,∴cd﹣ab=4,∴k2﹣k1=4,故答案为:4.【点评】本题主要考查了对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出cd﹣ab=4是解此题的关键.12.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是()A.升B.升C.升D.升【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】根据题目中第1次倒出升水,第2次倒出水量是升的,第3次倒出水量是升的,第4次倒出水量是升的…第10次倒出水量是升的…,可知按照这种倒水的方法,这1升水经10次后还有1﹣﹣×﹣×﹣×…×升水.【解答】解:∵1﹣﹣×﹣×﹣×…﹣×=1﹣﹣+﹣+﹣+…﹣+=.故按此按照这种倒水的方法,这1升水经10次后还有升水.故选D.【点评】考查了规律型:数字的变化,此题属于规律性题目,解答此题的关键是根据题目中的已知条件找出规律,按照此规律再进行计算即可.注意=﹣.二、填空题(本大题共6小题,每小题4分,共24分)13.方程的根是x=0.【考点】解分式方程.【专题】计算题.【分析】方程两边都乘以(x+1)把分式方程化为整式方程,然后再进行检验.【解答】解:方程两边都乘以(x+1)得,x2+x=0,解得x1=0,x2=﹣1,检验:当x=0时,x+1=0+1=1≠0,当x=﹣1时,x+1=1﹣1=0,所以,原方程的解是x=0.故答案为:x=0.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.把3.016保留两个有效数字为 3.0.【考点】近似数和有效数字.【分析】根据有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字解答即可.【解答】解:3.016保留两个有效数字为3.0,故答案为:3.0.【点评】本题考查学生对有效数字的运用.关键是有效数字的方法的掌握.15.分解因式:(a+2)(a﹣2)+3a=(a﹣1)(a+4).【考点】因式分解-十字相乘法等.【分析】首先利用平方差公式计算,进而利用因式分解法分解因式即可.【解答】解:(a+2)(a﹣2)+3a=a2+3a﹣4=(a﹣1)(a+4).故答案为:(a﹣1)(a+4).【点评】本题主要考查了整式的因式分解,在解题时要注意因式分解的方法和公式的应用是本题的关键.16.如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为144°.【考点】扇形统计图.【专题】计算题.【分析】先根据图求出九年级学生人数所占扇形统计图的百分比为40%,又知整个扇形统计图的圆心角为360度,再由360乘以40%即可得到答案.【解答】解:由图可知九年级学生人数所占扇形统计图的百分比为:1﹣35%﹣25%=40%,∴九年级学生人数所占扇形的圆心角的度数为360×40%=144°,故答案为144°.【点评】本题考查了扇形统计图的知识,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,读懂图是解题的关键.17.如图,等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则的值为2﹣.【考点】旋转的性质;等边三角形的性质;解直角三角形.【专题】压轴题.【分析】等边△ABC绕点B逆时针旋转30°时,则△BCD是直角三角形,根据三角函数即可求解.【解答】解:设等边△ABC的边长是a,图形旋转30°,则△BCD是直角三角形.BD=BCcos30°=a,则C′D=a﹣a=a,CD= a∴==2﹣故答案是:2﹣.【点评】本题主要考查了图形旋转的性质,以及直角三角形的性质,正确确定△BCD是直角三角形是解题的关键.18.如图,AB是半圆O的直径,以0A为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E.则下列四个结论:①点D为AC的中点;②S△O′OE=S△AOC;③;④四边形O′DEO是菱形.其中正确的结论是①③④.(把所有正确的结论的序号都填上)【考点】圆周角定理;平行线的性质;菱形的判定;圆心角、弧、弦的关系.【专题】压轴题.【分析】①连接DO,利用园中角定理以及垂径定理求出即可;②利用相似三角形的性质,面积比等于相似比的平方求出即可;③利用弧长计算公式求出即可;④根据菱形的判定得出即可.【解答】解:①连接DO,∵AO是半圆直径,∴∠ADO=90°,∵OD⊥AC,∴AD=DC,∴①正确.②∵O′E∥AC,∴△EO′O∽△AOC,∴=,∴S△O′OE=S△AOC,∴②错误.③∵OD⊥AC,AD=DC,∴∠AOD=∠DOC,∴∠AO′D=∠AOC,AO=2AO′,∴;∴③正确;④∵D为AC中点,O′为AO中点,∴DO′是△AOC中位线,∴DO′∥CO,∵O′E∥AC,∴O′为AO中点,∵D为AC中点,∴DE∥AO,∴四边形DO′OE是平行四边形,∵DO′=O′O,∴四边形O′DEO是菱形.∴④正确.综上所述,只有①③④正确.故答案为:①③④.【点评】此题主要考查相似三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理,等腰三角形的性质,三角形内角和定理等知识点的灵活运用,此题步骤繁琐,但相对而言,难易程度适中,很适合学生的训练是一道典型的题目.三、解答题(本大题共6小题,满分共60分)19.已知:x1、x2是一元二次方程x2﹣4x+1=0的两个实数根,求:(x12+x22)÷(+)的值.【考点】根与系数的关系.【专题】计算题.【分析】根据根与系数的关系得到x1+x2=4,x1x2=1,再利用完全平方公式和通过把原式变形得到[(x1+x2)2﹣2x1x2]÷,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=4,x1x2=1,所以原式=[(x1+x2)2﹣2x1x2]÷=(42﹣2×1)÷=14÷4=.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.也考查了代数式的变形能力.20.数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m,经测量,得到其它数据如图所示.其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算GH的长.(≈1.73,要求结果精确到0.1m)【考点】解直角三角形的应用.【专题】几何综合题.【分析】首先构造直角三角形,得出AE=(x+2),BE=x,进而求出x的长,进而得出GH的长.【解答】解:根据已知画图,过点D作DE⊥AH于点E,设DE=x,则CE=x+2,在Rt△AEC和Rt△BED中,有tan30°=,tan60°=,∴AE=(x+2),BE=x,∴(x+2)﹣x=10,∴x=5﹣3,∴GH=CD+DE=2+5﹣3=5﹣1≈7.7(m)答:GH的长为7.7m.【点评】此题主要考查了解直角三角形的应用,根据已知构造直角三角形得出DE 的长是解题关键.21.如图,△OAB 的底边经过⊙O 上的点C ,且OA=OB ,CA=CB ,⊙O 与OA 、OB 分别交于D 、E 两点.(1)求证:AB 是⊙O 的切线;(2)若D 为OA 的中点,阴影部分的面积为﹣,求⊙O 的半径r .【考点】切线的判定与性质;勾股定理;扇形面积的计算.【专题】计算题.【分析】(1)连OC ,由OA=OB ,CA=CB ,根据等腰三角形的性质得到OC ⊥AB ,再根据切线的判定定理得到结论;(2)由D 为OA 的中点,OD=OC=r ,根据含30度的直角三角形三边的关系得到∠A=30°,∠AOC=60°,AC=r ,则∠AOB=120°,AB=2r ,利用S 阴影部分=S △OAB ﹣S 扇形ODE ,根据三角形的面积公式和扇形的面积公式得到关于r 的方程,解方程即可.【解答】(1)证明:连OC ,如图,∵OA=OB ,CA=CB , ∴OC ⊥AB ,∴AB 是⊙O 的切线;(2)解:∵D 为OA 的中点,OD=OC=r , ∴OA=2OC=2r ,∴∠A=30°,∠AOC=60°,AC=r ,∴∠AOB=120°,AB=2r ,∴S 阴影部分=S △OAB ﹣S 扇形ODE =OCAB ﹣=﹣,∴r2r ﹣r 2=﹣,∴r=1,即⊙O的半径r为1.【点评】本题考查了切线的判定定理:过半径的外端点与半径垂直的直线为圆的切线.也考查了含30度的直角三角形三边的关系以及扇形的面积公式.22.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.【解答】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得x(25﹣2x+1)=80,化简,得x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,答:所围矩形猪舍的长为10m、宽为8m.【点评】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.23.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=,求EB的长.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【专题】几何综合题;压轴题.【分析】(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,得到∠GAD=∠EAB从而△GAD≌△EAB,即EB=GD;(2)EB⊥GD,由(1)得∠ADG=∠ABE则在△BDH中,∠DHB=90°所以EB⊥GD;(3)设BD与AC交于点O,由AB=AD=2在Rt△ABD中求得DB,所以得到结果.【解答】(1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD∴∠GAD=∠EAB,∵四边形EFGA和四边形ABCD是正方形,∴AG=AE,AB=AD,在△GAD和△EAB中,∴△GAD≌△EAB(SAS),∴EB=GD;(2)解:EB⊥GD.理由如下:∵四边形ABCD是正方形,∴∠DAB=90°,∴∠AMB+∠ABM=90°,又∵△AEB≌△AGD,∴∠GDA=∠EBA,∵∠HMD=∠AMB(对顶角相等),∴∠HDM+∠DMH=∠AMB+∠ABM=90°,∴∠DHM=180°﹣(∠HDM+∠DMH)=180°﹣90°=90°,∴EB⊥GD.(3)解:连接AC、BD,BD与AC交于点O,∵AB=AD=2,在Rt△ABD中,DB=,在Rt△AOB中,OA=OB,AB=2,由勾股定理得:2AO2=22,OA=,即OG=OA+AG=+=2,∴EB=GD=.【点评】本题考查了正方形的性质,考查了利用其性质证得三角形全等,并利用证得的条件求得边长.24.已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标.【考点】抛物线与x轴的交点.【分析】(1)利用对称轴公式求得b的值,即得到抛物线l1的解析式,然后根据解析式求得点A的坐标,所以利用点A、点E、点D的坐标来求抛物线l2的函数表达式;(2)设P(1,y),由(1)可得C(0,3).利用两点间的距离公式进行解答即可.【解答】解:(1)∵抛物线l1:y=﹣x2+bx+3的对称轴为x=1,∴﹣=﹣1,解得b=2,∴抛物线l1的解析式为:y=﹣x2+2x+3,或者y=﹣(x﹣1)(x+3),∴点A的坐标是(﹣1,0).又∵抛物线l2经过点A,与x轴的另一个交点为E(5,0),∴可设抛物线l2的解析式为:y=a(x+1)(x﹣5),又∵抛物线l2经过点D(0,﹣),∴﹣5a=﹣,解得a=.则抛物线l2的函数表达式为:y=(x+1)(x﹣5)或y=x2﹣2x﹣;(2)设P(1,y),由(1)可得C(0,3).∴PC2=12+(y﹣3)2=y2﹣6y+10,PA2=[1﹣(﹣1)]2+y2=4+y2.∵PA=PC,∴y2﹣6y+10=4+y2,解得y=1.∴点P的坐标是P(1,1).【点评】本题考查了抛物线与x轴的交点坐标.二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).。
