2019年七年级下全等三角形经典习题汇集专题-全等与截长补短-X
- 格式:docx
- 大小:142.65 KB
- 文档页数:2
初中数学全等专题截长补短法一、单项选择题 (共 5 道,每道20 分 )1.正方形 ABCD中, E为 BC上的一点, F 为 CD 上的一点,BE+DF=EF,则∠EAF的度数为 ( )A.30 °B.37.5 °C.45 °D.60 °答案:C解题思路:延长 EB 至点 G ,使得 BG=DF,连接 AG,可证明:△ ABG≌ △ ADF( SAS),∴ ∠ DAF=∠ BAG, AF=AG,又∵EF=DF+BE=EB+BG=EG, AE=AE∴ △ AEG≌ △ AEF( SSS)∴ ∠EAG=∠EAF,∵ ∠ DAF+∠ EAF+∠ BAE=90 ∴°∠EAG+∠ EAF=90,°∴∠ EAF=45 。
°2.如图,在△ ABC 中, AB=AC,∠ ABC=40°, BD 是∠ ABC 的均分线,延伸 BD 至 E,是 DE=AD,则∠ ECA的度数为()A.30 °B.35 °C.40 °D.45 °答案:C解题思路:在 BC上截取 BF=AB,连 DF,则有△ ABD≌ △ FBD,∴ DF=DA=DE,又∵ ∠ ACB=∠ABC=40°,∠ DFC=180°-∠ A=80°,∴ ∠ FDC=60°,∵ ∠ EDC=∠ ADB=180°-∠ ABD-∠ A=180°-20 °-100 °=60°,∴ △ DCE≌△ DCF,故∠ ECA=∠ DCB=40°.应选 C.3.已知: AC 均分∠ BAD, CE⊥ AB,∠ B+∠ D=180°,则以下说法正确的选项是()A.CD=AD+BEB.AE=CE+BEC.AE=AD+BED.AC=AD+BE答案:C解题思路:在 AB 上截取 AF,使得 AF=AD,连结 CF,则可先证△ ADC≌ △AFC,再证明△ CEF≌ △ CEB,就能够获得AE=AD+BE,因此 C选项正确。
七年级数学下册《全等三角形》专题练习1、 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2、已知:D 是AB 中点,∠ACB=90°,求证:12CD AB =3、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,证21∠=∠4、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACADBC5、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C6、已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE7、已知:AB=6,AC=2,D 是BC 中线,求AD 的取值范围。
8. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
9、已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠CCDB BA CDF2 1 EADBCA10、已知:AB=CD ,∠A=∠D ,求证:∠B=∠C11、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE12.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .13.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA 14.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .AB C DDCBAFE PEDC15.如图,△ABC 中,AD 是∠CAB 的平分线,且∠C =2∠B,求证:AB=AC+CD16.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.17.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):18.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .OEDC B AFEDA DC B A19、如图:DF=CE ,AD=BC ,∠D=∠C 。
全等三角形截长补短法的经典例题初中最容易拉开分数差距的就是数学考试,而初二数学难点就差在几何上了。
初中数学哪些题最容易拉开差距?毫无疑问——几何辅助线!几何辅助线答题成为孩子们成绩的分水岭!很多资深数学老师经常挂在嘴边一句话,得几何者得数学。
为了学好几何,孩子们就必须要在头脑中建立几何辅助线模型,学会做辅助线,构造模型。
说来说去其实也就那几个模型,学会了按照模型设计辅助线,初中数学考试答题迎刃而解。
截长补短法,是初中数学几何题中一种辅助线的添加方法。
截长:即在一条较长的线段上截取一段较短的线段在线段AB上截取AD=AC补短:在较短的线段上补一段线段使其和较长的线段相等延长AC,使得AD=AB例1.如图①,已知在△ABC中,∠C=2∠B,AD平分∠BAC交BC于点D。
求证:AB=AC+CD方法1(截长法)证明:如图②,在AB上取AE=AC,连接DE∵AD平分∠BAC∴∠1=∠2∴在△ADE和△ADC中AE= AC∠1=∠2AD=AD∴△ADE≌△ADC(SAS)ED=CD,∠AED=∠C=2∠B又∵∠AED=∠BH∠BDE∴∠B=∠BDE,∴EB=ED∴EB=CD∴AB=AE+EB∴AB=AC+CD方法2补短法:证明如图③,延长AC到E,使CE=CD,连接DE.则∠CDE=∠E ∠ACB=∠CDE+∠E=2∠E又∵∠ACB=2∠B∴∠B=∠E∴在△ABD和AED中∠B=∠E∠1=∠2AD= AD∴△ABD≌AED(AS)∴AB=AE又∵AE=AC+CE,CE=CD∴AB=AC+CD例题1,三角形中,出现角平分线,然后证明AB=AC+CD例2.如图①,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,且AC =AB+BD.求∠ABC的度数例题2,三角形中,出现了角平分线,已知线段的等量关系AC=AB+BD,再求角度的经典例题,同样可以截长补短来解决。
例3.如图,∠ABC+∠BCD=180°,E为AD上的一点,BE、CE分别平分∠ABC、∠BCD。
全等三角形模型——截长补短与倍长中线截长补短截长:即在一条较长的线段上截取一段较短的线段在线段AB 上截取AD AC=补短:即在较短的线段上补一段线段使其和较长的线段相等延长AC ,使得AD AB =1.ABC D 中,AD 是BAC Ð的平分线,且AB AC CD =+.若60BCA Ð=°,则ABC Ð的大小为( )A .30°B .60°C .80°D .100°【分析】可在AB 上取AC AC ¢=,则由题中条件可得BC C D ¢=¢,即2C AC D B Ð=Т=Ð,再由三角形的外角性质即可求得B Ð的大小.【解答】解:如图,在AB 上取AC AC ¢=,AD Q 是角平分线,DAC DAC ¢\Ð=Ð,ACD \D @△()AC D SAS ¢,CD C D ¢\=,又AB AC CD =+Q ,AB AC C B ¢¢=+,BC C D \¢=¢,DCBAAB CD260C AC D B ¢\Ð=Ð=Ð=°,30B \Ð=°.故选:A .2.阅读:探究线段的和.差.倍.分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在ABC D 中,2B C Ð=Ð,AD 平分BAC Ð.求证:AB BD AC +=.证明:在AC 上截取AE AB =,连接DE(2)如图2,//AD BC ,EA ,EB 分别平分DAB Ð,CBA Ð,CD 过点E ,求证:AB AD BC =+.【分析】(1)在AC 上截取AE AB =,连接DE ,证明ABD AED D @D ,得到B AED Ð=Ð,再证明ED EC =即可;(2)由等腰三角形的性质知AE FE =,再证明ADE FCE D @D 即可解决本题.【解答】证明:在AC 上截取AE AB =,连接DE ,如图1:AD Q 平分BAC Ð,BAD DAC \Ð=Ð,在ABD D 和AED D 中,AE AB BAD DAC AD AD =ìïÐ=Ðíï=î,()ABD AED SAS \D @D ,B AED \Ð=Ð,BD DE =,又2BC Ð=Ð,2AED C \Ð=Ð,而2AED C EDC C Ð=Ð+Ð=Ð,C EDC \Ð=Ð,DE CE \=,AB BD AE CE AC \+=+=;(2)延长AE 、BC 交于F ,AB BF =Q ,BE 平分ABF Ð,AE EF \=,在ADE D 和FCE D 中,DAE F AE EFAED CEF Ð=Ðìï=íïÐ=Ðî,()ADE FCE ASA \D @D ,AD CF \=,AB BF BC CF BC AD \==+=+.3.如图,在ABC D 中,AD 平分BAC Ð交BC 于D ,在AB 上截取AE AC =.(1)求证:ADE ADC D @D ;(2)若6AB =,5BC =,4AC =,求BDE D的周长.【分析】(1)根据SAS 证明ADE ADC D @D 即可;(2)根据全等三角形的性质和线段之间的关系进行解答即可.