数据挖掘12
- 格式:ppt
- 大小:212.00 KB
- 文档页数:8
数据挖掘原理与应用 试题及答案试卷一、(30分,总共30题,每题答对得1分,答错得0分)单选题1、在ID3算法中信息增益是指( D )A、信息的溢出程度B、信息的增加效益C、熵增加的程度最大D、熵减少的程度最大2、下面哪种情况不会影响K-means聚类的效果?( B )A、数据点密度分布不均B、数据点呈圆形状分布C、数据中有异常点存在D、数据点呈非凸形状分布3、下列哪个不是数据对象的别名 ( C )A、样品B、实例C、维度D、元组4、人从出生到长大的过程中,是如何认识事物的? ( D )A、聚类过程B、分类过程C、先分类,后聚类D、先聚类,后分类5、决策树模型中应如何妥善处理连续型属性:( C )A、直接忽略B、利用固定阈值进行离散化C、根据信息增益选择阈值进行离散化D、随机选择数据标签发生变化的位置进行离散化6、假定用于分析的数据包含属性age。
数据元组中age的值如下(按递增序):13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70。
问题:使用按箱平均值平滑方法对上述数据进行平滑,箱的深度为3。
第二个箱子值为:( A )A、18.3B、22.6C、26.8D、27.97、建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?( C )A、根据内容检索B、建模描述C、预测建模D、寻找模式和规则8、如果现在需要对一组数据进行样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量,应该采取( A )A、聚类分析B、回归分析C、相关分析D、判别分析9、时间序列数据更适合用( A )做数据规约。
A、小波变换B、主成分分析C、决策树D、直方图10、下面哪些场景合适使用PCA?( A )A、降低数据的维度,节约内存和存储空间B、降低数据维度,并作为其它有监督学习的输入C、获得更多的特征D、替代线性回归11、数字图像处理中常使用主成分分析(PCA)来对数据进行降维,下列关于PCA算法错误的是:( C )A、PCA算法是用较少数量的特征对样本进行描述以达到降低特征空间维数的方法;B、PCA本质是KL-变换;C、PCA是最小绝对值误差意义下的最优正交变换;D、PCA算法通过对协方差矩阵做特征分解获得最优投影子空间,来消除模式特征之间的相关性、突出差异性;12、将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?( C )A、频繁模式挖掘B、分类和预测C、数据预处理D、数据流挖掘13、假设使用维数降低作为预处理技术,使用PCA将数据减少到k维度。
数据挖掘概念与技术原书第3版课后练习题含答案前言《数据挖掘概念与技术》(Data Mining: Concepts and Techniques)是一本经典的数据挖掘教材,已经推出了第3版。
本文将为大家整理并提供第3版课后习题的答案,希望对大家学习数据挖掘有所帮助。
答案第1章绪论习题1.1数据挖掘的基本步骤包括:1.数据预处理2.数据挖掘3.模型评价4.应用结果习题1.2数据挖掘的主要任务包括:1.描述性任务2.预测性任务3.关联性任务4.分类和聚类任务第2章数据预处理习题2.3数据清理包括以下几个步骤:1.缺失值处理2.异常值检测处理3.数据清洗习题2.4处理缺失值的方法包括:1.删除缺失值2.插补法3.不处理缺失值第3章数据挖掘习题3.1数据挖掘的主要算法包括:1.决策树2.神经网络3.支持向量机4.关联规则5.聚类分析习题3.6K-Means算法的主要步骤包括:1.首先随机选择k个点作为质心2.将所有点分配到最近的质心中3.重新计算每个簇的质心4.重复2-3步,直到达到停止条件第4章模型评价与改进习题4.1模型评价的方法包括:1.混淆矩阵2.精确率、召回率3.F1值4.ROC曲线习题4.4过拟合是指模型过于复杂,学习到了训练集的噪声和随机变化,导致泛化能力不足。