2015-2016学年山东省潍坊市诸城市树一中学八年级(下)第一次学情检测物理试卷一、选择题(每小题只有一个选项正确.每小题3分,共39分)1.一个重50N的木箱放在水平桌面上,在10N的水平推力作用下静止不动,此时木箱受到的摩擦力为f1;当推力为22N时,木箱做匀速直线运动,此时木箱受到的摩擦力为f2,则()A.f1=0N f2=22N B.f1=0N f2=50NC.f1=50N f2=22N D.f1=10N f2=22N2.如图所示,当你手握饮料罐时,手和罐都在空中静止,且罐底所在平面是水平的.各对力属于平衡力的是()A.手对罐的压力与罐对手的压力B.罐受到的重力与手对罐的压力C.罐受到的重力与手对罐的摩擦力D.罐对手的摩擦力与手对罐的摩擦力3.小明同学在学习了运动和力的知识后有了以下的认识,其中正确的是()A.如果两个力的大小相等、方向相同,则这两个力的作用效果一定相同B.推出去的铅球能继续在空中飞行,是由于铅球受到惯性的作用C.静止在水平课桌上的饮料瓶一定受到平衡力的作用D.如果运动的物体不受外力作用,它将慢慢停下来4.如图所示,甲、乙两物体在A、B两水平桌面上做匀速直线运动,可以确定()A.甲的速度一定小于乙的速度B.甲、乙两物体受力不平衡C.甲、乙的运动状态发生改变D.甲受到的摩擦力一定小于乙受到的摩擦力5.如图是投掷实心球的场景.下列情况中实心球受到平衡力作用的是()A.实心球在空中上升 B.实心球从空中下落C.实心球在地上越滚越慢 D.实心球停在地面上6.如图,木块竖立在小车上,随小车一起以相同的速度向右作匀速直线运动.下列分析正确的是()A.木块没有受到小车的摩擦力B.木块运动速度越大,惯性也越大C.木块对小车的压力与小车对木块的支持力是一对平衡力D.当小车受到阻力突然停止运动时,如果木块与小车接触面光滑,木块将向右倾倒7.在一艘做匀速直线运动的游轮上,某同学朝各个方向用相同的力进行立定跳远,则下列说法中正确的是()A.朝与游轮运动方向一致跳的最远B.朝与游轮运动方向相反跳的最远C.朝与游轮运动方向一致跳的最近D.朝各个方向跳的都一样远8.如图所示的四幅图中,有利于增大压强的是()A.啄木鸟有长长的尖嘴B.滑雪C.火车探测器有宽大的轮子D.拖拉机9.做匀速圆周运动的物体()A.一定受平衡力的作用B.它受到的力可能平衡,也可能不平衡C.它受到的力一定不平衡D.它可能不受力的作用10.两个完全相同的容器中分别盛有质量相等的水和酒精,如图所示,下列说法正确的是()A.两容器底受到压力相等B.液面下相同深度a、b两点液体压强相等C.盛水容器底部受到压强较大D.盛水容器底部受到压强较小11.如图所示三个容器,底面积相等,若都装入相同质量的酒精,则酒精对容器底部的压强()A.一样大B.A最大C.B最大D.C最大12.如图所示的“帕斯卡裂桶实验”,木桶内装满水,桶的顶部竖立着一根细管,一人在三楼的阳台上向细管内只倒入了几杯水,木桶就被水压破了,这一实验表明,影响液体内部压强的因素是液体的()A.质量 B.深度 C.密度 D.体积13.茶壶盖上开一个孔作用是()A.好系绳子,防止打碎B.让外面空气流进,不至于壶内空气压强减少使水流不出C.让热所冒出,便于热茶冷却D.让外面的空气流进,可保证茶水的新鲜二.作图(每图4分,共8分)14.如图,一辆重为20N的模型小车,在15N的牵引力作用下在水平面上做匀速直线运动,请作出小车的受力示意图.15.如图所示,小球静止,作出小球受力的示意图.三.探究题(每空2分,共22分)16.如图所示,用嘴巴对着两张竖直放置的纸吹气,两张纸会,原因是.17.我们感觉坐在沙发上要比坐硬板凳舒服,这主要是因为沙发较易发生形变,增大了人与沙发间的,在不变的情况下,(增大/减小)了压强.18.小宇同学利用A、B两物体、砝码、泡沫等器材探究“压力的作用效果与什么因素有关”的实验.如图所示.(1)实验中小宇是通过观察来比较压力作用效果的.(2)比较甲、乙两图所示实验,能够得到的结论是.(3)若要探究“压力的作用效果与受力面积大小的关系”,应通过比较图所示实验.此时,实验中要控制不变;(4)小宇同学实验时将物体B沿竖直方向切成大小不同的两块,如图丁所示.他发现它们对泡沫的压力作用效果相同.由此他得出的结论是:压力作用效果与受力面积无关.你认为他的结论(选填“正确”、“错误”),理由是:.四.计算题(写出必要的文字说明和计算过程.19题6分+6分;20题8分;21题5分+6分;共31分)19.在水平桌面上放置一空玻璃杯,它的底面积为0.01m2,它对桌面的压强为200Pa.(1)求玻璃杯的质量.(2)在玻璃杯中装入1kg水后,水对杯底的压强为900Pa,求水的深度是多少.20.轮船舱底在水面下3m,舱底穿了一个面积为0.02m2的洞,若要堵住这个洞,需要对挡板施加 N的力.21.履带式拖拉机的质量是6000kg,每条履带与地的接触面的长为2.5m,宽40cm.如果河面冰层能承受的最大压强为1.0×105Pa,这台拖拉机能否通过冰面?若能通过,最多能载多少kg货物?2015-2016学年山东省潍坊市诸城市树一中学八年级(下)第一次学情检测物理试卷参考答案与试题解析一、选择题(每小题只有一个选项正确.每小题3分,共39分)1.一个重50N的木箱放在水平桌面上,在10N的水平推力作用下静止不动,此时木箱受到的摩擦力为f1;当推力为22N时,木箱做匀速直线运动,此时木箱受到的摩擦力为f2,则()A.f1=0N f2=22N B.f1=0N f2=50NC.f1=50N f2=22N D.f1=10N f2=22N【分析】(1)木箱静止在水平桌面上,受到平衡力的作用,竖直方向上受到的重力和支持力是平衡力,水平方向的推力和摩擦力是平衡力.(2)木箱在水平桌面上匀速直线运动,受到平衡力的作用,竖直方向上受到的重力和支持力是平衡力,水平方向的推力和摩擦力是平衡力.(3)二力平衡的条件:等大、反向、同直线、同物体.【解答】解:(1)一个重50N的木箱放在水平桌面上,在10N的水平推力作用下静止不动,此时木箱受到重力和支持力是平衡力,水平方向的推力和摩擦力是平衡力.根据二力平衡条件得,G=F支=50N,f1=F推=10N.(2)重50N的木箱,在22N的水平推力作用下做匀速直线运动,此时木箱受到重力和支持力是平衡力,水平方向的推力和摩擦力是平衡力.根据二力平衡条件得,G=F支=50N,f2=F推=22N.故选D.2.如图所示,当你手握饮料罐时,手和罐都在空中静止,且罐底所在平面是水平的.各对力属于平衡力的是()A.手对罐的压力与罐对手的压力B.罐受到的重力与手对罐的压力C.罐受到的重力与手对罐的摩擦力D.罐对手的摩擦力与手对罐的摩擦力【分析】要解决此题,需要掌握二力平衡的条件:作用在同一个物体上的两个力,如果大小相等、方向相反、作用在同一直线上,这两个力互相平衡.同时要掌握作用力和反作用力的关系.一个物体受到力,同时会给另一个物体一个反作用力.要掌握作用力和反作用力的区别:平衡力作用在同一个物体上的力,相互作用力是作用在相互作用的两个物体上的力.【解答】解:A、手压罐的同时,罐也给手一个压力,这两个力是一对相互作用力,是作用力与反作用力的关系.所以A不符合题意.B、罐受到的重力是竖直向下的,而手对罐的压力在水平方向垂直于罐,不符合平衡力的要求,所以B不符合题意.C、在竖直方向上,罐受到竖直向下的重力作用,同时手对罐有竖直向上的摩擦力,这两个力相互平衡,所以罐会保持静止.所以C符合题意.D、罐要向下滑动,给手一个摩擦力,同时手会给罐一个摩擦力,这两个力分别作用在手和罐上,是一对相互作用力的关系.所以D不符合题意.故选C.3.小明同学在学习了运动和力的知识后有了以下的认识,其中正确的是()A.如果两个力的大小相等、方向相同,则这两个力的作用效果一定相同B.推出去的铅球能继续在空中飞行,是由于铅球受到惯性的作用C.静止在水平课桌上的饮料瓶一定受到平衡力的作用D.如果运动的物体不受外力作用,它将慢慢停下来【分析】根据题目中各选择项中提到的物理情景,结合对应的物理知识即可确定答案.【解答】解:A、影响力的作用作用效果的因素有三个:力的大小、方向、作用点.在此题中,只告诉了其中力的大小、方向两个因素.所以其作用效果不确定,故A错误.B、惯性是物体具有的一种性质,不是受到的一种力的作用.故B错误.C、静止状态是一种平衡状态,处于平衡状态的物体一定受到平衡力的作用.故C正确.D、根据牛顿第一定律可知,当物体不受外力时,运动的物体将永远处于匀速直线运动状态.故D 错误.故选C.4.如图所示,甲、乙两物体在A、B两水平桌面上做匀速直线运动,可以确定()A.甲的速度一定小于乙的速度B.甲、乙两物体受力不平衡C.甲、乙的运动状态发生改变D.甲受到的摩擦力一定小于乙受到的摩擦力【分析】甲、乙两物体做匀速直线运动,运动状态不变,物体受到的拉力和摩擦力为平衡力(两个力等大、反向、同直线、同物体),知道拉力大小,可求求摩擦力的大小.【解答】解:A、由题知,无法知道甲乙物体的速度大小关系,故A错;BC、由题知,甲、乙两物体做匀速直线运动,运动状态不变,所以受到的是平衡力.故B、C错;D、因为甲、乙两物体做匀速直线运动,处于平衡状态,所以它们受到的拉力等于摩擦力,即:f甲=F甲=4N,f乙=F乙=6N,所以f甲<f乙,故D正确.故选D.5.如图是投掷实心球的场景.下列情况中实心球受到平衡力作用的是()A.实心球在空中上升 B.实心球从空中下落C.实心球在地上越滚越慢 D.实心球停在地面上【分析】要解决此题,需要掌握平衡力的概念.知道处于平衡状态的物体受平衡力的作用.平衡状态是指匀速直线运动状态和静止状态.并且要分析球在空中与在地面滚动及静止时的受力情况.【解答】解:球在空中时,由于惯性继续运动,此时球只受重力和空气阻力的作用.运动状态不断变化,受力不平衡.当球落到地面上时,由于惯性继续滚动,但由于受到地面的摩擦力,所以越滚越慢.运动状态发生变化,受力不平衡.当在地面上静止时,受竖直向下重力和地面对它向上的支持力,在这两个力的作用下保持平衡,所以此时受平衡力.故选D.6.如图,木块竖立在小车上,随小车一起以相同的速度向右作匀速直线运动.下列分析正确的是()A.木块没有受到小车的摩擦力B.木块运动速度越大,惯性也越大C.木块对小车的压力与小车对木块的支持力是一对平衡力D.当小车受到阻力突然停止运动时,如果木块与小车接触面光滑,木块将向右倾倒【分析】摩擦力的产生条件,是物体之间要发生或已经发生相对运动.影响惯性大小的因素只有质量,至于速度大小、受力大小,都不影响惯性.平衡力的判断,两个力必须同时满足四个条件:大小相等、方向相反、作用在同一直线上、作用在同一物体上.缺一不可.【解答】解:A、由于木块静止在小车上,不具备摩擦力产生的条件,所以它没有受到摩擦力的作用.故A符合题意.B、物体的运动速度不影响惯性,惯性是物体保持原来运动状态不变的性质.故B不符合题意.C、一对平衡力必须是大小相等、方向相反,在同一条直线上,作用在同一物体上的.而木块对小车的压力与小车对木块的支持力不是作用在同一物体上的力.故C不符合题意.D、小车突然停止运动,而木块由于惯性仍然保持原来的运动状态.如果木块与小车接触面光滑,木块不会倾倒,由于木块具有惯性,会向前运动.故不符合题意.故选A.7.在一艘做匀速直线运动的游轮上,某同学朝各个方向用相同的力进行立定跳远,则下列说法中正确的是()A.朝与游轮运动方向一致跳的最远B.朝与游轮运动方向相反跳的最远C.朝与游轮运动方向一致跳的最近D.朝各个方向跳的都一样远【分析】船和人一起做匀速直线运动,人竖直跳起时由于惯性人在空中还要在水平方向上和船以同样的速度匀速运动,所以人会落回原来的位置,这和人站在静止的船上是一样的,所以我们可以把这个题当成站在静止的船上跳,所以朝各个方向跳都一样远.【解答】解:由于船做匀速运动和人的惯性原因,人朝各个方向跳都一样远,只有D选项符合题意;故选D.8.如图所示的四幅图中,有利于增大压强的是()A.啄木鸟有长长的尖嘴B.滑雪C.火车探测器有宽大的轮子D.拖拉机【分析】(1)压强大小的影响因素:压力大小和受力面积的大小.(2)增大压强的方法:在压力一定时,减小受力面积来增大压强;在受力面积一定时,增大压力来增大压强.【解答】解:A、啄木鸟有长长的尖嘴,即在压力一定时,减小受力面积来增大对树皮的压强,符合题意;B、滑雪时踩在滑雪板上,即在压力一定时,增大受力面积来减小对雪面的压强,不符合题意;C、火星探测器有宽大的轮子,即在压力一定时,增大受力面积来减小对星球面的压强,不符合题意;D、拖拉机有宽大的履带,即在压力一定时,增大受力面积来减小对地面的压强,不符合题意;故选A.9.做匀速圆周运动的物体()A.一定受平衡力的作用B.它受到的力可能平衡,也可能不平衡C.它受到的力一定不平衡D.它可能不受力的作用【分析】物体在平衡力的作用下,保持静止状态或匀速直线运动状态,匀速圆周运动物体运动方向时刻在变化.【解答】解:物体在做匀速直线运动的过程中,虽然运动的速度在大小上是没有发生改变,但是运动的方向却发生了改变,所以运动状态发生了改变,故D不正确;既然物体的运动状态发生了改变说明受到的力不是平衡力,故A、B是错误的.匀速圆周运动物体运动方向时刻在变化,不是平衡状态,不是平衡力作用的结果,所以这个两力一定不是平衡力,故C正确.故选C.10.两个完全相同的容器中分别盛有质量相等的水和酒精,如图所示,下列说法正确的是()A.两容器底受到压力相等B.液面下相同深度a、b两点液体压强相等C.盛水容器底部受到压强较大D.盛水容器底部受到压强较小【分析】水和酒精的重力完全压在了容器的底面上,所以水和酒精对容器底的压力等于本身的重力,两个容器的底面积相同,根据公式P=可知两个容器底部所受压强的大小.已知水的密度大于酒精的密度,跟液面底部深度相同的两处a、b所受液体的压强根据公式p=ρgh可求大小,再根据对底面的压强,减小下半部分的压强,可比较两点的实际压强.【解答】解:A、水和酒精对容器底的压力等于本身的重力,因为水和酒精质量相同,根据公式G=mg 可知重力也相同,所以两容器底受到的压力相等,故A正确.B、读图可知,a、b两点距容器底面的距离相同,由公式p=ρgh可知,两点以下部分,液体产生的压强大小关系为p a下>p b下,由A选项的解答可知,两容器中液体对底面的压力相同,底面积相同,故压强也相同,则a、b两点的实际压强:p水﹣p a下<p酒精﹣p b下,故B错误.C、D、两容器底面积相同,压力相同,根据公式P=可知两个容器底部所受压强相等,故CD错误.故选A.11.如图所示三个容器,底面积相等,若都装入相同质量的酒精,则酒精对容器底部的压强()A.一样大B.A最大C.B最大D.C最大【分析】根据液体压强公式,三个容器,底面积相等,若都装入相同质量的酒精,只考虑h就可以了.【解答】解:由P=ρgh可知,此题中ρ相同,C容器中h最大,所以则酒精对容器底部的压强C最大.故选D.12.如图所示的“帕斯卡裂桶实验”,木桶内装满水,桶的顶部竖立着一根细管,一人在三楼的阳台上向细管内只倒入了几杯水,木桶就被水压破了,这一实验表明,影响液体内部压强的因素是液体的()A.