【解答】证明:(1)AD Q 平分BAC Ð,EAD CDA \Ð=Ð,在ADE D 与ADC D 中,AE AC EAD CDA AD AD =ìïÐ=Ðíï=î,()ADE ADC SAS \D @D ,(2)ADE ADC D @D Q ,ED DC \=,BDE \D 的周长6457BE BD DE AB AE BC DC DC AB AC BC DC DC AB AC BC =++=-+-+=-+-+=-+=-+=4.(2020秋•武昌区期中)如图,ABC D 中,60ABC Ð=°,AD 、CE 分别平分BAC Ð、ACB Ð,AD 、CE 相交于点P(1)求CPD Ð的度数;(2)若3AE =,7CD =,求线段AC 的长.【分析】(1)利用60ABC Ð=°,AD 、CE 分别平分BAC Ð,ACB Ð,即可得出答案;(2)由题中条件可得APE APF D @D ,进而得出APE APF Ð=Ð,通过角之间的转化可得出CPF CPD D @D ,进而可得出线段之间的关系,即可得出结论.【解答】解:(1)60ABC Ð=°Q ,AD 、CE 分别平分BAC Ð,ACB Ð,120BAC BCA \Ð+Ð=°,1()602PAC PCA BAC BCA Ð+Ð=Ð+Ð=°,120APC \Ð=°,60CPD \Ð=°.(2)如图,在AC 上截取AF AE =,连接PF .AD Q 平分BAC Ð,BAD CAD \Ð=Ð,在APE D 和APF D 中AE AF EAP FAP AP AP =ìïÐ=Ðíï=î,()APE APF SAS \D @D ,APE APF \Ð=Ð,120APC Ð=°Q ,60APE \Ð=°,60APF CPD CPF \Ð=Ð=°=Ð,在CPF D 和CPD D 中,FPC DPC CP CPFCP DCP Ð=Ðìï=íïÐ=Ðî,()CPF CPD ASA \D @D CF CD \=,3710AC AF CF AE CD \=+=+=+=.5.如图,在ABC D 中,60BAC Ð=°,AD 是BAC Ð的平分线,且AC AB BD =+,求ABC Ð的度数.【分析】在AC上截取AE AB=,根据角平分线的定义可得BAD CADÐ=Ð,然后利用“边角边”证明ABDD和AEDD全等,根据全等三角形对应边相等可得BD DE=,全等三角形对应角相等可得B AEDÐ=Ð,再求出CE BD=,从而得到CE DE=,根据等边对等角可得C CDEÐ=Ð,根据三角形的一个外角等于与它不相邻的两个内角的和可得2AED CÐ=Ð,然后根据三角形的内角和定理列方程求出CÐ,即可得解.【解答】解:如图,在AC上截取AE AB=,ADQ平分BACÐ,BAD CAD\Ð=Ð,在ABDD和AEDD中,AE ABBAD CAD AD AD=ìïÐ=Ðíï=î,()ABD AED SAS\D@D,BD DE\=,B AEDÐ=Ð,AC AE CE=+Q,AC AB BD=+,CE BD\=,CE DE\=,C CDE\Ð=Ð,即2B CÐ=Ð,在ABCD中,180BAC B CÐ+Ð+Ð=°,602180C C\°+Ð+Ð=°,解得40CÐ=°,24080ABC\Ð=´°=°.6.如图,五边形ABCDE 中,AB AE =,BC DE CD +=,120BAE BCD Ð=Ð=°,180ABC AED Ð+Ð=°,连接AD .求证:AD 平分CDE Ð.【分析】连接AC ,将ABC D 绕A 点旋转120°到AEF D ,由AB AE =,120BAE Ð=°,得到AB 与AE 重合,并且AC AF =,又由180ABC AED Ð+Ð=°,得到180AEF AED Ð+Ð=°,即D ,E ,F 在一条直线上,而BC DE CD +=,得CD DF =,则易证ACD AFD D @D ,于是ADC ADF Ð=Ð.【解答】证明:如图,连接AC ,将ABC D 绕A 点旋转120°到AEF D ,AB AE =Q ,120BAE Ð=°,AB \与AE 重合,并且AC AF =,又180ABC AED Ð+Ð=°Q ,而ABC AEF Ð=Ð,180AEF AED Ð+Ð=°Q ,D \,E ,F 在一条直线上,而BC EF =,BC DE CD +=,CD DF \=,又AC AF =Q ,ACD AFD \D @D ,ADC ADF \Ð=Ð,即AD 平分CDE Ð.7.已知:如图,在ABC D 中,D 是BA 延长线上一点,AE 是DAC Ð的平分线,P 是AE 上的一点(点P 不与点A 重合),连接PB ,PC .通过观察,测量,猜想PB PC +与AB AC +之间的大小关系,并加以证明.【分析】根据全等三角形的判定与性质,可得FP CP =,根据三角形的两边之和大于第三边,可得答案.【解答】解:PB PC AB AC +>+,理由如下:在BA 的延长线上截取AF AC =,连接PF ,在FAP D 和CAP D 中,AF AC FAP CAP AP AP =ìïÐ=Ðíï=î,()FAP CAP SAS \D @D ,FP CP \=.在FPB D 中,FP BP FA AB +>+,即PB PC AB AC +>+.8.已知ABC D 中,AB AC =,BE 平分ABC Ð交边AC 于E .(1)如图(1),当108BAC Ð=°时,证明:BC AB CE =+;(2)如图(2),当100BAC Ð=°时,(1)中的结论还成立吗?若不成立,是否有其他两条线段之和等于BC,若有请写出结论并完成证明.【分析】(1)如图1中,在BC 上截取BD BA =.只要证明BEA BED D @D ,CE CD =即可解决问题;(2)结论:BC BE AE =+.如图2中,在BA 、BC 上分别截取BF BE =,BH BE =.则EBH EBF D @D ,再证明EA EH EF CF ===即可解决问题;【解答】解:(1)如图1中,在BC 上截取BD BA =.BA BD =Q ,EBA EBD Ð=Ð,BE BE =,BEA BED \D @D ,BA BD \=,108A BDE Ð=Ð=°,AB AC =Q ,36C ABC \Ð=Ð=°,72EDC Ð=°,72CED \Ð=°,CE CD \=,BC BD CD AB CE \=+=+.(2)结论:BC BE AE =+.理由:如图2中,在BA 、BC 上分别截取BF BE =,BH BE =.则EBH EBF D @D ,EF EH \=,100BAC Ð=°Q ,AB AC =,40ABC C \Ð=Ð=°,20EBA EBC \Ð=Ð=°,80BFE H EAH \Ð=Ð=Ð=°,AE EH \=,BFE C FEC Ð=Ð+ÐQ ,40CEF C \Ð=Ð=°,EF CF \=,BC BF CF BE AE \=+=+.9.(2020秋•建华区期末)阅读下面文字并填空:数学习题课上李老师出了这样一道题:“如图1,在ABC D 中,AD 平分BAC Ð,2B C Ð=Ð.求证:AB BD AC +=.”李老师给出了如下简要分析:要证AB BD AC +=,就是要证线段的和差问题,所以有两个方法:方法一:“截长法”.如图2,在AC 上截取AE AB =,连接DE ,只要证BD = EC 即可,这就将证明线段和差问题 为证明线段相等问题,只要证出△ @△ ,得出B AED Ð=Ð及BD = ,再证出Ð = ,进而得出ED EC =,则结论成立.此种证法的基础是“已知AD 平分BAC Ð,将ABD D 沿直线AD 对折,使点B 落在AC 边上的点E 处”成为可能.方法二:“补短法”.如图3,延长AB 至点F ,使BF BD =.只要证AF AC =即可,此时先证Ð C =Ð,再证出△ @△ ,则结论成立.“截长补短法”是我们今后证明线段或角的“和差倍分”问题常用的方法.【分析】方法一、如图2,在AC 上截取AE AB =,由“SAS ”可证ABD AED D @D ,可得B AED Ð=Ð,BD DE =,由角的数量关系可求DE CE =,即可求解;方法二、如图3,延长AB 至点F ,使BF BD =,由“AAS ”可证AFD ACD D @D ,可得AC AF =,可得结论.【解答】解:方法一、在AC 上截取AE AB =,连接DE ,如图2:AD Q 平分BAC Ð,BAD DAC \Ð=Ð,在ABD D 和AED D 中,AE AB BAD DAC AD AD =ìïÐ=Ðíï=î,()ABD AED SAS \D @D ,B AED \Ð=Ð,BD DE =,又2B C Ð=ÐQ ,2AED C \Ð=Ð,而2AED C EDC C Ð=Ð+Ð=Ð,C EDC \Ð=Ð,DE CE \=,AB BD AE CE AC \+=+=,故答案为:EC ,转化,ABD ,AED ,DE ,EDC ,C Ð;方法二、如图3,延长AB 至点F ,使BF BD =,F BDF \Ð=Ð,2ABD F BDF F \Ð=Ð+Ð=Ð,2ABD C Ð=ÐQ ,F C \Ð=Ð,在AFD D 和ACD D 中,FAD CAD F CAD AD Ð=ÐìïÐ=Ðíï=î,()AFD ACD AAS \D @D ,AC AF \=,AC AB BF AB BD \=+=+,故答案为F ,AFD ,ACD .倍长中线倍长中线:即延长三角形的中线,使得延长后的线段是原中线的两倍.