对于过拟合的处理方法包括:1.增加样本数2.缩小模型规模3.正则化4.交叉验证结语以上是《数据挖掘概念与技术》第3版课后习题的答案,希望能够给大家的学习带来帮助。
如果大家还有其他问题,可以在评论区留言,或者在相关论坛等平台提出。
数据挖掘的32个案例1. 电商平台的用户行为分析:通过对用户的浏览、搜索、购买等行为进行数据挖掘,提高用户购买转化率和精准推荐商品。
2. 医疗领域的疾病诊断:通过对患者的病历、检查结果等数据进行挖掘,辅助医生进行疾病诊断和治疗。
3. 金融领域的风险评估:通过对客户的信用记录、财务状况等数据进行挖掘,评估客户的信用风险和贷款风险。
4. 社交媒体的用户画像分析:通过对用户的社交行为、兴趣爱好等数据进行挖掘,建立用户画像,提供个性化推荐和广告投放。
5. 物流领域的路线优化:通过对货物的数量、重量、目的地等数据进行挖掘,优化物流路线,提高物流效率和降低成本。
6. 电信领域的客户流失预测:通过对客户的通话记录、消费行为等数据进行挖掘,预测客户是否会流失,提前采取措施保留客户。
7. 旅游领域的景点推荐:通过对用户的出行偏好、历史记录等数据进行挖掘,推荐符合用户口味的景点和旅游路线。
8. 教育领域的学生表现评估:通过对学生的考试成绩、作业完成情况等数据进行挖掘,评估学生的表现和学习状态,提供个性化教育方案。
9. 能源领域的能源消耗分析:通过对能源的消耗情况、使用效率等数据进行挖掘,优化能源使用方案,降低能源成本和环境污染。
10. 媒体领域的内容推荐:通过对用户的阅读历史、兴趣爱好等数据进行挖掘,推荐符合用户口味的新闻、文章等内容。
11. 物联网领域的设备故障预测:通过对设备的运行数据、故障记录等数据进行挖掘,预测设备故障,提前进行维修和保养。
12. 健康领域的疾病预防:通过对个人的健康数据、生活习惯等数据进行挖掘,预测患病风险,提供健康管理建议。
13. 政府领域的公共安全预警:通过对社会事件、气象数据等进行挖掘,预测公共安全风险,提前采取措施保障公众安全。
14. 餐饮领域的菜品推荐:通过对用户的口味偏好、历史点餐记录等数据进行挖掘,推荐符合用户口味的菜品和套餐。
15. 游戏领域的用户行为分析:通过对用户的游戏行为、游戏成就等数据进行挖掘,提高用户留存率和游戏体验。
知识点一数据仓库1.数据仓库是一个从多个数据源收集的信息存储库,存放在一致的模式下,并且通常驻留在单个站点上。
2.数据仓库通过数据清理、数据变换、数据集成、数据装入和定期数据刷新来构造。
3.数据仓库围绕主题组织4.数据仓库基于历史数据提供消息,是汇总的。
5.数据仓库用称作数据立方体的多维数据结构建模,每一个维对应于模式中的一个或者一组属性,每一个单元存放某种聚集的度量值6.数据立方体提供数据的多维视图,并允许预计算和快速访问汇总数据7.提供提供多维数据视图和汇总数据的预计算,数据仓库非常适合联机分析处理,允许在不同的抽象层提供数据,这种操作适合不同的用户角度8.OLAP例子包括下钻和上卷,允许用户在不同的汇总级别上观察数据9.多维数据挖掘又叫做探索式多维数据挖掘OLAP风格在多维空间进行数据挖掘,允许在各种粒度进行多维组合探查,因此更有可能代表知识的有趣模式。
知识点二可以挖掘什么数据1.大量的数据挖掘功能,包括特征化和区分、频繁模式、关联和相关性分析挖掘、分类和回归、聚类分析、离群点分析2.数据挖掘功能用于指定数据挖掘任务发现的模式,分为描述性和预测性3.描述性挖掘任务刻画目标数据中数据的一般性质4.预测性挖掘任务在当前数据上进行归纳,以便做出预测5.数据可以与类或概念相关联6.用汇总、简洁、精确的表达描述类和概念,称为类/概念描述7.描述的方法有数据特征化(针对目标类)、数据区分(针对对比类)、数据特征化和区分8.数据特征化用来查询用户指定的数据,上卷操作用来执行用户控制的、沿着指定维的数据汇总。
面向属性的归纳技术可以用来进行数据的泛化和特征化,而不必与用户交互。
形式有饼图、条图、曲线、多维数据立方体和包括交叉表在内的多维表。
结果描述可以用广义关系或者规则(也叫特征规则)提供。
9.用规则表示的区分描述叫做区分规则。