质量 B.深度 C.密度 D.体积【分析】从桶裂这个现象可以看出倒入的几杯水使水桶受到的压强产生了很大的变化,然后再将倒入这几杯水造成的变化与液体压强的特点联系起来进行分析.即可得到答案.【解答】解:倒入几杯水后,水的质量虽然变化,但变化的幅度都很小,不会造成液体对水桶的压强产生这么大的变化.由于是一根细管,所以倒入几杯水后,细管中水的深度增加的很多,根据液体压强的特点可知:液体压强随着深度的增加而增大,所以这一实验表明的是影响液体内部压强大小的因素是液体的深度.综上分析,故选B.13.茶壶盖上开一个孔作用是()A.好系绳子,防止打碎B.让外面空气流进,不至于壶内空气压强减少使水流不出C.让热所冒出,便于热茶冷却D.让外面的空气流进,可保证茶水的新鲜【分析】由于存在大气压,茶壶盖上的小孔能保证与大气相通,壶身和壶嘴构成连通器,水容易倒出来.【解答】解:茶壶盖上如果没有孔,随着茶水的外流,茶壶内部气体压强减小,很难将水倒出,所以壶盖上有孔,使得壶内液面上的气压始终与外界大气压相等,茶水在重力作用下能方便倒出.故选B.二.作图(每图4分,共8分)14.如图,一辆重为20N的模型小车,在15N的牵引力作用下在水平面上做匀速直线运动,请作出小车的受力示意图.【分析】画力的示意图,首先要对物体进行受力分析,看物体受几个力,要先分析力的大小、方向和作用点,再按照画图的要求画出各个力.画力的示意图的一般步骤为:一画简图二定点,三画线,四画尖,五把力的符号标尖边.按照这个作图步骤,很容易能够画出指定力的示意图.【解答】解:在水平地面上做匀速直线运动的小车,处于平衡状态,受平衡力作用;在水平方向上受:牵引力F和阻力作用,它们是一对平衡力F=f=15N;在竖直方向上受:向下的重力G和向上的支持力N,它们是一对平衡力,N=G=20N;从小车的重心沿力的作用线作出各力的示意图,是平衡力的线段长度要相等.如图所示.15.如图所示,小球静止,作出小球受力的示意图.【分析】小球共受三个力:绳的拉力、重力、墙的支持力;三个力的作用点集中在球的重心,然后根据各力的方向标出这三个力的示意图.【解答】解:①小球受到的重力,作用点在重心,方向竖直向下,符号为G;②绳对小球的拉力作用点在重心,方向沿绳斜向上,符号为F拉;③墙对小球的支持力,作用点可画在重心,方向垂直墙面向外,符号为F支,如图:三.探究题(每空2分,共22分)16.如图所示,用嘴巴对着两张竖直放置的纸吹气,两张纸会向中间靠拢,原因是中间空气流速大压强小.【分析】流动的气体和液体都称为流体,流体流速大压强小.【解答】解:没有吹气时,纸的内外受到相同的大气压的作用,纸是自由下垂的,两张纸是平行的.用嘴巴对着两张竖直放置的纸吹气,中间的空气流速增大,压强减小,外侧的大气压不变,所以两张纸会向中间靠拢.故答案为:向中间靠拢;中间空气流速大压强小.17.我们感觉坐在沙发上要比坐硬板凳舒服,这主要是因为沙发较易发生形变,增大了人与沙发间的受力面积,在压力不变的情况下,减小(增大/减小)了压强.【分析】压强的大小与压力和受力面积大小有关,减小压强的方法:在受力面积一定时,减小压力;在压力一定时,增大受力面积.【解答】解:因为坐在沙发上,沙发发生形变,从而增大了人与沙发间的受力面积,在压力不变的情况下,减小了压强,所以感觉坐在沙发上要比坐硬板凳舒服.故答案为:受力面积;压力;减小.18.小宇同学利用A、B两物体、砝码、泡沫等器材探究“压力的作用效果与什么因素有关”的实验.如图所示.(1)实验中小宇是通过观察泡沫的形变程度来比较压力作用效果的.(2)比较甲、乙两图所示实验,能够得到的结论是受力面积一定时,压力越大,压力的作用效果越明显.(3)若要探究“压力的作用效果与受力面积大小的关系”,应通过比较图甲、丙所示实验.此时,实验中要控制压力大小不变;(4)小宇同学实验时将物体B沿竖直方向切成大小不同的两块,如图丁所示.他发现它们对泡沫的压力作用效果相同.由此他得出的结论是:压力作用效果与受力面积无关.你认为他的结论错误(选填“正确”、“错误”),理由是:没有控制压力不变.【分析】(1)压力的作用效果是采用转换法,通过泡沫的形变来体现的.(2)比较甲、乙两图所示实验可知,受力面积的大小是相同的,压力不同,泡沫的凹陷程度不同,由此得出压力作用效果和压力的关系.(3)要得出“压力的作用效果与受力面积大小的关系”,就要控制压力不变,而受力面积不同.(4)在整个探究过程中,要符合控制变量法的要求,据此分析.【解答】解:(1)实验中,泡沫的凹陷程度越大,压力作用效果越明显,用泡沫的形变程度来反映压力作用效果.(2)比较甲、乙两图所示实验可知,受力面积相同,压力越大,泡沫凹陷程度越大,故可得结论:受力面积一定时,压力越大,压力的作用效果越明显.(3)研究压力作用效果和受力面积的关系时,应该保持压力不变.小朋实验时没有保持压力不变,实验过程中压力和受力面积同时变化,无法研究压力作用效果和受力面积的关系.(4)将物体B沿竖直方向切成大小不同的两块,没有控制物体间压力相同,所得结论:压力作用效果与受力面积无关是错误的故答案为:(1)泡沫的形变程度;(2)受力面积一定时,压力越大,压力的作用效果越明显;(3)甲、丙;压力大小;(4)错误;没有控制压力不变.四.计算题(写出必要的文字说明和计算过程.19题6分+6分;20题8分;21题5分+6分;共31分)19.在水平桌面上放置一空玻璃杯,它的底面积为0.01m2,它对桌面的压强为200Pa.(1)求玻璃杯的质量.(2)在玻璃杯中装入1kg水后,水对杯底的压强为900Pa,求水的深度是多少.【分析】(1)根据题中杯对桌面的压强和杯的底面积,利用公式F=pS可以求出杯对桌面的压力,而杯的重力等于杯对桌面的压力;(2)根据液体压强计算公式p=ρgh可以计算出水的深度;【解答】解:(1)由p=得,空玻璃杯对桌面的压力:F=pS=200Pa×0.01m2=2N,∵在水平桌面上,∴F=G,∴玻璃杯的重力G=2N:则玻璃杯的质量:m===0.2kg;(2)由p=ρgh得,水的深度:h===0.09m.答:(1)求玻璃杯的质量是0.2kg;(2)在玻璃杯中装入1kg水后,水对杯底的压强为900Pa,水的深度是0.09m.20.轮船舱底在水面下3m,舱底穿了一个面积为0.02m2的洞,若要堵住这个洞,需要对挡板施加 600N的力.【分析】知道水深和水的密度,利用液体压强公式求水对挡板的压强,又知道受力面积,再利用压强定义式求水对挡板的压力,最后根据二力平衡的知识求对挡板施加的力.【解答】解:水对挡板的压强:P=ρgh=1.0×103kg/m3×10N/kg×3m=3×104Pa;水对挡板的压力:F=ps=3×104Pa×0.02m2=600N.若要堵住这个洞,需要对挡板施加的力:F′=F=600N.故答案为:600.21.履带式拖拉机的质量是6000kg,每条履带与地的接触面的长为2.5m,宽40cm.如果河面冰层能承受的最大压强为1.0×105Pa,这台拖拉机能否通过冰面?若能通过,最多能载多少kg货物?【分析】(1)拖拉机对地面的压力等于拖拉机车的重力,则由压强公式可求得拖拉机对冰面的压强,然后与冰面能承受的最大压强相比较即可判断拖拉机能否安全通过冰面;(2)根据压强公式求出拖拉机最多能装货物时的压力即为两者的总重力,根据G=mg求出对应的质量,然后减掉拖拉机的自重即可求出货物的质量.【解答】解:拖拉机对冰面的压力F=G=mg=6000kg×10N/kg=6×104N,拖拉机与冰面的接触面积S=2ab=2×2.5m×0.4m=2m2.。
八年级下学期第一次质量检测数学试卷含答案一、选择题1.下列计算正确的是( ) A .42=±B .()233-=- C .()255-= D .()233-=-2.若实数m 、n 满足等式402n m -+=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( ) A .12B .10C .8D .63.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣14.下列运算正确的是 ( )A .3223÷=B .235+=C .233363⨯=D .18126-=5.下列式子一定是二次根式的是 ( ) A .2aB .-aC .3aD .a6.下列说法错误的个数是( ) ①所有无限小数都是无理数;②()23-的平方根是3±;③2a a =;④数轴上的点都表示有理数 A .1个B .2个C .3个D .4个7.下列计算正确的是( ) A .531883+= B .()322326a ba b -=-C .222()a b a b -=- D .2422a ab a a b a -+⋅=-++8.已知,那么满足上述条件的整数的个数是( ).A .4B .5C .6D .79.已知实数x ,y 满足(x -22008x -)(y -2-2008y )=2008,则3x 2-2y 2+3x -3y -2007的值为( ) A .-2008B .2008C .-1D .1 10.若实数a ,b 满足+=3,﹣=3k ,则k 的取值范围是( )A .﹣3≤k ≤2B .﹣3≤k ≤3C .﹣1≤k ≤1D .k ≥﹣1 11.1x -x 的取值范围是( ) A .x ≥1B .x >1C .x ≤1D .x <112.下列各式计算正确的是( ) A .()233= B .()255-=± C .523-= D .3223-=二、填空题13.设42-的整数部分为 a,小数部分为 b.则1a b- = __________________________. 14.使函数21122y x x x=-++有意义的自变量x 的取值范围为_____________15.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.16.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.17.已知函数1x f xx,那么21f _____.18.已知整数x ,y 满足20172019y x x =+--,则y =__________.19.11122323-=11113-23438⎛⎫= ⎪⎝⎭11114-345415⎛⎫=⎪⎝⎭据上述各等式反映的规律,请写出第5个等式:___________________________. 20.观察分析下列数据:0,36,-3,231532的规律得到第10个数据应是__________.三、解答题21.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.22.已知x=2,求代数式(7+x2+(2)x【答案】2【解析】试题分析:先求出x2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x2=(2)2=7﹣则原式=(7﹣+(2=49﹣23.小明在解决问题:已知2a2﹣8a+1的值,他是这样分析与解的:∵=2∴a﹣2=∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a ===,解法一:∵22(1)11)2a -=-= , ∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+=解法二∴ 原式=24(211)1a a -+-+24(1)3a =--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.24.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.25.计算:(1)++-(2(33【答案】(1)2) -10【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可.【详解】+解:(1)===+-(2(33=5+9-24=14-24=-10.【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.26.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.27.计算:(1)012⎛⎫ ⎪⎝⎭(2)(4 【答案】(1)-5;(2)9 【分析】(1)第一项利用算术平方根的定义计算,后一项利用零指数幂法则计算,即可得到结果; (2)利用平方差公式计算即可. 【详解】(1)012⎛⎫ ⎪⎝⎭41=--, 5=-;(2)(4167=-9=.【点睛】本题考查了二次根式的混合运算以及零指数幂,熟练掌握平方差公式是解题的关键.28.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(22⨯,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.29.计算下列各式:(1;(2【答案】(12;(2)【分析】先根据二次根式的性质化简,再合并同类二次根式即可.【详解】(1)原式2=-2 =;(2)原式==.【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a aaa a≥⎧==⎨-<⎩,)0,0a b=≥≥=(a≥0,b>0).30.计算(1))(121123-⎛⨯--⎝⎭(2)已知:11,22x y==,求22x xy y++的值.