其目的是构造一对对顶的全等三角形;其本质是转移边和角.其中BD CD =,延长AD 使得DE AD =,则BDE CDA △≌△.10.三角形ABC 中,AD 是中线,且4AB =,6AC =,求AD 的取值范围是 .【分析】延长AD 到E ,使AD DE =,连接BE ,证ADC EDB D @D ,推出8AC BE ==,在ABE D 中,根据三角形三边关系定理得出AB BE AE AB BE -<<+,代入求出即可.【解答】解:延长AD 到E ,使AD DE =,连接BE ,AD Q 是BC 边上的中线,BD CD \=,在ADC D 和EDB D 中,Q AD DE ADC EDB DC BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,4AC BE \==,在ABE D 中,AB BE AE AB BE -<<+,64264AD \-<<+,15AD \<<,故答案为:15AD <<.11.(2021春•碑林区校级期中)问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,ABCD 中,若4AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下ED ABC的解决方法:延长AD 到点E ,使DE AD =,则得到ADC EDB D @D ,小明证明BED CAD D @D 用到的判定定理是: (用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以ABC D 的边AB ,AC 为边向外作ABE D 和ACD D ,AB AE =,AC AD =,90BAE CAD Ð=Ð=°,M 是BC 中点,连接AM ,DE .当3AM =时,求DE 的长.【分析】问题背景:先判断出BD CD =,由对顶角相等BDE CDA Ð=Ð,进而得出()ADC EDB SAS D @D ;问题解决:先证明()ADC EDB SAS D @D ,得出3BE AC ==,最后用三角形三边关系即可得出结论;拓展应用:如图2,延长AM 到N ,使得MN AM =,连接BN ,同(1)的方法得出()BMN CMA SAS D @D ,则BN AC =,进而判断出ABN EAD Ð=Ð,进而判断出ABN EAD D @D ,得出AN ED =,即可求解.【解答】解:问题背景:如图1,延长AD 到点E ,使DE AD =,连接BE ,AD Q 是ABC D 的中线,BD CD \=,在ADC D 和EDB D 中,AD ED CDA BDE CD BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,故答案为:SAS;问题解决:如图1,延长AD 到点E ,使DE AD =,连接BE ,AD Q 是ABC D 的中线,BD CD \=,在ADC EDB D @D 中,AD ED CDA BDE CD BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,BE AC \=,在ABE D 中,AB BE AE AB BE -<<+,4AB =Q ,3AC =,4343AE \-<<+,即17AE <<,DE AD =Q ,12AD AE \=,\1722AD <<;拓展应用:如图2,延长AM 到N ,使得MN AM =,连接BN ,由问题背景知,()BMN CMA SAS D @D ,BN AC \=,CAM BNM Ð=Ð,AC AD =Q ,//AC BN ,BN AD \=,//AC BN Q ,180BAC ABN \Ð+Ð=°,90BAE CAD Ð=Ð=°Q ,180BAC EAD \Ð+Ð=°,ABN EAD \Ð=Ð,在ABN D 和EAD D 中,AB EA ABN EAD BN AD =ìïÐ=Ðíï=î,()ABN EAD SAS \D @D ,AN DE \=,MN AM =Q ,2DE AN AM \==,3AM =Q ,6DE \=.12.如图,ABC D 中,D 为BC 的中点.(1)求证:2AB AC AD +>;(2)若5AB =,3AC =,求AD 的取值范围.【分析】(1)再延长AD 至E ,使DE AD =,构造ADC EDB D @D ,再根据三角形的三边关系可得2AB AC AD +>;(2)直接利用三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三边可得53253AD -<<+,再计算即可.【解答】(1)证明:由BD CD =,再延长AD 至E ,使DE AD =,D Q 为BC 的中点,DB CD \=,在ADC D 和EDB D 中AD DE ADC BDE DB CD =ìïÐ=Ðíï=î,BE AC \=,在ABE D 中,AB BE AE +>Q ,2AB AC AD \+>;(2)5AB =Q ,3AC =,53253AD \-<<+,14AD \<<.13.如图,平面直角坐标系中,A 为y 轴正半轴上一点,B 、C 分别为x 轴负半轴,x 轴正半轴上的点,AB AD =,AC AE =,90BAD CAE Ð=Ð=°,连DE .如图,F 为BC 的中点,求证:2DE AF =.【分析】延长AF 至点N ,使FN AF =,连接BN ,证明BFN CFA D @D ,根据全等三角形的性质得到BN AC =,FBN FCA Ð=Ð,证明ABN DAE D @D ,根据全等三角形的性质证明;【解答】证明:延长AF 至点N ,使FN AF =,连接BN ,在BFN D 和CFA D 中,FB FC BFN CFA FN AF =ìïÐ=Ðíï=î,BN AC \=,FBN FCA Ð=Ð,BN AE \=,ABN DAE Ð=Ð,在ABN D 和DAE D 中,AB AD ABN DAE BN AE =ìïÐ=Ðíï=î,()ABN DAE SAS \D @D ,AN DE \=,2DE AF \=.14.如图,AD 是ABC D 的边BC 上的中线,CD AB =,AE 是ABD D 的边BD 上的中线.求证:2AC AE =.【分析】延长AE 至点F ,使EF AE =,连接DF ,由SAS 证得ABE FDE D @D ,得出DF AB CD ==,EDF B Ð=Ð,易证AB BD =,得出ADB BAD Ð=Ð,证明ADC ADF Ð=Ð,由SAS 证得ADF ADC D @D ,即可得出结论.【解答】证明:延长AE 至点F ,使EF AE =,连接DF ,如图所示:AE Q 是ABD D 的边BD 上的中线,BE DE \=,在ABE D 与FDE D 中,AE EF AEB FED BE DE =ìïÐ=Ðíï=î,()ABE FDE SAS \D @D ,DF AB CD \==,EDF B Ð=Ð,AD Q 是ABC D 的边BC 上的中线,CD AB =,AB BD \=,ADB BAD \Ð=Ð,ADC B BAD BDA EDF ADF \Ð=Ð+Ð=Ð+Ð=Ð,在ADF D 与ADC D 中,AD AD ADF ADC DF DC =ìïÐ=Ðíï=î,()ADF ADC SAS \D @D ,2AC AF AE \==.15.如图,在ABC D 中,D ,E 是AB 边上的两点,AD EB =,CF 是AB 边上的中线,则求证AC BC CD CE +>+.【分析】如图,延长CF 至H ,使FH CF =,连接AH ,DH ,延长CD 交AH 于点G ,通过证明AFH BFC D @D ,BCE AHD D @D ,可得BC AH =,CE DH =,利用三角形的三边关系可求解.【解答】证明:如图,延长CF 至H ,使FH CF =,连接AH ,DH ,延长CD 交AH 于点G,Q是AB边上的中线,CF\=,且CFB AFHAF BF=,Ð=Ð,CF FH()\D@DAFH BFC SAS=,Ð=Ð,且AD BE\=,CBE HADBC AH\D@D()BCE AHD SAS\=,CE DH在AGC+>+,D中,AC AG DC DG在GDH+>,D中,DG GH DHAC AG DG GH DC DG DH\+++>++,\+>+,AC AH DC DH\+>+.AC BC CD CE16.如图1,ABCÐ=Ð.D中,CD为ABCD的中线,点E在CD上,且AED BCD(1)求证:AE BC=.(2)如图2,连接BE,若2CBEÐ的度数为 (直接写出结果),Ð=°,则ACDAB AC DE==,14【分析】(1)如图1,延长CD到F,使DF CDD@D,可得=,连接AF,由“SAS”可证ADF BDCAF BC=,F BCDÐ=Ð,由等腰三角形的性质可得结论;(2)由等腰三角形的性质可得DEB DBEÐ=Ð,可得14DCB DEBÐ=Ð-°,14ACB ABC DEBÐ=Ð=Ð+°,即可求解.【解答】证明:(1)如图1,延长CD到F,使DF CD=,连接AF,CDQ为ABCD的中线,AD BD\=,且ADF BDCÐ=Ð,且CD DF=,()ADF BDC SAS\D@D,AF BC\=,F BCDÐ=Ð,AED BCDÐ=ÐQ,AED F\Ð=Ð,AE AF\=,AE BC\=;(2)12DE AB=Q,CD为ABCD的中线,DE AD DB\==,DEB DBE\Ð=Ð,14 ABC DBE CBE DEB\Ð=Ð+Ð=Ð+°,DEB DCB CBEÐ=Ð+ÐQ,14DCB DEB\Ð=Ð-°,AC AB=Q,14ACB ABC DEB\Ð=Ð=Ð+°28ACD ACB DCB\=Ð-Ð=°,故答案为:28°.17.