10.数据频繁出现的模式叫做频繁模式,类型包括频繁项集、频繁子项集(又叫频繁序列)、频繁子结构。
一、名词解释1. 数据仓库:是一种新的数据处理体系结构 .是面向主题的、集成的、不可更新的(稳定性)、随时间不断变化 (不同时间)的数据集合.为企业决策支持系统提供所需的集成信息。
2. 孤立点:指数据库中包含的一些与数据的一般行为或模型不一致的异常数据。
3. OLAP:OLAP 是在OLTP 的基础上发展起来的.以数据仓库为基础的数据分析处理 .是共享多维信息的快速分析.是被专门设计用于支持复杂的分析操作 .侧重对分析人员和高层管理人员的决策支持。
4. 粒度:指数据仓库的数据单位中保存数据细化或综合程度的级别。
粒度影响存放在数据仓库中的数据量的大小 .同时影响数据仓库所能回答查询问题的细节程度。
5. 数据规范化:指将数据按比例缩放(如更换大单位).使之落入一个特定的区域(如 0-1) 以提高数据挖掘效率的方法。
规范化的常用方法有:最大-最小规范化、零-均值规范化、小数定标规范化。
6. 关联知识:是反映一个事件和其他事件之间依赖或相互关联的知识。
如果两项或多项属性之间存在关联.那么其中一项的属性值就可以依据其他属性值进行预测。
7. 数据挖掘:从大量的、不完全的、有噪声的、模糊的、随机的数据中.提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
8. OLTP:OLTP 为联机事务处理的缩写.OLAP 是联机分析处理的缩写。
前者是以数据库为基础的.面对的是操作人员和低层管理人员 .对基本数据进行查询和增、删、改等处理。
9. ROLAP:是基于关系数据库存储方式的 .在这种结构中.多维数据被映像成二维关系表.通常采用星型或雪花型架构.由一个事实表和多个维度表构成。
10. MOLAP:是基于类似于“超立方”块的OLAP 存储结构.由许多经压缩的、类似于多维数组的对象构成.并带有高度压缩的索引及指针结构 .通过直接偏移计算进行存取。
11. 数据归约:缩小数据的取值范围.使其更适合于数据挖掘算法的需要 .并且能够得到和原始数据相同的分析结果。
数据挖掘导论知识点总结数据挖掘是一门综合性的学科,它涵盖了大量的知识点和技术。
在本文中,我将对数据挖掘的导论知识点进行总结,包括数据挖掘的定义、历史、主要任务、技术和应用等方面。
一、数据挖掘的定义数据挖掘是从大量的数据中发掘出有价值的信息和知识的过程。
它是一种将数据转换为有意义的模式和规律的过程,从而帮助人们进行决策和预测的技术。
数据挖掘能够帮助我们从海量的数据中找到潜在的关联、规律和趋势,从而为决策者提供更准确和具有实际意义的信息。
二、数据挖掘的历史数据挖掘的概念最早可追溯到20世纪60年代,当时统计学家和计算机科学家开始尝试使用计算机技术来处理和分析大量的数据。
随着计算机硬件和软件技术的不断发展,数据挖掘逐渐成为一门独立的学科,并得到了广泛应用。
三、数据挖掘的主要任务数据挖掘的主要任务包括分类、聚类、关联规则挖掘、异常检测和预测等。
分类是将数据划分为多个类别的过程,其目的是帮助我们将数据进行分组和识别。
聚类是将数据划分为多个簇的过程,其目的是发现数据中的潜在模式和规律。
关联规则挖掘是发现数据中的关联规则和频繁项集的过程,其目的是发现数据中的潜在关联和趋势。
异常检测是发现数据中的异常值和异常模式的过程,其目的是发现数据中的异常现象。
预测是使用数据挖掘技术对未来进行预测的过程,其目的是帮助我们做出更准确的决策。
四、数据挖掘的技术数据挖掘的技术包括统计分析、机器学习、人工智能、数据库技术和数据可视化等。
统计分析是数据挖掘的基础技术,它包括描述统计、推断统计和假设检验等方法。
机器学习是一种使用算法和模型来识别数据模式和规律的技术,常见的机器学习算法包括决策树、神经网络、支持向量机和朴素贝叶斯等。
人工智能是数据挖掘的前沿技术,它包括自然语言处理、图像识别和智能决策等方面。
数据库技术是数据挖掘的技术基础,包括数据存储、数据检索和数据管理等技术。
数据可视化是数据挖掘的重要技术,它能够帮助我们将数据呈现为可视化的图表和图形,从而更直观地理解数据。