【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y+和xy的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y ==,1122x y ∴+=+=,()11119112224xy =⨯=⨯-=,则()222x xy y x y xy ++=+-,22=-,192=-, 17=. 【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】直接利用二次根式的性质分别求解,即可得出答案. 【详解】解:A ,故A 选项错误;B ,故B 选项错误;C 选项:2=5,故C 选项正确;D 选项:2=3,故D 选项错误, 故选:C . 【点睛】此题主要考查了二次根式的性质,正确求解二次根式是解题的关键.2.B解析:B 【分析】先根据绝对值的非负性、二次根式的非负性求出m 、n 的值,再根据三角形的三边关系、等腰三角形的定义求出第三边长,然后根据三角形的周长公式即可得. 【详解】由题意得:20,40m n -=-=, 解得2,4m n ==,设等腰ABC 的第三边长为a ,,m n 恰好是等腰ABC 的两条边的边长, n m a n m ∴-<<+,即26a <<,又ABC 是等腰三角形, 4a n ∴==,则ABC 的周长为24410++=, 故选:B . 【点睛】本题考查了绝对值的非负性、二次根式的非负性、三角形的三边关系、等腰三角形的定义等知识点,根据三角形的三边关系和等腰三角形的定义求出第三边长是解题关键.3.A解析:A 【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可 【详解】由数轴可知0<a <1,所以,||1a a a =+-=1,选A . 【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a 的大小4.A解析:A 【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题. 【详解】A 、3=,故选项A 正确;B B 错误;C 、18=,故选项C 错误;D =D 错误; 故选:A .【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.5.A解析:A【分析】根据二次根式的定义,直接判断得结论.【详解】A A正确;a<B错误;B、0C是三次根式,故C错误;a<D错误;D、0故选:A.【点睛】a≥)是二次根式,注意二次根式的被开方数是非负数.6.C解析:C【分析】根据无理数定义判断①;根据平方根的算法判断②;利用二次根式的性质化简判断③;根据数轴的特点,判断④.【详解】无限不循环小数才是无理数,①错误;=,3的平方根是②正确;3a=,③错误;数轴上的点可以表示所有有理数和无理数,④错误故选:C.【点睛】本题考查无理数的定义、平方根的计算、二次根式的性质以及数轴表示数,紧抓相关定义是解题关键.7.D解析:D【分析】分别运用二次根式、整式的运算、分式的运算法则逐项排除即可.【详解】解:A. =A选项错误;B. ()()()33322363228a b a b a b -=-=-,故B 选项错误;C. 222()2a b a ab b -=-+,故C 选项错误;D. ()()2224222a a a ab a b a a b a a b a +--++⋅=⋅=-++++,故D 选项正确. 故答案为D .【点睛】本题考查了二次根式、整式的运算、分式的运算,掌握相关运算法则是解答本题的关键.8.C解析:C【解析】【分析】利用分母有理化进行计算即可.【详解】由原式得:所以,因为,,所以. 故选:C【点睛】此题考查解一元一次不等式的整数解,解题关键在于分母有理化. 9.D解析:D【解析】由(x -22008x -)(y -2-2008y )=2008,可知将方程中的x,y 对换位置,关系式不变,那么说明x=y 是方程的一个解由此可以解得x=y=2008,或者x=y=-2008,则3x 2-2y 2+3x -3y -2007=1,故选D. 10.C解析:C【解析】依据二次根式有意义的条件即可求得k 的范围.解:若实数a ,b 满足+=3,又有≥0,≥0, 故有0≤≤3 ①,0≤≤3,则 ﹣3≤-≤0 ②+②可得﹣3≤﹣≤3,又有﹣=3k ,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选C.点睛:本题主要考查了二次根式的意义和性质.解题的关键在于二次根式具有双非负性,即≥0(a≥0),利用其非负性即可得到0≤≤3,0≤≤3,并对0≤≤3变形得到﹣3≤-≤0,进而即可转化为关于k的不等式组,求出k的取值范围.11.A解析:A【分析】根据二次根式有意义的条件:被开方数x-1≥0,解不等式即可.【详解】解:根据题意,得x-1≥0,解得x≥1.故选A.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.12.A解析:A【分析】根据二次根式的性质和运算法则逐一计算可得.【详解】A、233=此选项计算正确,符合题意;B、()255-=此选项计算错误,不符合题意;C52-不是同类二次根式,不能合并,此选项计算错误,不符合题意;D、32222-=故选:A.【点睛】本题主要考查了利用二次根式的性质化简以及二次根式的加减运算,准确利用二次根式的性质计算是解题的关键.二、填空题13.【分析】根据实数的估算求出a,b,再代入即可求解.【详解】∵1<<2,∴-2<-<-1,∴2<<3∴整数部分a=2,小数部分为-2=2-,∴==故填:.【点睛】此题主要考查无理解析:12-【分析】根据实数的估算求出a,b ,再代入1a b -即可求解. 【详解】∵1<2,∴-2<<-1,∴2<43∴整数部分a=2,小数部分为4,∴1ab -=2222=-=12-故填:12-. 【点睛】此题主要考查无理数的估算,分母有理化等,解题的关键熟知实数的性质.14.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x 的取值范围为【点睛】解析:11,022x x -≤≤≠ 【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤ ①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 15.﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣b|+=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a .b 都是数轴上的实数,注意符号的变换. 16.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a>0+3.a=a+3.【点睛】本题考查阅读理解的能力,正确理解题意是关键.17.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.18.2018【解析】试题解析:,令,,显然,∴,∴,∵与奇偶数相同,∴,∴,∴.故答案为:2018.解析:2018【解析】 试题解析:y ===令a =b = 显然0a b >≥,∴224036a b -=,∴()()4036a b a b +-=,∵()a b +与()-a b 奇偶数相同,∴20182a b a b +=⎧⎨-=⎩, ∴10101008a b =⎧⎨=⎩, ∴2018y a b =+=.故答案为:2018.19.【解析】上述各式反映的规律是(n ⩾1的整数),得到第5个等式为: (n ⩾1的整数).故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数),得到第5==n ⩾1的整数).=n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.20.6【分析】通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为6.解析:6【分析】 通过观察可知,根号外的符号以及根号下的被开方数依次是:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,可以得到第13个的答案.【详解】 解:由题意知道:题目中的数据可以整理为:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,∴第13个答案为:131(1)3(131)6.故答案为6.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
人教版八年级第二学期 第一次 质量检测数学试卷含答案一、选择题1.下列计算正确的为( ). A5=- B=C.2+=+D2=2.下列运算正确的是( ) A2= B5=-C2=D 012=3.下列计算正确的是( )ABCD4.下列运算中,正确的是( ) A=B1=C=D=5.已知m、nm ,n )为( ) A .(2,5) B .(8,20)C .(2,5),(8,20)D .以上都不是6.当4x =-的值为( )A .1BC .2D .37.已知12x =⋅,n 是大于1的自然数,那么(n x 的值是( ).A .12007B .12007-C .()112007n- D .()112007n-- 8.下列计算正确的是()A=B=C6=-D1=9.的下列说法中错误的是() A 12的算术平方根 B .34<<C不能化简D 是无理数10.下列二次根式中,最简二次根式是( )A B C D11.已知实数x 、y 满足2y =,则yx 值是( )A .﹣2B .4C .﹣4D .无法确定12.下列计算正确的是( )A =B .2-=C .22= D 3=二、填空题13.使函数212y x x=+有意义的自变量x 的取值范围为_____________14.已知112a b +=,求535a ab b a ab b++=-+_____. 15.能力拓展:1A =2A =;3:A =;4A =________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A()3-16.已知实数m 、n 、p 满足等式,则p =__________.17.,3,,,则第100个数是_______.18_____.19.若a 、b 都是有理数,且2222480a ab b a -+++=.20. (a ≥0)的结果是_________.三、解答题21.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可. 【详解】解:(1 该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.22.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.23.先观察下列等式,再回答问题:=1+1=2;12=2 12;=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.【答案】(1=144+=144;(2=211n n n n++=,证明见解析. 【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,=414+=414;(2=n 211n n n++=”,再利用222112n n n n++=+()()开方即可证出结论成立.【详解】(1=1+1=2=212+=212;=313+=313;里面的数字分别为1、2、3,= 144+= 144.(2=1+1=2,=212+=212=313+=313=414+=414= 211n n n n++=.证明:等式左边==n 211n n n++==右边.=n 211n n n++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律“2212n n ++=()n 211n n n++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.24.阅读下列材料,然后解答下列问题: 在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简: (一)553533333⨯==⨯; (二)2231)=3131(31)(31)-=-++-(; (三) 22231(3)1(31)(31)=3131313131--+-===-++++.以上这种化简的方法叫分母有理化. (1)请用不同的方法化简25+3: ①参照(二)式化简25+3=__________. ②参照(三)式化简5+3=_____________ (2)化简:++++315+37+599+97+.【答案】见解析. 【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果; (2)原式各项分母有理化,计算即可. 【详解】 解:(1)①;②; (2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.25.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:22242332313231131-=-=-+=)).