如图,ABC D 中,点D 是BC 中点,连接AD 并延长到点E ,连接BE .(1)若要使ACD EBD D @D ,应添上条件: ;(2)证明上题:(3)在ABC D 中,若5AB =.3AC =,可以求得BC 边上的中线AD 的取值范围4AD <.请看解题过程:由ACD EBD D @D 得:AD ED =,3BE AC ==,因此AE AB BE <+,即8AE <,而12AD AE =,则4AD <请参考上述解题方法,可求得AD m >,则m 的值为 .(4)证明:直角三角形斜边上的中线等于斜边的一半.(提示:画出图形,写出已知,求证,并加以证明)【分析】(1)根据“边角边”求证三角形全等的方法可以添加条件AD DE =;(2)易证BD CD =,根据“边角边”求证三角形全等的方法即可解题;(3)根据三角形三边关系即可解题;(4)已知RT ABC D 中90BAC Ð=°,AD 是斜边中线,求证12AD BC =;证明:延长AD 到点E 使得DE AD =,连接BE ,易证ACD EBD D @D ,可得C DBE Ð=Ð,AC BE =,即可证明BAC ABE D @D ,可得BC AE =,即可解题.【解答】解:(1)应添上条件:AD DE =,故答案为AD DE =;(2)Q 点D 是BC 中点,BD CD \=,Q 在ACD D 和EBD D 中,BD CD ADC BDE AD DE =ìïÐ=Ðíï=î,()ACD EBD SAS \D @D ;(3)Q 三角形两边之差小于第三边,AE AB BE \>-,即2AE >,12AD AE =Q ,1AD \>,故答案为 1;(4)已知RT ABC D 中90BAC Ð=°,AD 是斜边中线,求证12AD BC =,证明:延长AD 到点E 使得DE AD =,连接BE ,Q 点D 是BC 中点,BD CD \=,Q 在ACD D 和EBD D 中,BD CD ADC BDE AD DE =ìïÐ=Ðíï=î,()ACD EBD SAS \D @D ;C DBE \Ð=Ð,AC BE =,90ABC C Ð+Ð=°Q ,90ABC DBE \Ð+Ð=°,即90ABE Ð=°,Q 在BAC D 和ABE D 中,90AB BA ABE BAC AC BE =ìïÐ=Ð=°íï=î,()BAC ABE SAS \D @D ;BC AE \=,12AD BC \=.。
全等模型-倍长中线与截长补短模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。
模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。
【常见模型及证法】1、基本型:如图1,在三角形ABC中,AD为BC边上的中线.证明思路:延长AD至点E,使得AD=DE.若连结BE,则ΔBDE≅ΔCDA;若连结EC,则ΔABD≅ΔECD;2、中点型:如图2,C为AB的中点.证明思路:若延长EC至点F,使得CF=EC,连结AF,则ΔBCE≅ΔACF;若延长DC至点G,使得CG=DC,连结BG,则ΔACD≅ΔBCG.3、中点+平行线型:如图3, AB⎳CD,点E为线段AD的中点.证明思路:延长CE交AB于点F(或交BA延长线于点F),则ΔEDC≅ΔEAF.1(2023·江苏徐州·模拟预测)(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.2(2023·贵州毕节·二模)课外兴趣小组活动时,老师提出了如下问题:(1)如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考帮小明完成解答过程.(2)如图2,AD是△ABC的中线,BE交AC干E,交AD于F,且AE=EF.请判昕AC与BF的数量关系,并说明理由.3(2022·山东·安丘市一模)阅读材料:如图1,在△ABC中,D,E分别是边AB,AC的中点,小亮在证明“三角形的中位线平行于第三边,且等于第三边的一半”时,通过延长DE到点F,使EF=DE,连接CF,证明△ADE≌△CFE,再证四边形DBCF是平行四边形即得证.类比迁移:(1)如图2,AD是△ABC的中线,E是AC上的一点,BE交AD于点F,且AE=EF,求证:AC=BF.小亮发现可以类比材料中的思路进行证明.证明:如图2,延长AD至点M,使MD=FD,连接MC,⋯⋯请根据小亮的思路完成证明过程.方法运用:(2)如图3,在等边△ABC中,D是射线BC上一动点(点D在点C的右侧),连接AD.把线段CD绕点D逆时针旋转120°得到线段DE,F是线段BE的中点,连接DF、CF.请你判断线段DF与AD的数量关系,并给出证明.4(2022·河南商丘·一模)阅读材料如图1,在△ABC中,D,E分别是边AB,AC的中点,小明在证明“三角形的中位线平行于第三边,且等于第三边的一半”时,通过延长DE到点F,使EF=DE,连接CF,证明△ADE≌△CFE,再证四边形DBCF是平行四边形即得证.(1)类比迁移:如图2,AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF,求证:AC=BF.小明发现可以类比材料中的思路进行证明.证明:如图2,延长AD至点M,使MD=FD,连接MC,⋯⋯请根据小明的思路完成证明过程.(2)方法运用:如图3,在等边△ABC中,D是射线BC上一动点(点D在点C的右侧),连接AD.把线段CD绕点D逆时针旋转120°得到线段DE.F是线段BE的中点,连接DF,CF.请你判断线段DF与AD的数量关系,并给出证明;模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。
三角形全等之截长补短一、知识点睛截长补短:题目中出现线段间的和差倍分时,考虑截长补短;截长补短的目的是把几条线段间的数量关系转为两条线段的等量关系.二、精讲精练(可以尝试用多种方法)1. 已知:如图,在△ABC 中,∠1=∠2,∠B =2∠C .求证:AC =AB +BD .2. 已知:如图,在正方形ABCD 中,AD =AB ,∠D =∠ABC =∠BAD =90°,E ,F 分别为DC ,BC 边上的点,且∠EAF =45°,连接EF .求证:EF =BF +DE .3. 已知:如图,在△ABC 中,∠ABC =60º,△ABC 的角平分线AD ,CE 交于点O .求证:AC =AE +CD .21D CB A 21D CB A F EA BDCF EAB DC21D CB A AEBD COA EBD CO- 2 -4. 已知:如图,在△ABC 中,∠A =90º,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于点E .求证:CE =21BD .5. 如图,在梯形ABCD 中,AD ∥BC ,CE ⊥AB 于E ,△BDC 为等腰直角三角形,∠BDC =90°,BD CD ,CE 与BD 交于F ,连接AF .求证:CF =AB +AF .6.如图,△ABC 中,AM 是BC 边上的中线,求证:ABCDEAB CDEB F CE DA B F C E D A。
全等三角形经典习题汇集第一讲全等三角形的性质及判定【例1】 如图,AC DE ∥,BC EF ∥,AC DE =.求证:AF BD =.【补充】如图所示:AB CD ∥,AB CD =.求证:AD BC ∥.【例2】 已知:如图,B 、E 、F 、C 四点在同一条直线上,AB DC =,BE CF =,B C ∠=∠.求证:OA OD =.【补充】已知:如图,AD BC =,AC BD =,求证:C D ∠=∠.【补充】如图,在梯形ABCD 中,AD BC ∥,E 为CD 中点,连结AE 并延长AE 交BC 的延长线于点F .求证:FC AD =.FEDCBA【例3】 如图,AB CD ,相交于点O ,OA OB =,E 、F 为CD 上两点,AE BF ∥,CE DF =.求证:AC BD ∥. FEDCBADCB A F E O D CB A O DC BAOF E DCBA【补充】已知,如图,AB AC =,CE AB ⊥,BF AC ⊥,求证:BF CE =.F E CBA【例4】 如图,90DCE CD CE AD AC BE AC ∠=︒=⊥⊥,,,,垂足分别为A B ,,试说明AD AB BE +=EDCBA【例10】 如图所示, 已知AB DC =,AE DF =,CE BF =,证明:AF DE =.【例11】 E 、F 分别是正方形ABCD 的BC 、CD 边上的点,且BE CF =.求证:AE BF ⊥.PFEDCBA【补充】E 、F 、G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE EF ⊥,GE EF =.求证:BG CF BC +=.F DC BAGA BC DEF【例12】 在凸五边形中,B E ∠=∠,C D ∠=∠,BC DE =,M 为CD 中点.求证:AM CD ⊥.【补充】如图所示:AF CD =,BC EF =,AB DE =,A D ∠=∠.