数据挖掘软件SPSS Clementine 12安装教程SPSS Clementine 12安装包比较特殊,是采用ISO格式的,而且中文补丁、文本挖掘模块都是分开的,对于初次安装者来说比较困难。
本片文章将对该软件的安装过程进行详细介绍,相信大家只要按照本文的安装说明一步一步操作即可顺利完成软件的安装和破解。
步骤一:安装前准备1、获取程序安装包SPSS Clementine 12的安装包获取的方法比较多,常用的方法是通过baidu或google搜索关键词,从给出的一些上进行下载。
为了方便大家安装,这里给出几个固定的下载供大家安装:论坛上下载:.kddchina./thread-538-1-1.html百度网盘:pan.baidu./s/1pEcS9提取密码:rhor腾讯微云:/OVYtFW相信这么多下载方式大家一定能成功获得安装程序的。
2、ISO文件查看工具由于程序安装包是ISO光盘镜像形式的,如果你的操作系统是win8之前的系统,那么就需要安装能够打开提取ISO文件的工具软件了。
在此推荐UltraISO这款软件,主要是既能满足我们的需要,而且文件又较小,安装方便。
这里提供几个下载UltraISO程序的地址:百度网盘pan.baidu./s/1mqkmN腾讯微云:pan.baidu./s/1qZY5GUltraISO安装成功后在计算机资源管理器中可以看到如下虚拟光驱的图标(接下来需要用到)右键点击该图标可以看到如下的一些选项,点击“加载”,选择相应的ISO文件就可以将文件加载到虚拟光驱中并打开。
步骤二:安装Clementine 121、安装Clementine 12主程序在计算机资源管理器中右键“CD驱动器”>>UtraISO>>加载,选择”SPSS_Clementine_v12.0-CYGiSO.bin”这个文件然后在打开计算机资源管理器可以看到如下情况双击打开,选择setup.exe运行,在弹出框中选择第一个选项(Install Clementine)即可,然后依次完成安装过程。
数据挖掘软件SPSS Clementine 12安装教程SPSS Clementine 12安装包比较特殊,是采用ISO格式的,而且中文补丁、文本挖掘模块都是分开的,对于初次安装者来说比较困难。
本片文章将对该软件的安装过程进行详细介绍,相信大家只要按照本文的安装说明一步一步操作即可顺利完成软件的安装和破解。
步骤一:安装前准备1、获取程序安装包SPSS Clementine 12的安装包获取的方法比较多,常用的方法是通过baidu或google搜索关键词,从给出的一些上进行下载。
为了方便大家安装,这里给出几个固定的下载供大家安装:论坛上下载:.kddchina./thread-538-1-1.html百度网盘:pan.baidu./s/1pEcS9提取密码:rhor腾讯微云:/OVYtFW相信这么多下载方式大家一定能成功获得安装程序的。
2、ISO文件查看工具由于程序安装包是ISO光盘镜像形式的,如果你的操作系统是win8之前的系统,那么就需要安装能够打开提取ISO文件的工具软件了。
在此推荐UltraISO这款软件,主要是既能满足我们的需要,而且文件又较小,安装方便。
这里提供几个下载UltraISO程序的地址:百度网盘pan.baidu./s/1mqkmN腾讯微云:pan.baidu./s/1qZY5GUltraISO安装成功后在计算机资源管理器中可以看到如下虚拟光驱的图标(接下来需要用到)右键点击该图标可以看到如下的一些选项,点击“加载”,选择相应的ISO文件就可以将文件加载到虚拟光驱中并打开。
步骤二:安装Clementine 121、安装Clementine 12主程序在计算机资源管理器中右键“CD驱动器”>>UtraISO>>加载,选择”SPSS_Clementine_v12.0-CYGiSO.bin”这个文件然后在打开计算机资源管理器可以看到如下情况双击打开,选择setup.exe运行,在弹出框中选择第一个选项(Install Clementine)即可,然后依次完成安装过程。