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若222a b m n +=+),则有222(2)+22a b m n mn =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若233a b m n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ; (2)填空:133-( - 23);(3)若2655a m n +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)2133=(123)--;(3)14a =或46. 【解析】 试题分析: (1)把等式)233a b m n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:21343(123)-=-;(3)将()2655a m n +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵233a b m n =+), ∴223323a b m n mn +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ ,∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1, ∴()21343=123--;(3)∵22265(5)525a m n m n mn +=+=++, ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.26.阅读下列材料,然后回答问题: 在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==--- . 以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-. (1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1. 【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案. 【详解】 (1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键. 27.计算(1+(2+-(3÷(4)(;(4)7.【答案】(1)23)4【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘除法则运算;(4)利用平方差公式计算;【详解】(1+=+22=;(2==;(3÷=2b=;4(4)((22=-=7 【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.28.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(22⨯,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.29.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22m m-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m --=221m m --()•122m m m --+-()() =﹣22m m -+=22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.30.化简求值:212(1)211x x x x -÷-+++,其中1x =.【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,11x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D根据二次根式的性质、二次根式的加法以及混合运算的法则逐项进行判断即可.【详解】A 5=,故A 选项错误;B B 选项错误;C .++=222,故C 选项错误;D 2=,正确, 故选D .【点睛】本题考查了二次根式的运算,熟练掌握各运算的运算法则是解题的关键.2.C解析:C【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案.【详解】解:A A 错误;B 5=,故B 错误;C 2==,故C 正确;D 01213=+=,故D 错误;故选:C .【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.3.A解析:A【解析】分析:根据二次根式的加、减、乘、除的法则计算逐一验证即可.详解: , 此选项正确;≠此选项错误;, 此选项错误;,此选项错误.故选A.点睛:本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.4.C【分析】根据二次根式的加、减、乘、除运算法则对各项进行计算即可得到结果.【详解】不是同类二次根式,不能合并,故此选项错误;不是同类二次根式,不能合并,故此选项错误;=D2=,故此选项错误; 故选:C .【点睛】此题主要考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答此题的关键. 5.C解析:C【分析】根据二次根式的性质分析即可得出答案.【详解】解:∵m 、n 是正整数, ∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20),故选:C .【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.6.A解析:A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式2223232323x x x x112323x x将4x =代入得, 原式11423423 22111313 3113 133131131=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.7.C解析:C【解析】【分析】令a =112x a a ⎛⎫=- ⎪⎝⎭112a a ⎛⎫=+ ⎪⎝⎭,2007n a =,进而得到x【详解】令a =112x a a ⎛⎫=- ⎪⎝⎭112a a ⎛⎫=+ ⎪⎝⎭,2007n a =,∴x 1111122a a a a a ⎛⎫⎛⎫--+=- ⎪ ⎪⎝⎭⎝⎭,∴原式=111()(1)(1)2007n n n n a a -=-=-. 故选C .【点睛】 本题考查了二次根式的混合运算.熟练掌握二次根式混合运算法则是解答本题的关键.8.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A 选项错误;6626322÷=⨯==,所以B 选项正确; 23(3)8321--=-=,所以C 选项错误;2与3不能合并,所以D 选项错误;故选答案为B .【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.9.C解析:C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A 、12是12的算术平方根,故该项正确;B 、3124<<,故该项正确;C 、1223=,故该项不正确;D 、∵1223=,∴12是无理数,故该项正确;故选:C .【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.10.A解析:A【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A 、原式=;B 、是最简二次根式,不能化简;C 、原式=;D 、原式=. 考点:最简二次根式 11.C解析:C【分析】依据二次根式中的被开方数是非负数求得x 的值,然后可得到y 的值,最后代入计算即可.【详解】∵实数x 、y 满足222y x x =--,∴x =2,y =﹣2,∴yx=22-⨯=-4.故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.12.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题13.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成. 【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x的取值范围为【点睛】解析:11,0 22x x-≤≤≠【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 14.13【解析】【分析】由得a+b=2ab ,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】 由112a b +=得a+b=2ab ,然后再变形535a ab b a ab b++-+,最后代入求解即可. 【详解】解:∵112a b+= ∴a+b=2ab ∴()5353510ab 3===132ab a b ab a ab b ab a ab b a b ab ab+++++-++-- 故答案为13.【点睛】 本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 15.(1)、;(2);(3)【解析】【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1)=;(2),,><<;(3) ,,<<< 【解析】【分析】(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空.【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<< 【点睛】 主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.16.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.解析:5【解析】试题解析:由题可知3030m n m n -+≥⎧⎨--≥⎩, ∴3m n +=,0=, ∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=,解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.17.【分析】原来的一列数即为,,,,,,于是可得第n 个数是,进而可得答案.【详解】解:原来的一列数即为:,,,,,,∴第100个数是.故答案为:.【点睛】本题考查了数的规律探求,属于常考解析:【分析】,,于是可得第n进而可得答案.【详解】,∴第100=.故答案为:【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.18.6【分析】利用二次根式乘除法法则进行计算即可.【详解】===6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.解析:6【分析】==进行计算即可.【详解】=6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.19.【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵∴∴∴∵∴解得:a=-4,b=-2∴=故答案为:.【点睛解析:【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵2222480a ab b a -+++=∴222448160a ab b a -+++=∴()()222448160a ab ba a -+++=+ ∴()()22240ab a +-+=∵()()2220,40a b a +-≥≥∴20,40a b a +-==解得:a=-4,b=-2=故答案为:【点睛】此题考查的是配方法、非负性的应用和化简二次根式,掌握完全平方公式、平方的非负性和二次根式的乘法公式是解决此题的关键.20.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a≥===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