求证:BC EF ∥.A BCDE F【例13】 (1)如图,△AB C的边AB 、AC 为边分别向外作正方形ABDE 和正方形AC FG,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米?GFEDCB A【例14】 如图,ABC ∆中,AB BC =,90ABC ∠=︒,D 是AC 上一点,且CD CB AB ==,DE AC ⊥交AB 于E点.求证:AD DE EB ==.M EDC B ACB DEA【例15】 ABC ∆中,90B ∠=︒,M 为AB 上一点,使得AM BC =,N 为BC 上一点,使得CN BM =,连AN 、CM 交于P 点.试求APM ∠的度数,并写出你的推理证明的过程.图3P DM N B C A【例16】 如图,I 是ABC △的内心,且CA AI BC +=.若80BAC ∠=︒,求ABC ∠和AIB ∠的大小.AB CI【例17】 已知:BD CE 、是ABC ∆的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =,求证:⑴AP AQ =;⑵AP AQ ⊥.PDQCBEA【例18】 ⑴ 如左下图,在矩形ABCD 中,E 为CB 延长线上一点且AC CE =,F 为AE 的中点.求证:BF FD ⊥.⑵ 如右下图,在ABC ∆中,BE 、CF 分别为边AC 、AB 的高,D 为BC 的中点,DM EF ⊥于M .求证:FM EM =.F EDCBA MFED CB A18.补充:如图,已知60ABD ACD ∠=∠=︒,且1902ADB BDC ∠=︒-∠.求证:ABC ∆是等腰三角形.【例19】 如图,ABC ∆为边长是1的等边三角形,BDC ∆为顶角()BDC ∠是120︒的等腰三角形,以D 为顶点作一个60︒角,角的两边分别交AB 于M ,AC 于N ,连接MN ,形成一个AMN ∆.求AMN ∆的周长.【习题1】 已知:如图,AB DE ∥,AC DF ∥,BE CF =. 求证:AB DE =.家庭作业AMNB CDFEDC B A【习题2】 已知:△DE F≌△MN P,且EF =NP,∠F =∠P ,∠D =48°,∠E =52°,MN =12cm ,求:∠P 的度数及DE 的长.【习题3】如图,矩形ABCD 中,E 是AD 上一点,CE EF ⊥交AB 于F 点,若2DE =,矩形周长为16,且CE EF =,求AE 的长.EDCBF A【习题4】在四边形ABCD 中,AD BC ∥,A ∠的平分线AE 交DC 于E .求证:当BE 是B ∠的角平分线时,有AD BC AB +=.【备选1】 如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠.月测备选ABCDEO【备选2】 如图所示,在ABC △中,AD BC ⊥于点D ,2B C ∠=∠.求证:AB BD CD +=.【备选3】 如图,△ABC 中,D 是BC的中点,过D点的直线GF 交A C于F ,交A C的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、E F. (1)求证:BG=CF .(2)请你判断B E+C F与EF 的大小关系,并说明理由.FE DCBAG第二讲 全等三角形与中点问题版块一 倍长中线【例1】 在△ABC 中,9,5==AC AB ,则BC 边上的中线AD 的长的取值范围是什么?【补充】已知:ABC ∆中,AD 是中线.求证:1()2AD AB AC <+.【例2】 已知:如图,梯形ABCD 中,AD BC ∥,点E 是CD 的中点,BE 的延长线与AD 的延长线相交于点F .求证:BCE FDE ∆∆≌.C D B ABB CDFECBA【例3】 如图,在ABC ∆中,D 是BC 边的中点,F ,E 分别是AD 及其延长线上的点,CF BE ∥.求证:BDE CDF ∆∆≌.【例4】 如图,ABC ∆中,<AB AC ,AD 是中线.求证:<DAC DAB ∠∠.【例5】 如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE交AC 于F ,AF EF =,求证:AC BE =.【例6】 如图所示,在ABC ∆和A B C '''∆中,AD 、A D ''分别是BC 、B C ''上的中线,且AB A B ''=,AC A C ''=,AD A D ''=,求证ABC A B C '''∆∆≌.F ED C B AB C F ED CB AB【例7】 如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交EF 于点G ,若BG CF =,求证:AD 为ABC ∆的角平分线.【例8】 已知AD 为ABC ∆的中线,ADB ∠,ADC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>.【例9】 在Rt ABC ∆中,90A ∠=︒,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED FD ⊥.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?【例10】 已知△A BC,∠B =∠C ,D ,E分别是AB 及AC延长线上的一点,且B D=CE ,连接DE 交底BC于G,求证GD =GE .FGE DC B AF EABDCF EDCBAGEDCBA【例11】 如图所示,在ABC ∆中,D 是BC 的中点,DM 垂直于DN ,如果2222BM CN DM DN +=+,求证()22214AD AB AC =+.(勾股定理的内容,选做)【例10】 在Rt ABC ∆中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足90DFE ∠=︒.若3AD =,4BE =,则线段DE 的长度为_________.N MD C B A图 6G E F D B C A【习题1】 如图,在等腰ABC ∆中,AB AC =,D 是BC 的中点,过A 作AE DE ⊥,AF DF ⊥,且AE AF =.求证:EDB FDC ∠=∠.【习题2】 如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,AF 与EF 相等吗?为什么?【习题3】 如右下图,在ABC ∆中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.A【备选1】如图,已知AB =DC ,AD =BC ,O 是BD 中点,过O 点的直线分别交DA 、BC 的延长线于E,F .求证:∠E=∠F【备选2】如图,ABC ∆中,AB AC =,90BAC ∠=︒,D 是BC 中点,ED FD ⊥,ED 与AB 交于E ,FD 与AC交于F .求证:BE AF =,AE CF =.家庭作业FED CB AD FE C B A A B C D EF第三讲 全等三角形与角平分线问题【例1】 在ABC ∆中,D 为BC 边上的点,已知BAD CAD ∠=∠,BD CD =,求证:AB AC =.D CBA【例2】 已知ABC ∆中,AB AC =,BE 、CD 分别是ABC ∠及ACB ∠平分线.求证:CD BE =.ED CB A【例3】 如图,在ABC ∆中,60B ∠=︒,AD 、CE 分别平分BAC ∠、BCA ∠,且AD 与CE 的交点为F .求证:FE FD =.FBEDCA【例4】 如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC ∆的面积.【补充】如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠.ADOCBABCDE O【例5】 已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.OED CBA【例6】 如图,已知E 是AC 上的一点,又12∠=∠,34∠=∠.求证:ED EB =.E DC B A4321【例7】 如图所示,OP 是AOC ∠和BOD ∠的平分线,OA OC =,OB OD =.求证:AB CD =.PDBOCA【例8】 如图所示,已知ABC ∆中,AD 平分BAC ∠,E 、F 分别在BD 、AD 上.DE CD =,EF AC =.求证:EF ∥ABFA CD E B【例10】 如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作CE AB E ⊥于,并且1()2AE AB AD =+,则ABC ADC ∠+∠等于多少?EDCBA【补充】长方形ABC D中,AB =4,BC =7,∠BAD 的角平分线交BC 于点E ,EF ⊥ED 交AB 于F,则EF =__________.FEDCBA【补充】在ABC ∆中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.求证:AB AC PB PC ->-.CD B PA【例11】 如图,在ABC ∆中,2B C ∠=∠,BAC ∠的平分线AD 交BC 与D .