§3 线性方程组的解
- 格式:ppt
- 大小:400.00 KB
- 文档页数:27
3.向量组的线性相关性与线性方程组的解§3.1 线性方程组解的判定1.定理3.1:n 元线性方程组AX=b ,其中A=(a 12a 12a 1n a 21a 22a 2na m1a m2a mn),x=( x 1x 2??x n ) ,b=( b 1b 2??b m )(1)无解的充要条件是R(A)<R(A,b);(2)有惟一解的充要条件是R(A)=R(A,b)=n ,(3)有无穷多解的充要条件是R(A)=R(A,b)<n.注:(1)R(A,b)先化为行阶梯形,判别。
有解时再化为行最简形求解。
(2)R(A)=m 时,AX=b 有解。
(3)R(A)=r 时,有n-r 个自由未知量,未必是后面n-r 个。
2.定理3.2:n 元线性方程组AX=0(1)有惟一解(只有零解)的充要条件是R(A)=n ; (2)有无穷多解(有非零解)充要条件是R(A)<n .注:(1)m <n,AX=0必有非零解。
3.定理3.3:矩阵方程AX=B 有解的充要条件是R(A)=R(A,B) 求解线性方程组例1. {4x 1+2x 2?x 3=23x 1?x 2+2x 3 =1011x 1+3x 2 =8例2. {2x 1+x 2?x 3+x 4 =14x 1+2x 2?2x 3+x 4=22x 1+x 2 ?x 3?x 4 =1例3. 求解齐次线性方程组{3x 1+ 4x 2?5x 3+ 7x 4 =02x 1?3x 2+3x 3? 2x 4 =04x 1+11x 2?13x 3+16x 4=07x 1?2x 2+ x 3+ 3x 4 =0例4.写出一个以X=C 1(2?310)+C 2(?2401)为通解的齐次线性方程组。
例5(每年).(1)λ取何值时,非齐次线性方程组{ λx 1+x 2+x 3=1x 1+λx 2+x 3=λx 1+x 2+λx 3=λ2(1)有惟一解;(2)无解;(3)有无穷多组解?并在有无穷多组解时求出通解.(2)非齐次线性方程组{x 1+x 2+2x 3=02x 1+x 2+ax 3=13x 1+2x 2+4x 3=b当a,b 取何值时,(1)有惟一解;(2)无解;(3)有无穷多组解?并求出通解.例5(12/13学年).设A=(λ110λ?1011λ), b=(a11),已知Ax=b 存在两个不同的解:(1)求λ,a;(2)求Ax=b 的通解。
§3齐次线性方程组解的结构齐次线性方程组是指系数矩阵为零矩阵的线性方程组。
其一般形式为:a₁₁x₁+a₁₂x₂+...+a₁ₙxₙ=0a₂₁x₁+a₂₂x₂+...+a₂ₙxₙ=0...aₙ₁x₁+aₙ₂x₂+...+aₙₙxₙ=0其中,aₙ(1≤n≤m,1≤i≤n)是方程组的系数。
对于齐次线性方程组,我们可以运用矩阵和向量的线性代数理论来推导其解的结构。
首先,我们将齐次线性方程组的系数矩阵记为A,行向量xT=(x₁,x₂,...,xₙ),则方程组可表示为Ax=0。
根据矩阵乘法的定义,我们有A·xT=(a₁₁x₁+a₁₂x₂+...+a₁ₙxₙ,a₂₁x₁+a₂₂x₂+...+a₂ₙxₙ,...,aₙ₁x₁+a ₙ₂x₂+...+aₙₙxₙ)=bT其中,bT是m维零向量。
这样,我们可以将齐次线性方程组的解的结构转化为求解矩阵A的零空间结构。
我们知道,零空间是矩阵A对应的齐次方程Ax=0的解的集合,也称为核空间。
零空间可以通过对系数矩阵A进行行变换化简,得到其对应的阶梯形矩阵U,进而求解。
接下来,我们来看零空间的结构。
假设U是矩阵A的阶梯形矩阵,其形式如下:a₁₁a₁₂a₁₃...a₁ₙ...a₁ₙ0a₂₂a₂₃...a₂ₙ...a₂ₙ00a₃₃...a₃ₙ...a₃ₙ...000aₙₙ...aₙₙ0000...aₙₙ其中,aᵢⱼ(1≤i≤p≤m,j>i)是U的主对角元素。
通过行变换,我们可以将U化简为如下形式:100...0...a₁ₙ₋ₙ₊₁a₁ₙ₋ₙ₊₂...a₁ₙ010...0...a₂ₙ₋ₙ₊₁a₂ₙ₋ₙ₊₂...a₂ₙ001...0...a₃ₙ₋ₙ₊₁a₃ₙ₋ₙ₊₂...a₃ₙ...000...1...aₙₙ₋ₙ₊₁aₙₙ₋ₙ₊₂...aₙₙ000...0...00 0其中,aᵢ(p<i≤n)是自由变量。
我们可以看出,自由变量的个数等于未知数的个数减去主元的个数。