山东省潍坊市诸城市八年级(下)入学数学试卷一、选择题(本大题共5小题,共20.0分)1.如图,DE是△ABC的中位线,DE=2,AB+AC=12,则梯形DBCE的周长为()A. 4B. 8C. 10D. 122.如图,在▱ABCD中,CD=3,AD=5,AE平分交∠BAD边于点E,则线段BE,CE的长分别是()A. 2和3B. 3和2C. 4和1D. 1和43.在矩形ABCD中,AE⊥BD,垂足为E,∠DAE=3∠BAE,则∠CBD等于()A. B. C. D.4.在平行四边形,矩形,菱形,正方形中,能够找到一点,使该点到各边距离相等的图形是()A. 菱形和矩形B. 正方形和矩形C. 正方形和菱形D. 平行四边形和正方形5.如图,在矩形ABCD中,把∠D沿AE折叠,使点D落在BC边上的点F处,已知∠BAF=60°,则∠DAE的度数是()A. B. C. D.二、填空题(本大题共3小题,共20.0分)6.如图,▱ABCD的对角线交于点O,则图中共有______ 对全等三角形,分别是______ .7.在▱ABCD中,∠C=2∠D,则∠C= ______ 度,∠D= ______ 度.8.矩形一组邻边的长分别为15cm和10cm,它的一个内角的平分线分一条对边为两部分,这两部分的长分别是______ .三、解答题(本大题共3小题,共60.0分)9.如图,在▱ABCD中,CE平分∠BCD,F是AB的中点,若AB=6,BC=4,求EF的长.10.已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F.求证:四边形AFCE是菱形.11.已知:如图,▱ABCD各角的平分线分别相交于点E,F,G,H,求证:四边形EFGH是矩形.答案和解析1.【答案】D【解析】解:∵DE是△ABC的中位线,∴BC=2DE=4;BD+CE=(AB+AC)=6.∴梯形DBCE的周长=DE+BC+BD+CE=2+4+6=12.故选D.根据三角形中位线定理可得BC的长;根据中位线的定义得D、E分别是AB、AC的中点,可求BD+CE;根据周长公式计算求解.本题考查了中位线的定义和中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.2.【答案】B【解析】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC-BE=5-3=2,故选B.先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.3.【答案】A【解析】菁优网解:如图,∵AE⊥BD,∴∠AEB=90°,∵四边形ABCD是矩形,∴∠DAB=∠ABC=90°,∵∠DAE=3∠BAE,∴∠DAE=67.5°°,∠BAE=22.5°,∴∠ABE=67.5°,∴∠CBD=22.5°.故选A.由AE⊥BD和∠DAE=3∠BAE,得∠ABE=67.5°,从而求出∠CBD的度数.本题考查了矩形的四个角都是直角的性质,题目比较典型,难度不大.4.【答案】C【解析】解:∵正方形和菱形的每一条对角线平分一组对角,∴对角线上的点到角的两边距离相等,∴能够找到一点,使该点到各边距离相等的图形是正方形和菱形.故选C.根据角平分线上的点到角的两边距离相等,结合平行四边形,矩形,菱形和正方形的性质判断即可.本题考查了正方形的性质,平行四边形、矩形、菱形的性质,熟记四种特殊四边形的性质以及角平分线上的点到角的两边距离相等的性质是解题的关键.5.【答案】A【解析】解:∵∠BAF=60°,∴∠DAF=30°,又∵AF是AD折叠得到的,∴△ADE≌△AFE,∴∠DAE=∠EAF=∠DAF=15°.故选:A.先根据矩形的性质求得∠DAF=30°,再根据AF是AD折叠得到的(翻折前后的对应角相等),可知∠DAE=∠EAF=15°.此题主要考查学生对翻折变换及矩形的性质的掌握情况.6.【答案】4;△ABD≌△CDB,△ABC≌△CDA,△AOB≌△COD,△AOD≌△COB【解析】解:∵在△ABD和△CDB中,∴△ABD≌△CDB(SSS),∴∠ADB=∠CBD,∠ABD=∠BDC,∵在△ABC和△CDA中,∴△ABC≌△CDA(SSS),∴∠DAC=∠BCA,∠ACD=∠BAC,∵在△AOB和△COD中,∴△AOB≌△COD(ASA),∵在△AOD和△COB中,∴△AOD≌△COB(ASA),故答案为:4;△ABD≌△CDB,△ABC≌△CDA,△AOB≌△COD,△AOD≌△COB.利用全等三角形的判定以及平行四边形的性质,可以推出△ABD≌△CDB,△ABC≌△CDA,△AOB≌△COD,△AOD≌△COB.此题主要考查了全等三角形的判定与性质,关键是判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.【答案】120;60【解析】菁优网解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠C+∠D=180°,又∵∠C=2∠D,∴∠C=120°,∠D=60°,故答案为:120、60.根据平行四边形的性质可得出∠D+∠C=180°,结合∠C=2∠D,可得出∠C和∠D 的度数.此题考查了平行四边形的性质,属于基础题,掌握“平行四边形的对边相互平行”是解答本题的关键.8.【答案】10cm和5cm【解析】菁优网解:∵矩形ABCD中,BE是角平分线.∴∠ABE=∠EBC.∵AD∥BC.∴∠AEB=∠EBC.∴∠AEB=∠ABE∴AB=AE.当AB=15cm时:则AE=15cm,不满足题意.当AB=10cm时:AE=10cm,则DE=5cm.∴这两部分的长分别是10cm和5cm.故答案为:10cm和5cm.根据已知条件以及矩形性质证△ABE为等腰三角形得到AB=AE,注意“长和宽分别为15cm和10cm”说明有2种情况,需要分类讨论.此题考查了矩形的性质与等腰三角形的判定与性质.注意出现角平分线,出现平行线时,一般出现等腰三角形,需注意等腰三角形相等边的不同.9.【答案】解:∵四边形ABCD是平行四边形,∴∠DCE=∠BEC,∵CE是∠DCB的平分线,∴∠DCE=∠BCE,∴∠CEB=∠BCE,∴BC=BE=4,又∵F是AB的中点,AB=6,∴FB=AB=3,∴EF=BE-FB=1.【解析】根据题意可知,∠DCE=∠BEC=∠BCE,所以BE=BC=4,则AE=AB-BE=6-4=2,EF=AF-AE=3-2=1.本题主要考查了平行四边形的性质,在平行四边形中当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.10.【答案】证明:方法一:∵AE∥FC.∴∠EAC=∠FCA.∵在△AOE与△COF中,,∴△AOE≌△COF(ASA).∴EO=FO,∴四边形AFCE为平行四边形,又∵EF⊥AC,∴四边形AFCE为菱形;方法二:同方法一,证得△AOE≌△COF.∴AE=CF.∴四边形AFCE是平行四边形.又∵EF是AC的垂直平分线,∴EA=EC,∴四边形AFCE是菱形;【解析】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.本题利用了中垂线的性质,全等三角形的判定和性质,有一组邻边相等的平行四边形是菱形.11.【答案】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°,∵AH,BH分别平分∠DAB与∠ABC,∴∠HAB=∠DAB,∠HBA=∠ABC,∴∠HAB+∠HBA=(∠DAB+∠ABC)=×180°=90°,∴∠H=90°,同理∠HEF=∠F=90°,∴四边形EFGH是矩形.【解析】由于四边形ABCD是平行四边形,那么AD∥BC,利用平行线的性质可得∠DAB+∠ABC=180°,而AH,BH分别平分∠DAB与∠ABC,则∠HAB=∠DAB,∠HBA=∠ABC,那么有∠HAB+∠HBA=90°,再利用三角形内角和定理可知∠H=90°,同理∠HEF=∠DEA=90°,利用三个内角等于90°的四边形是矩形,那么四边形EFGH是矩形.本题利用了平行四边形的性质、角平分线的定义、平行线的性质、矩形的判定.。
一、选择题1.如图,在等边△ABC 中,AB =15,BD =6,BE =3,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 右侧按如图方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是( )A .8B .10C .43D .122.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .钝角三角形D .等腰直角三角形3.如图,OP =1,过点P 作PP 1⊥OP ,且PP 1=1,得OP 1=2;再过点P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过点P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2……依此法继续作下去,得OP 2018的值为( )A .2016B .2017C .2018D .20194.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( )A .3B .154C .5D .1525.如图,ABC 中,90ACB ∠=︒,2AC =,3BC =.设AB 长是m ,下列关于m 的四种说法:①m 是无理数;②m 可以用数轴上的一个点来表示;③m 是13的算术平方根;④23m <<.其中所有正确说法的序号是( )A .①②B .①③C .①②③D .②③④6.如图所示,有一个高18cm ,底面周长为24cm 的圆柱形玻璃容器,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )A .16cmB .18cmC .20cmD .24cm7.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么2a b ()的值为( )A .13B .19C .25D .1698.已知三组数据:①2,3,4;②3,4,5;③1,25三角形的三边长,能构成直角三角形的是( ) A .②B .①②C .①③D .②③9.在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是( ) A .如果∠A ﹣∠B =∠C ,那么△ABC 是直角三角形 B .如果∠A :∠B :∠C =1:2:3,那么△ABC 是直角三角形 C .如果 a 2:b 2:c 2=9:16:25,那么△ABC 是直角三角形 D .如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠A =90°10.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为( ) A .5B 7C .57D .3或4二、填空题11.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________ 12.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l 丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)13.若ABC ∆为直角三角形,90B ∠=︒,6AB =,8BC =,点D 在斜边AC 上,且2AC BD =,则AD 的长为__________.14.如图,在等边△ABC 中,AB =6,AN =2,∠BAC 的平分线交BC 于点D ,M 是AD 上的动点,则BM +MN 的最小值是_____.15.已知x ,y 为一个直角三角形的两边的长,且(x ﹣6)2=9,y =3,则该三角形的第三边长为_____.16.如图,小正方形的边长为1,连接小正方形的三个格点可得△ABC ,则AC 边上的高的长度是_____________.17.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.18.如图,直线423y x =+与x 轴、y 轴分别交于点B 和点A ,点C 是线段OA 上的一点,若将ABC ∆沿BC 折叠,点A 恰好落在x 轴上的'A 处,则点C 的坐标为______.19.如图所示,圆柱体底面圆的半径是2π,高为1,若一只小虫从A 点出发沿着圆柱体的外侧面爬行到C 点,则小虫爬行的最短路程是______20.已知:如图,等腰Rt OAB ∆的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ∆,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ∆,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ∆,44OA B ∆,…,则66OA B ∆的周长是______.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.23.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .24.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可. 请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.25.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E . (1)根据题意用尺规作图补全图形(保留作图痕迹); (2)设,BC m AC n ==①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由.②若线段2AD EC =,求mn的值.26.阅读下列一段文字,然后回答下列问题.已知在平面内有两点()111, P x y 、()222, P x y ,其两点间的距离()()22121212PP x x y y =-+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为12x x -或1|y -2|y . (1)已知()2, 4A 、()3, 8B --,试求A 、B 两点间的距离______.