求证:AB BD AC +=.DC B A【例12】 如图,ABC ∆中,AB AC =,108A ∠=︒,BD 平分ABC ∠交AC 于D 点.求证:BC AC CD =+.AB CD【巩固】已知等腰ABC ∆,100A ∠=︒,ABC ∠的平分线交AC 于D ,则BD AD BC +=.【例13】 如图所示,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证2AB AC AM +=.MD CBA【例14】 如图,ABC ∆中,AB AC =,BD 、CE 分别为两底角的外角平分线,AD BD ⊥于D ,AE CE ⊥于E .求证:AD AE =.HG D AB C E【例15】 如图,180A D ∠+∠=︒,BE 平分ABC ∠,CE 平分BCD ∠,点E 在AD 上.① 探讨线段AB 、CD 和BC 之间的等量关系. ② 探讨线段BE 与CE 之间的位置关系.EDCBA【习题2】如图,在ABC∆中,AB BD AC+=,BAC∠的平分线AD交BC与D.求证:2B C∠=∠.D CBA【习题3】AD是ABC∆的角平分线,BE AD⊥交AD的延长线于E,EF AC∥交AB于F.求证:AF FB=.DECFBA【习题4】如图所示,AD平行于BC,DAE=EAB∠∠,ABE=EBC∠∠,AD=4,BC=2,那么AB=________.家庭作业【习题5】ABC ∆中,D 为BC 中点,DE BC ⊥交BAC ∠的平分线于点E ,EF AB ⊥于F EG AC ⊥于G .求证:BF CG =.EGF DC BA【备选1】在ABC ∆中,AD 平分BAC ∠,AB BD AC +=.求:B C ∠∠的值.CD B A【备选2】如图,已知在ABC ∆中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21ECBA月测备选【备选3】如图所示,在四边形ABCD 中,AD BC ∥,A ∠的平分线AE 交DC 于E ,求证:当BE 是B ∠的平分线时,有AD BC AB +=.EBCDA第四讲 全等三角形与旋转问题【例1】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.(1)求证:AN BM =.(2)求证:CD =CE(3) 求证:C F平分∠MC NAACACB(4) 求证:DE ∥AB【例2】 如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:AE CG =.G FEDCBA【例3】 如图,等边三角形ABC ∆与等边DEC ∆共顶点于C 点.求证:AE BD =.DECBA【例4】 如图,D 是等边ABC ∆内的一点,且BD AD =,BP AB =,DBP DBC ∠=∠,问BPD ∠的度数是否一定,若一定,求它的度数;若不一定,说明理由.A CPDC BA【例5】 如图,等腰直角三角形ABC 中,90B =︒∠,AB a =,O 为AC 中点,EO OF ⊥.求证:BE BF +为定值.OB ECF A【补充】如图,正方形OGHK 绕正方形ABCD 中点O 旋转,其交点为E 、F ,求证:AE CF AB +=.54321OHBE DKG CF A【例6】 (2004河北)如图,已知点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA AF ⊥. 求证:DE BF =.FED CBA【补充】如图所示,在四边形ABCD 中,90ADC ABC ∠=∠=︒,AD CD =,DP AB ⊥于P ,若四边形ABCD的面积是16,求DP 的长.PDCBA【例7】 E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =︒∠,AH EF ⊥,H 为垂足,求证:AH AB =.【巩固】如图,正方形ABCD 的边长为1,点F 在线段CD 上运动,AE 平分BAF ∠交BC 边于点E .⑴求证:AF DF BE =+.⑵设DF x =(01x ≤≤),ADF ∆与ABE ∆的面积和S 是否存在最大值?若存在,求出此时x 的值及S .若不存在,请说明理由.FEDC BA【补充】(1)如图,在四边形ABCD 中,A B=A D,∠B=∠D=90︒,E 、F 分别是边B C、C D上的点,且∠EAF=12∠BAD .求证:EF =BE +F D;C HFE D B AFED CBA(2) 如图,在四边形ABC D中,A B=A D,∠B+∠D =180︒,E 、F 分别是边BC 、C D上的点,且∠EAF=12∠BAD , (1)中的结论是否仍然成立?不用证明.FEDCB A【习题1】 如图,已知ABC ∆和ADE ∆都是等边三角形,B 、C 、D 在一条直线上,试说明CE 与AC CD+相等的理由.EDCBA【习题2】 (湖北省黄冈市2008年初中毕业生升学考试)已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF DE ⊥交BC 的延长线于点F .求证:DE DF =.家庭作业FEDCBA【习题3】 在梯形ABCD 中,AB CD ∥,90A ∠=︒,2AB =,3BC =,1CD =,E 是AD 中点,试判断EC 与EB 的位置关系,并写出推理过程.【习题4】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.CG 、CH 分别是ACN ∆、MCB ∆ 的高.求证:CG CH =.HG NM CBA【备选1】 在等腰直角ABC ∆中,90ACB ∠=,AC BC =,M 是AB 的中点,点P 从B 出发向C 运动,MQ MP ⊥ 交AC 于点Q ,试说明MPQ ∆的形状和面积将如何变化.ﻩ月测备选A B C D E A P M C Q B【备选2】 如图,正方形ABCD 中,FAD FAE ∠=∠.求证:BE DF AE +=.FEDCBA【备选3】 等边ABD ∆和等边CBD ∆的边长均为1,E 是BE AD ⊥上异于A D 、的任意一点,F 是CD 上一点,满足1AE CF +=,当E F 、移动时,试判断BEF ∆的形状.DFE CBA第五讲 轴对称和等腰三角形【例1】 在ABC ∆中,AB AC =,BC BD ED EA ===.求A ∠.【补充】在ABC ∆中,AB AC =,BC BD =,AD ED EB ==.求A ∠.A【例2】 ABC ∆的两边AB 和AC 的垂直平分线分别交BC 于D 、E ,若150BAC DAE ∠+∠=︒,求BAC ∠.【例3】 如图,点O 是等边AO AD =内一点,110AOB ∠=,BOC α∠=.将BOC △绕点C 按顺时针方向旋转19060αα-=-∴°°得ADC △,连接OD ,则COD △是等边三角形;当α为多少度时,AOD △是等腰三角形?【例4】 如图,在ABC ∆中,B C ∠=∠,D 在BC 上,50BAD ∠=,在AC 上取一点E ,使得ADE AED ∠=∠,求EDC ∠的度数.【例5】 如图,ABC ∆为等边三角形,延长BC 到D ,又延长BA 到E ,使AE BD =,连接,CE DE ,求证:CDE ∆为等腰三角形.E D C B AO DC B AAB CD E E【例6】 如图,在ABC ∆中,B ∠,C ∠为锐角,,,M N D 分别为边AB 、AC 、BC 上的点,满足AM AN =,BD DC =,且BDM CDN ∠=∠.求证:AB AC =.板块三、轴对称在几何最值问题中的应用【例7】 已知点A 在直线l 外,点P 为直线l 上的一个动点,探究是否存在一个定点B ,当点P 在直线l 上运动时,点P 与A 、B 两点的距离总相等,如果存在,请作出定点B ;若不存在,请说明理由.【例8】 如图,在公路a 的同旁有两个仓库A 、B ,现需要建一货物中转站,要求到A 、B两仓库的距离和最短,这个中转站M 应建在公路旁的哪个位置比较合理?aBA【例9】 如图,45AOB ∠=︒,角内有点P ,在角的两边有两点Q 、R (均不同于O 点),求作Q 、R ,使得PQR ∆的周长的最小.【补充】如图,M 、N 为ABC ∆的边AC 、BC 上的两个定点,在AB 上求一点P ,使PMN ∆的周长最短.A BCDMNPl【例10】 已知如图,点M 在锐角AOB ∠的内部,在OB 边上求作一点P ,使点P 到点M 的距离与点P 到OA 的边的距离和最小.【补充】已知:A 、B 两点在直线l 的同侧, 在l 上求作一点M ,使得||AM BM -最小.【补充】已知:A 、B 两点在直线l 的同侧,在l 上求作一点M ,使得||BM AM -最大.【例11】 如图,正方形ABCD 中,8AB =,M 是DC 上的一点,且2DM =,N 是AC 上的一动点,求DN MN +的最小值与最大值.【补充】例题中的条件不变,求DN MN -的最小值与最大值.MBOA lB AN MDC B A【补充】如图,已知正方形ABCD的边长为8,M在DC上,且2DM=,N是AC上的一个动点,则DN MN+的最小值是MDCBA【习题1】(2007双柏中考)等腰三角形的两边长分别为4和9,则第三边长为 . 【习题2】等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,则这个等腰三角形的底边的长为( )A.17cmB.5cm C.17cm或5cm D.无法确定【习题3】已知等腰三角形的周长为20,腰长为x,求x的取值范围.【习题4】(2004天津)在下列图形中,既是轴对称图形,又是中心对称图形的是( )【习题5】判断下列图形(图)是否为轴对称图形?如果是,说出它有几条对称轴.⑴⑵⑶⑷⑸⑹⑺⑻⑼【备选1】ABC∆的一个内角的大小是040,且A B∠=∠,那么C∠的外角的大小是( )A.140︒ B.80︒或100︒C. 100︒或140︒D.80︒或140︒【备选2】已知等腰三角形一腰上的中线将它们的周长分为12和15两部分,求腰长和底长.【备选3】(四川省竞赛题)如图,在等腰Rt ABC∆中,3CA CB==,E的BC上一点,满足2BE=,在斜边AB上求作一点P使得PC PE+长度之和最小.月测备选家庭作业PECBA【备选4】 在正方形ABCD 中,E 在BC 上,2BE =,1CE =,P 在BD 上,求PE 和PC 的长度之和的最小值.E PDCB AE‘E PDCB A第六讲 全等三角形中的截长补短板块一、截长补短【例1】 已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOEA【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?【例3】 AD⊥AB ,CB ⊥AB ,DM =C M=a ,AD =h ,CB =k ,∠AMD =75°,∠BMC =45°,则AB 的长为( )A. a B . k C .2k h+ D. h MDCBA【例4】 已知:如图,ABCD 是正方形,∠F AD =∠FAE . 求证:BE +DF =AE .【例5】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.NE BMADFEDCBAFACDEOOE DCA【例6】 (北京市数学竞赛试题,天津市数学竞赛试题)如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.【例7】 五边形A BCDE 中,AB=AE ,B C+DE =CD ,∠AB C+∠AE D=180°,求证:AD 平分∠CD ENMDCBA C EDB A板块二、全等与角度【例10】 如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.【例11】 在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.D CB A DECBA。
全等三角形专题——截长补短角得平分线具有其特有得性质,这一性质在许多问题里都有着广泛得应用,而“截长补短法”又就就是解决这一类问题得一种特殊得方法,利用此种方法常可使思路豁然开朗。
1、 如图, ,点E 在线段AB 上,,, 求证:CD=AD+BC2、已知如图,,P 为B N上一点,且于点D,且, 求证:A B+BC=2BD 2、 已知,如图在中,,,求证:AB=A C+C D4、已知中,,BD,CE分别评分与,BD,CE 交于点O,试判断BE,CD,B C得数量关系,并加以证明。
5、如图所示,就就是边长为1得等边三角形,就就是顶角为得等腰三角形,以D为顶点得一个得,点M,N 分别在AB,AC 上,求得周长。
6、如图,在中,,AD 就就是得平分线,且AC=AB+BD,求得度数。
7、已知如图,ABCD 就就是正方形,,求证:BE +DF=AF8、在中,,且于D,求证:CD=AB+BD9、如图所示,△ABC 中,∠C=90°,∠B=45°,AD 平分∠BAC 交B C于D 、求证:AB=AC+CD 、变式:如图所示,在△ABC 中,∠C=90°,∠B=45°,A B=AC+CD 、求证:AD 平分∠BAC 、10、如图所示,△ABC 中,AD为∠BAC 得角平分线,∠AB C=90°,∠C=30°,BE ⊥AD 于E 点,求证:A C-AB=2BE 、全等三角形在中考中必考题型1、已知,在中,,,直线l 绕点A旋转,过点B,C分别向直线l做垂线,垂足分别就就是点D 、点E。
(1)如图1,求证:BD+C E=AE;(2)当直线l绕点A 顺时针转到如图2,则BD、C E 、AE之间满足得数量关系就就是 2、已知,连接A C,AC=AB,E 为线段BC上得一动点,F 为直线DC 上一动点,且。
(1)如图(1),当时,求证:CE+CF=C A。
三角形全等之截长补短(二)(北师版)(专题)一、单选题(共4道,每道25分)1.已知:如图,在四边形ABCD中,∠ADC=90°,连接AC,∠ACD=45°,AE平分∠CAD.求证:DE=AC-AD.先在图上走通思路后再填写空格内容:①要证明DE=AC-AD,是线段的和差倍分,考虑_________,这里采用截长;②结合条件AE平分∠CAD,考虑_____________________(辅助线),然后证全等,理由是_______,由全等的性质得_________,为接下来的全等准备条件;③由已证的全等和条件∠ADC=90°,∠ACD=45°,得________,等量代换DE=FC,从而得AC=AD+DE,即DE=AC-AD.以上空缺处依次所填最恰当的是( )A.①截长补短②在AC上截取AF,使AD=AF,连接EF;ASA;DE=FE③FE=FCB.①截长补短②在AC上截取AF,使AF=AD,连接EF;SAS;∠D=∠AFE,DE=FE③FE=FCC.①截长补短②在AC上截取AF,使AF=AD,连接EF;ASA;∠D=∠AFE③FE=FCD.①截长补短②在AC上截取AF,使AF=DE,连接EF;SAS;AD=FC③AC=AF+FC答案:B解题思路:看到线段的和差倍分,考虑截长补短,这里采用截长.条件中有AE平分∠CAD,提供了一组角相等,可以考虑在AC上截取AF,使AF=AD,连接EF,只需要证明CF=DE即可.结合已知条件,利用SAS可以证明△ADE≌△AFE,进而得到DE=EF,这样DE就转移到了EF,这时EF和CF就被放在了一个三角形中,然后可以根据∠ADC=90°,∠ACD=45°,证明△CEF是等腰三角形.证明:如图,在AC上截取AF,使AF=AD,连接EF.在△ADE和△AFE中∴△ADE≌△AFE(SAS)∴DE=FE,∠D=∠AFE∵∠ADC=90°∴∠AFE=90°∴∠CFE=90°∵∠ACD=45°∴∠CEF=45°∴∠ACD=∠CEF∴CF=EF∴DE=CF∵AC=AF+CF=AD+DE∴DE=AC-AD.故选B.试题难度:三颗星知识点:三角形全等之截长补短2.已知:如图,在四边形ABCD中,AB=AD,E,F分别是DC,BC上的点,且满足,∠D+∠ABC=180°.求证:EF=BF+DE.先在图上走通思路后再填写空格内容:①要证明EF=BF+DE,是线段的和差倍分,考虑_________,解决本题用的是_____;②结合条件∠D+∠ABC=180°,考虑_____________________(辅助线),然后证全等,理由是_______;③由已证的全等和条件,得________,然后证全等,理由是_______,由全等的性质得_________,从而得EF=BF+DE.以上空缺处依次所填最恰当的是( )A.①截长补短;补短②延长CB到G,使BG=DE,连接AG;SAS③∠G=∠AEF;SSA;GF=EFB.①截长补短;截长②在FE上截取FG,使FG=BF,连接AG;SAS③∠GAE=∠DAE;SAS;GE=DEC.①截长补短;补短②延长CB到G,使BG=DE,连接AG;SAS③∠GAF=∠EAF;SAS;GF=EFD.①截长补短;截长②在EF上截取EG,使EG=ED,连接AG;SAS③∠GAF=∠BAF;SAS;GF=BF答案:C解题思路:看到线段的和差倍分,考虑截长补短,这里采用补短.条件中有∠D+∠ABC=180°,因此考虑延长CB到G,使BG=DE,连接AG,可以得到∠ABG=∠D,只需要证明EF=GF即可.结合已知条件,利用SAS可以证明△ABG≌△ADE,进而得到AG=AE,∠DAE=∠BAG,结合可以得到∠GAF=∠EAF,进而证明△GAF≌△EAF(SAS),得到GF=EF.证明:如图,延长CB到G,使BG=DE,连接AG.∵∠D+∠ABC=180°∠1+∠ABC=180°∴∠1=∠D在△ABG和△ADE中∴△ABG≌△ADE(SAS)∴AG=AE,∠4=∠3∵∴∠2+∠3=∠EAF∴∠2+∠4=∠EAF即∠GAF=∠EAF在△GAF和△EAF中∴△GAF≌△EAF(SAS)∴GF=EF∵GF=BF+BG=BF+DE∴EF=BF+DE故选C.试题难度:三颗星知识点:三角形全等之截长补短3.已知:如图,∠ACB=∠ABC=60°,∠EDF=60°,BD=CD,∠DBC=∠DCB=30°.求证:EF=BE+CF.先在图上走通思路后再填写空格内容:①要证明EF=BE+CF,是线段的和差倍分,考虑_________,解决本题用的是_____;②结合已知条件∠ACB=∠ABC=60°,∠DBC=∠DCB=30°,BD=CD,考虑_______________________________(辅助线),然后证全等,理由是_______,由全等的性质得_________,为接下来的全等准备条件;③由已证的全等和条件∠EDF=60°,∠BDC=120°,得________,然后证全等,理由是_______,由全等的性质得_________,从而得EF=BE+CF.