已知M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1,试求M 、N 两点的距离为______;(2)已知一个三角形各顶点坐标为()1, 6D 、()3, 3E -、()4, 2F ,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标及PD PF +的最短长度.27.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,①则线段BC ,DC ,EC 之间满足的等量关系式为 ; ②求证:BD 2+CD 2=2AD 2;(2)如图2,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.28.如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.(1)求证:∠ABE=∠CAD;(2)如图2,以AD为边向左作等边△ADG,连接BG.ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).29.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t 的值.30.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.(体验)(1)从特殊入手许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:的大小的形状…直角三角形…直角三角形…请仔细体会其中的道理,并填空:_____,_____;(2)猜想一般结论在中,设,,(),①若为直角三角形,则满足;②若为锐角三角形,则满足____________;③若为钝角三角形,则满足_____________.(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面(如图1),设,,,请帮助小慧说明为锐角三角形的道理.(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是()A.一定是锐角三角形B.可能是锐角三角形或直角三角形,但不可能是钝角三角形C.可能是锐角三角形或直角三角形或钝角三角形【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先利用等边三角形的性质和含30°直角三角形的运用,判定△DPE≌△FDH,△DF2Q≌△ADE,然后利用全等三角形的性质,得出点F运动的路径长.【详解】∵△ABC为等边三角形,∴∠B=60°,过D点作DE′⊥AB,过点F作FH⊥BC于H,如图所示:则BE′=12BD=3,∴点E′与点E重合,∴∠BDE=30°,DE3BE3,∵△DPF为等边三角形,∴∠PDF =60°,DP =DF ,∴∠EDP +∠HDF =90°∵∠HDF +∠DFH =90°,∴∠EDP =∠DFH ,在△DPE 和△FDH 中,90PED DHF EDP DFH DP FD ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩, ∴△DPE ≌△FDH (AAS ),∴FH =DE∴点P 从点E 运动到点A 时,点F 运动的路径为一条线段,此线段到BC 的距离为当点P 在E 点时,作等边三角形DEF 1,∠BDF 1=30°+60°=90°,则DF 1⊥BC , 当点P 在A 点时,作等边三角形DAF 2,作F 2Q ⊥BC 于Q ,则四边形DF 1F 2Q 是矩形, ∵∠BDE =30°,∠ADF 2=60°,∴∠ADE +∠F 2DQ =180°﹣30°﹣60°=90°,∵∠ADE +∠DAE =90°,∴∠F 2DQ =∠DAE ,在△DF 2Q 和△ADE 中,222F QD DEA 90F DQ DAE DF AD ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩, ∴△DF 2Q ≌△ADE (AAS ),∴DQ =AE =AB ﹣BE =15﹣3=12,∴F 1F 2=DQ =12,∴当点P 从点E 运动到点A 时,点F 运动的路径长为12,故选:D .【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是作好辅助线. 2.B解析:B【解析】【分析】根据完全平方公式利用a+b=10,ab=18求出22a b +,即可得到三角形的形状.【详解】∵a+b=10,ab=18,∴22a b +=(a+b )2-2ab=100-36=64,∵,c=8,∴2c =64,∴22a b +=2c ,∴该三角形是直角三角形,故选:B.【点睛】此题考查勾股定理的逆定理,完全平方公式,能够利用完全平方公式由已知条件求出22+是解题的关键.a b3.D解析:D【解析】【分析】由勾股定理求出各边,再观察结果的规律.【详解】∵OP=1,OP1OP2OP3=2,∴OP4…,OP2018故选D【点睛】本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键.4.C解析:C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=15,即3x+12y=15,x+4y=5,所以S2=x+4y=5,故答案为5.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y 表示出S1,S2,S3,再利用S1+S2+S3=15求解是解决问题的关键.5.C解析:C【分析】根据勾股定理即可求出答案.【详解】解:∵∠ACB=90°,∴在Rt ABC中,m=AB故①②③正确,∵m2=13,9<13<16,∴3<m <4,故④错误,故选:C .【点睛】本题考查勾股定理及算术平方根、无理数的估算,解题的关键是熟练运用勾股定理,本题属于基础题型.6.C解析:C【分析】首先画出圆柱的侧面展开图,进而得到SC=12cm ,FC=18-2=16cm ,再利用勾股定理计算出SF 长即可.【详解】将圆柱的侧面展开,蜘蛛到达目的地的最近距离为线段SF 的长,由勾股定理,SF 2=SC 2+FC 2=122+(18-1-1)2=400,SF=20 cm ,故选C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.7.C解析:C【解析】试题分析:根据题意得:222c a b =+=13,4×12ab=13﹣1=12,即2ab=12,则2()a b +=222a ab b ++=13+12=25,故选C .考点:勾股定理的证明;数学建模思想;构造法;等腰三角形与直角三角形.8.D解析:D【分析】根据三角形勾股定理的逆定理符合222a b c +=即为直角三角形 ,所以将数据分别代入,符合即为能构成直角三角形.【详解】①2222+3=134≠ ;②2223+4=25=5 ;③2221+2=5=, 所以能构成直角三角形的是②③.故选D .【点睛】考查直角三角形的构成,学生熟悉掌握勾股定理的逆定理是本题解题的关键,利用勾股定理的逆定理判断是否能够成直角三角形. 9.D解析:D【分析】根据直角三角形的判定和勾股定理的逆定理解答即可.【详解】选项A 中如果∠A ﹣∠B =∠C ,由∠A+∠B+∠C =180°,可得∠A =90°,那么△ABC 是直角三角形,选项正确;选项B 中如果∠A :∠B :∠C =1:2:3,由∠A+∠B+∠C =180°,可得∠A =90°,那么△ABC 是直角三角形,选项正确;选项C 中如果 a 2:b 2:c 2=9:16:25,满足a 2+b 2=c 2,那么△ABC 是直角三角形,选项正确;选项D 中如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠B =90°,选项错误;故选D .【点睛】考查直角三角形的判定,学生熟练掌握勾股定理逆定理是本题解题的关键,并结合直角三角形的定义解出此题.10.C解析:C【分析】根据勾股定理和分类讨论的方法可以求得第三边的长,从而可以解答本题.【详解】由题意可得,当3和45,当斜边为4,故选:C【点睛】本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和分类讨论的数学思想解答.二、填空题11.分两种情况:(1)顶角是钝角时,如图1所示:在Rt△ACO中,由勾股定理,得AO2=AC2-OC2=52-32=16,∴AO=4,OB=AB+AO=5+4=9,在Rt△BCO中,由勾股定理,得BC2=OB2+OC2=92+32=90,∴BC=310;(2)顶角是锐角时,如图2所示:在Rt△ACD中,由勾股定理,得AD2=AC2-DC2=52-32=16,∴AD=4,DB=AB-AD=5-4=1.在Rt△BCD中,由勾股定理,得BC2=DB2+DC2=12+32=10,∴BC=10;综上可知,这个等腰三角形的底的长度为310或10.【点睛】本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.12.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【详解】解:如图,一条直角边(即木棍的高)长20尺,另一条直角边长7×3=21(尺),22=29(尺).2021答:葛藤长29尺.故答案为:29.【点睛】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.13.5【分析】在直角ABC 中,依据勾股定理求出AC 的长度,再算出BD ,过点B 作BE AC ⊥于点E ,通过等面积法求出BE ,得到两个直角三角形,分别运用勾股定理算出AE ED 、,两者相加即为AD 的长.【详解】解:如图,过点B 作BE AC ⊥于点E ,则90BEA ∠=︒,90BED ∠=︒,∵直角ABC 中,90B ∠=︒,6AB =,8BC =, ∴22=10AC AB BC +=,又∵2ABC S AB BC AC BE =⋅=⋅,2AC BD =∴6810BE ⨯=,5BD =,∴=4.8BE ,∵90BEA ∠=︒,90BED ∠=︒ ∴22= 3.6AE AB BE -=,22= 1.4ED BD BE -=,∴5AD AE ED =+=.故答案为:5.【点睛】本题考查了勾股定理,通过作直角三角形斜边上的高,既构造了两个直角三角形求位置线段,又通过等面积法求出了一条直角边的长度,为运用勾股定理求线段创造了条件;故在求线段长时,可以考虑构造直角三角形.147【解析】【分析】通过作辅助线转化BM ,MN 的值,从而找出其最小值求解.【详解】解:连接CN ,与AD 交于点M .则CN 就是BM +MN 的最小值.取BN 中点E ,连接DE ,如图所示:∵等边△ABC的边长为6,AN=2,∴BN=AC﹣AN=6﹣2=4,∴BE=EN=AN=2,又∵AD是BC边上的中线,∴DE是△BCN的中位线,∴CN=2DE,CN∥DE,又∵N为AE的中点,∴M为AD的中点,∴MN是△ADE的中位线,∴DE=2MN,∴CN=2DE=4MN,∴CM=34 CN.在直角△CDM中,CD=12BC=3,DM=12AD33,∴CM2237 2CD MD+=∴CN=43727 32=.∵BM+MN=CN,∴BM+MN的最小值为7.故答案是:7【点睛】考查等边三角形的性质和轴对称及勾股定理等知识的综合应用.15.106232【解析】【详解】∵(x-6)2=9,∴x-6=±3,解得:x1=9,x2=3,∵x,y为一个直角三角形的两边的长,y=3,∴当x=3时,x、y223332+=;当x=9时,x 、y 都为直角三角形的直角边,则斜边为2293310+= ; 当x=9时,x 为斜边、y 为直角边,则第三边为263922=-. 故答案为:310,62或32.【点睛】本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.16.355【详解】 四边形DEFA 是正方形,面积是4; △ABF,△ACD 的面积相等,且都是 ×1×2=1. △B CE 的面积是:12×1×1=12. 则△ABC 的面积是:4﹣1﹣1﹣12=32. 在直角△ADC 中根据勾股定理得到:AC=222+1=5.设AC 边上的高线长是x .则12AC•x=5x=32, 解得:x=355.355. 17.39或639【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解.【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,333AD AH DH =-=,45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒,230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== .30A ∠=︒ , 12GQ AG ∴=. 222GQ AQ AG += ,即2223(2)GQ GQ +=, 3GQ ∴= .2DGF AED AEG S S S =- ,112(333)36363922DGF S ∴=⨯⨯-⨯-⨯⨯=-; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=.32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,3AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= .又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.18.(0,34). 【分析】 由423y x =+求出点A 、B 的坐标,利用勾股定理求得AB 的长度,由此得到53122OA '=-=,设点C 的坐标为(0,m ),利用勾股定理解得m 的值即可得到答案. 【详解】 在423y x =+中,当x=0时,得y=2,∴A (0,2) 当y=0时,得4203x +=,∴32x =-,∴B(32-,0),在Rt △AOB 中,∠AOB=90︒,OA=2,OB=32, ∴2222352()22AB OA OB =+=+=, ∴53122OA '=-=, 设点C 的坐标为(0,m )由翻折得ABC A BC '≌,∴2A C AC m '==-,在Rt A OC '中, 222A C OC A O ''=+,∴222(2)1m m -=+,解得m=34, ∴点C 的坐标为(0,34). 故答案为:(0,34). 【点睛】此题考查勾股定理,翻折的性质,题中由翻折得ABC A BC '≌是解题的关键,得到OC 与A’C 的数量关系,利用勾股定理求出点C 的坐标. 19.5【分析】先将图形展开,再根据两点之间线段最短可知.【详解】圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C 是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•2π=2,CB=1. ∴22AB +BC 222=5+15【点睛】圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决. 20.228+【分析】依次求出在Rt △OAB 中,OA 1Rt △OA 1B 1中,OA 2OA 1)2;依此类推:在Rt △OA 5B 5中,OA 6=(2)6,由此可求出△OA 6B 6的周长. 【详解】∵等腰Rt OAB ∆的直角边OA 的长为1,∴在Rt △OA 1B 1中OA 1=2OA =2,在22Rt OA B ∆中OA 2=2OA 1=(2)2, …故在Rt △OA 6B 6中OA 6=2OA 5=(2)6= OB 666A B OB 6故△OA 6B 6+2×)6+2×18故答案为:28+ 【点睛】 本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题21.(1)BE =1;(2)见解析;(3)(2y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM BM ,进而可得BE +CF (BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC是等边三角形,∴∠B=∠C=60°,BC=AC=AB=4.∵点D是线段BC的中点,∴BD=DC=12BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,∴BE=12BD=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∵∠BMD=∠CND,∠B=∠C,BD=CD,∴△MBD≌△NCD(AAS),∴BM=CN,DM=DN.在△EMD和△FND中,∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,∴△EMD≌△FND(ASA),∴EM=FN,∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=12BC=12AB;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =73【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中,AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64,所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以OC=22228373AC OA +=+=所以BC=2OC=273,在Rt △BCD 中,CD=()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以AB=22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.23.作图见解析,325【分析】作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,连接AN ,首先用等积法求出AH 的长,易证△ACH ≌△A'NH ,可得A'N=AC=4,然后设NM=x ,利用勾股定理建立方程求出NM 的长,A'M 的长即为AN+MN 的最小值.【详解】如图,作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,最小值为A'M 的长.连接AN ,在Rt △ABC 中,AC=4,AB=8,∴2222AB AC =84=45++ ∵11AB AC=BC AH 22⋅⋅ ∴8545∵CA ⊥AB ,A 'M ⊥AB ,∴CA ∥A 'M∴∠C=∠A 'NH ,由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,165,A 'M=A 'N+NM=4+x ∴AM 2=AA '2-A 'M 2=()221654-+⎝⎭x ∴()2221654=16-+-⎝⎭x x 解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.24.(1)证明见解析;(2)21.【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;D E=BE.设(2)作△ADC关于AC的对称图形AD'C,过点C作CE⊥AB于点E,则''D E=BE=x.在Rt△CEB和Rt△CEA中,根据勾股定理构建方程即可解决问题.【详解】解:(1)证明:如下图,作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D-∠B=30°,即∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=CA′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△AD′C.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE,设D′E=BE=x,在Rt△CEB中,CE2=CB2-BE2=102-x2,在Rt△CEA中,CE2=AC2-AE2=172-(9+x)2.∴102-x2=172-(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点睛】本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.25.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详见解析;②512m n = 【分析】(1)根据题意,利用尺规作图画出图形即可;(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案;②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.【详解】(1)解:作图,如图所示:(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根.理由如下:依题意得, BD BC m ==,在Rt ABC 中,90ACB ∠=︒222BC AC AB ∴=+22AB m n =+22AD AB BD m n m ∴=-=+222AD m AD n ∴+-)()2222222m n m m m n m n =+++- 222222222222m n m m n m m m n m n =+-+++-0=;∴线段AD 的长度是方程22 20x mx n +-=的一个根②依题意得:,,AD AE BD BC AB AD BD ==== 2AD EC =2233AD AE AC n ∴=== 在RT ABC 中,90ACB ∠= 222BC AC AB ∴+=22223m n n m ⎛⎫+=+ ⎪⎝⎭ 22224493m n n mn m +=++25493n mn = 512m n ∴= 【点睛】本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.26.(1)13,5;(2)等腰直角三角形,理由见解析;(3)当P 的坐标为(1304,)时,PD+PF【解析】【分析】(1)根据阅读材料中A 和B 的坐标,利用两点间的距离公式即可得出答案;由于M 、N 在平行于y 轴的直线上,根据M 和N 的纵坐标利用公式1|y -2|y 即可求出MN 的距离; (2)由三个顶点的坐标分别求出DE ,DF ,EF 的长,即可判定此三角形的形状;(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时PD PF +最短,最短距离为DF',P 的坐标即为直线DF'与x 轴的交点.【详解】解:(1)∵()2, 4A 、()3, 8B --∴AB 13==故A 、B 两点间的距离为:13.∵M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1∴()MN 415=--=故M 、N 两点的距离为5.(2)∵()1, 6D 、()3, 3E -、()4, 2F∴DE 5==DF 5==EF ==∴DE=DF ,222DE DF EF +=∴△DEF 为等腰直角三角形(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时DP+PF 最短设直线DF'的解析式为y=kx+b将D (1,6),F'(4,-2)代入得:642k b k b +=⎧⎨+=-⎩ 解得83263k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线DF'的解析式为:826y 33x =-+ 令y=0,解得13x 4=,即P 的坐标为(1304,) ∵PF=PF'∴PD+PF=PD+ PF'= DF'()()22146273-++=故当P 的坐标为(1304,)时,PD+PF 73 【点睛】本题属于一次函数综合题,待定系数法求一次函数解析式以及一次函数与x 轴的交点,弄清楚材料中的距离公式是解决本题的关键.27.(1)①BC =DC +EC ,理由见解析;②证明见解析;(2)6.【解析】【分析】(1)证明△BAD ≌△CAE ,根据全等三角形的性质解答;(2)根据全等三角形的性质得到BD =CE ,∠ACE =∠B ,得到∠DCE =90°,根据勾股定理计算即可;(3)作AE ⊥AD ,使AE =AD ,连接CE ,DE ,证明△BAD ≌△CAE ,得到BD =CE =9,根据勾股定理计算即可.【详解】(1)①解:BC =DC +EC ,理由如下:∵∠BAC =∠DAE =90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=EC,∴BC=DC+BD=DC+EC,;故答案为:BC=DC+EC;②证明:∵Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=∠ACB+∠ACE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(2)解:作AE⊥AD,使AE=AD,连接CE,DE,如图2所示:∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE===6,∵∠DAE=90°,∴AD=AE=DE=6.【点睛】本題是四边形综合题目,考查的是全等三角形的判定和性质、等直角三角形的性质、勾股定理、直角三角形的判定等知识:本题综合性强,熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键.28.(1)详见解析;(2)ⅰ)四边形AGBE是平行四边形,证明详见解析;ⅱ)2+++k k k221.【解析】【分析】(1)只要证明△BAE≌△ACD;(2)ⅰ)四边形AGBE是平行四边形,只要证明BG=AE,BG∥AE即可;ⅱ)求出四边形BGAE的周长,△ABC的周长即可;【详解】(1)证明:如图1中,∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,∵AE=CD,∴△BAE≌△ACD,∴∠ABE=∠CAD.(2)ⅰ)如图2中,结论:四边形AGBE是平行四边形.理由:∵△ADG,△ABC都是等边三角形,∴AG=AD,AB=AC,∴∠GAD=∠BAC=60°,∴△GAB≌△DAC,∴BG=CD,∠ABG=∠C,∵CD=AE,∠C=∠BAE,。