以上空缺处依次所填最恰当的是( )A.①截长补短;补短②延长AC到G,使CG=BE,连接DG;SAS;DE=DG,∠1=∠CDG③∠EDF=∠GDF;SAS;EF=GFB.①截长补短;截长②在EF上截取EG,使EG=BE,连接DG;SAS;BD=GD,∠1=∠EDG③∠GDF=∠CDF;SAS;FG=FCC.①截长补短;补短②延长AC到G,使CG=BE,连接DG;ASA;DE=DG③∠EDF=∠GDF;SAS;EF=GFD.①截长补短;截长②在FE上截取FG,使FG=FC,连接DG;SAS;DC=DG,∠2=∠FDG③∠GDE=∠BDE;SAS;EG=BE答案:A解题思路:证明:如图,延长AC到G,使CG=BE,连接DG.∵∠ACB=∠ABC=60°,∠DBC=∠DCB=30°∴∠EBD=∠DCF=90°∴∠EBD=∠DCG=90°在△BDE和△CDG中∴△BDE≌△CDG(SAS)∴∠1=∠3,DE=DG∵∠DBC=∠DCB=30°∴∠BDC=120°∵∠EDF=60°∴∠1+∠2=60°∴∠3+∠2=60°即∠GDF=60°∴∠EDF=∠GDF在△EDF和△GDF中∴△EDF≌△GDF(SAS)∴EF=FG∵FG=FC+CG∴EF=BE+CF故选A.试题难度:三颗星知识点:三角形全等之截长补短4.已知:如图,在四边形ABCD中,AB=AD,∠ADC=∠B=∠BAD=90°,点E在BC的延长线上,点F在CD的延长线上,EAF=45°.求证:DF=BE-EF.先在图上走通思路后再填写空格内容:①要证明DF=BE-EF,是线段的和差倍分,考虑_________,解决本题用的是_____;②结合条件AB=AD,∠ADC=∠B=90°,考虑______________________________(辅助线),然后证全等,理由是_______,由全等的性质得_________,为接下来的全等准备条件;③由已证的全等和条件∠BAD=90°,∠EAF=45°,得________,然后证全等,理由是_______,由全等的性质得_________,从而得DF=BE-EF.以上空缺处依次所填最恰当的是( )A.①截长补短;补短②延长EF到G,使FG=FD,连接AG;SAS;AG=AD,∠G=∠ADF③∠G=∠B;SSA;BE=GEB.①截长补短;截长②在BE上截取BG,使BG=DE;ASA;∠AGB=∠AFD,BG=DF③∠GAE=∠FAE;SAS;EG=EFC.①截长补短;补短②延长EF到G,使FG=FD,连接AG;ASA;AG=AD,∠G=∠ADF③∠G=∠B,∠GAE=∠BAE;SAS;BE=GED.①截长补短;截长②在BE上截取BG,使BG=DF,连接AG;SAS;AG=AF,∠BAG=∠DAF③∠GAE=∠FAE;SAS;EG=EF答案:D解题思路:证明:如图,在BE上截取BG,使BG=DF,连接AG.∵∠ADC=∠B=90°∴∠ADF=∠B=90°在△ABG和△ADF中∴△ABG≌△ADF(SAS)∴∠1=∠2,AG=AF∵∠EAF=45°∴∠2+∠3=45°∴∠1+∠3=45°∵∠BAD=90°∴∠4=45°∴∠4=∠EAF在△AEG和△AEF中∴△AEG≌△AEF(SAS)∴EG=EF∵BE=BG+GE∴BE=DF+EF∴DF=BE-EF故选D.试题难度:三颗星知识点:三角形全等之截长补短。
三角形全等之截长补短(一)(北师版)(专题)一、单选题(共4道,每道25分)1.已知,如图,BM平分∠ABC,P为BM上一点,PD⊥BC于点D,BD=AB+CD.求证:∠BAP+∠BCP=180°.(截长法)证明:如图,在BC上截取BE=BA,连接PE.___________________________在△ABP和△EBP中∴△ABP≌△EBP(SAS)∴______________________________________________________∴CD=ED∵PD⊥BC∴∠PDE=∠PDC=90°在△PDE和△PDC中∴△PDE≌△PDC(SAS)∴PE=PC___________________________请你仔细观察下列序号所代表的内容:①;②∵∠1=∠2;③∠A=∠BEP;④AP=PE;⑤;⑥;⑦;⑧.以上空缺处依次所填最恰当的是( )A.①③⑥⑦B.①③⑤⑧C.②③⑥⑦D.②④⑤⑧答案:B解题思路:题中出现BD=AB+CD,这是几条线段间的数量关系,考虑用截长补短转化成两条线段的等量关系.这里利用截长法证∠BAP+∠BCP=180°,要证△ABP≌△EBP,结合AB=BE,公共边BP,还需要准备∠1=∠2,第一空应填①;由全等转移角,可以得到∠A=∠BEP,第二空应填③;接下来利用线段垂直平分线上的点到线段两端点的距离相等证明PE=PC,所以∠PCD=∠3,结合第一次全等得到的∠A=∠BEP可以得到∠BAP+∠BCP=180°,第三空应填⑤,第四空应填⑧.故选B.试题难度:三颗星知识点:三角形全等之截长补短2.已知,如图,BM平分∠ABC,点P为BM上一点,PD⊥BC于点D,BD=AB+DC.求证:∠BAP+∠BCP=180°.(补短法)证明:如图,______________________________________________________∵BP平分∠ABC∴∠1=∠2在△BEP和△BDP中∴△BEP≌△BDP(SAS)___________________________在△PEA和△PDC中∴△PEA≌△PDC(SAS)∴∠C=∠PAE∵∠BAP+∠PAE=180°∴∠BAP+∠BCP=180°请你仔细观察下列序号所代表的内容:①延长BA,过点P作PE⊥BA于点E;②延长BA到E,使AE=DC,连接PE;③延长BA到E,使DC=AE;④;⑤;⑥;⑦.以上空缺处依次所填最恰当的是( )A.②④⑦B.①⑤⑥C.③④⑥D.①⑤⑦答案:A解题思路:题中出现BD=AB+CD,这是几条线段间的数量关系,考虑用截长补短转化成两条线段的等量关系.这里利用补短法,辅助线:延长BA到E,使AE=DC,连接PE,第一空应填②;要证△BEP≌△BDP(SAS),BP是公共边,∠1=∠2,还需要准备BE=BD,第二空应填④;第一次全等需要为第二次全等准备条件,由第一次全等我们可以得到PE=PD,∠PEA=∠PDB=90°,进而可以得到∠PEA=∠PDC,结合AE=CD可以得到△PEA≌△PDC,第三空应填⑦.故选A.试题难度:三颗星知识点:三角形全等之截长补短3.已知,如图,在五边形ABCDE中,AB=AE,AD平分∠CDE,∠BAE=2∠CAD,求证:BC+DE=CD.(截长法)证明:如图,________________________∵AD平分∠CDE∴∠1=∠2在△AFD和△AED中∴△AFD≌△AED(SAS)∴________________________________________________在△ABC和△AFC中∴△ABC≌△AFC(SAS)∴BC=CF∴BC+DE=CF+DF=CD请你仔细观察下列序号所代表的内容:①在CD上截取CF=CB,连接AF;②在DC上截取DF=DE,连接AF;③在DC上截取DF=DE;④AE=AF;⑤AF=AE,∠4=∠3;⑥∠4=∠3;⑦;⑧;⑨.以上空缺处依次所填最恰当的是( )A.①④⑨B.③⑤⑧C.①⑥⑦D.②⑤⑨答案:D解题思路:要证BC+DE=CD,这是几条线段间的数量关系,考虑用截长补短转化成两条线段的等量关系.这里利用截长法,在DC上截取DF=DE,连接AF(可以利用AD平分∠CDE这个条件),第一空应填②;第一次全等需要给第二次全等准备条件,结合已知条件,还需要准备∠5=∠6,AB=AF,第二空应填⑤;接下来只需证明BC=CF,因此考虑放在△ABC和△AFC中证明全等,结合已知条件为第二个全等准备条件:AB=AF,∠6=∠5,因此第三空应填⑨.故选D.试题难度:三颗星知识点:三角形全等之截长补短4.已知,如图,在五边形ABCDE中,AB=AE,∠BAE=2∠CAD,∠ABC+∠AED=180°,求证:BC+DE=CD.(补短法)证明:如图,________________________________________________在△ABC和△AEF中∴△ABC≌△AEF(SAS)∴∠2=∠3,AC=AF________________________在△CAD和△FAD中∴△CAD≌△FAD(SAS)________________________请你仔细观察下列序号所代表的内容:①延长DE到F,使EF=BC,连接AF;②延长DE到F,使BC=EF;③延长DE到F,连接AF;④;⑤;⑥;⑦;⑧;⑨.以上空缺处依次所填最恰当的是( )A.③⑤⑥⑧B.①④⑥⑨C.①⑤⑥⑨D.②④⑦⑧答案:B解题思路:要证BC+DE=CD,这是几条线段间的数量关系,考虑用截长补短转化成两条线段的等量关系.这里利用补短法,辅助线应为延长DE到F,使EF=BC,连接AF,第一空应填①;证明△ABC≌△AEF需要准备三组条件,结合已知条件还需要准备∠ABC=∠1,第二空应填④;接下来只需证明CD=DF,因此考虑放到△CAD和△FAD中证全等,结合已知条件,第一个全等要为第二个全等准备条件,结合公共边AD和第一次全等得到的AC=AF可知还需要夹角相等,由第一次全等能够得到∠2=∠3,结合已知能够得到∠CAD=∠FAD,第三空应填⑥;由第二次全等转移边CD=DF,等量代换可以得到BC+DE=CD,第四空应填⑨.故选B.试题难度:三颗星知识点:三角形全等之截长补短。