最新数学人教版初中九年级上册24.1.4圆周角3公开课教学设计
- 格式:doc
- 大小:49.00 KB
- 文档页数:5
人教版数学九年级上册24.1.4《圆周角定理》教学设计一. 教材分析人教版数学九年级上册24.1.4《圆周角定理》是本节课的主要内容。
圆周角定理是圆周角定理系列中的重要定理之一,也是后续学习圆的性质和圆的方程的基础。
本节课的内容包括圆周角定理的证明和应用。
教材通过丰富的例题和练习题,帮助学生理解和掌握圆周角定理,并能够运用到实际问题中。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质,对角的性质有一定的了解。
但是,对于圆周角定理的理解和运用还需要进一步引导和培养。
因此,在教学过程中,需要注重引导学生通过观察和操作,发现和总结圆周角定理的规律。
三. 教学目标1.了解圆周角定理的内容和证明过程。
2.能够运用圆周角定理解决实际问题。
3.培养学生的观察能力、操作能力和推理能力。
四. 教学重难点1.圆周角定理的证明过程。
2.圆周角定理在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察和操作,发现和总结圆周角定理的规律。
2.运用多媒体辅助教学,展示圆周角定理的证明过程,增强学生的直观感受。
3.通过例题和练习题,让学生在实际问题中运用圆周角定理,巩固所学知识。
六. 教学准备1.多媒体教学设备。
2.圆规、直尺等绘图工具。
3.相关例题和练习题。
七. 教学过程1.导入(5分钟)通过提问方式,引导学生回顾相似三角形的性质和角的性质。
让学生思考:在圆中,圆周角和圆心角之间有什么关系?2.呈现(10分钟)展示圆周角定理的证明过程,引导学生观察和理解证明方法。
通过多媒体动画演示,让学生更直观地感受圆周角定理的应用。
3.操练(10分钟)让学生分组讨论,尝试解决一些与圆周角定理相关的问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)呈现一些例题和练习题,让学生独立解答。
教师选取部分学生的解答进行讲解和分析,巩固所学知识。
5.拓展(10分钟)引导学生思考:圆周角定理在实际问题中的应用。
人教版九年级上册24.1.4圆周角教学设计一、教学目标1.知道圆周角的定义2.能够计算圆周角的度数3.熟悉圆周角在实际应用中的运用二、教学重点1.圆周角的定义2.计算圆周角的度数三、教学难点1.熟悉圆周角在实际应用中的运用四、教学方法1.讲解:通过讲解圆周角的定义和计算方法,让学生掌握基本概念和方法。
2.实验:通过展示圆形物品,让学生亲身体验圆周角的度数。
3.案例分析:通过实例分析,帮助学生了解圆周角在实际应用中的运用。
五、教学过程1. 导入新知识通过展示圆形物品,如扇形、轮胎等,让学生感受圆形的特征,并引入圆周角的概念。
2. 讲解圆周角的定义让学生掌握圆周角的定义:圆周角是指夹在圆内的两条弧所对的角。
3. 讲解圆周角的计算方法1.讲解圆周角的度数:圆的周长为360度,因此圆周角所对的弧长与圆周长的比例为所对的角与360度的比例。
2.计算圆周角的度数:根据所对弧的长度与圆周长的比例以及圆周的度数制求得圆周角的度数。
4. 实验展示通过展示圆形物品,让学生通过手动旋转掌握圆周角的度数,并在班级中交流讨论。
5. 案例分析1.讲解圆周角在电子产品外观设计中的应用。
2.讲解圆周角在建筑、机器等领域中的应用。
六、教学评价通过布置作业,检测学生对圆周角的掌握程度,并通过课堂互动,了解学生对圆周角在实际应用中的理解情况。
七、板书设计1.圆周角的定义:夹在圆内的两条弧所对的角。
2.圆周角的计算方法:所对弧长与圆周长的比例。
八、课堂设计本节课内容较为抽象,需要通过实物展示和案例分析来帮助学生掌握基本概念和方法。
同时,教师还需要与学生进行及时互动,以确保学生的参与度和掌握程度。
人教版数学九年级上册教学设计24.1.4《圆周角》一. 教材分析《圆周角》是人教版数学九年级上册第24章的一部分,主要介绍了圆周角的定义、性质和应用。
通过本节课的学习,学生能够理解圆周角的概念,掌握圆周角的性质,并能够运用圆周角解决一些实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念和性质,如圆的定义、半径、直径等。
同时,学生也具备了一定的观察、分析和解决问题的能力。
但是,对于圆周角的定义和性质,学生可能还比较陌生,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.知识与技能:理解圆周角的定义,掌握圆周角的性质,并能够运用圆周角解决一些实际问题。
2.过程与方法:通过观察、分析和归纳,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.圆周角的定义和性质。
2.运用圆周角解决实际问题。
五. 教学方法1.讲授法:通过讲解圆周角的定义和性质,引导学生理解和掌握相关知识。
2.案例分析法:通过分析具体案例,让学生更好地理解圆周角的运用。
3.小组讨论法:通过小组讨论,培养学生的团队合作意识和解决问题的能力。
六. 教学准备1.课件:制作相关的课件,包括圆周角的定义、性质和应用等方面的内容。
2.案例:准备一些具体的案例,用于分析和解决实际问题。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾圆的基本概念和性质,为新课的学习做好铺垫。
2.呈现(15分钟)利用课件呈现圆周角的定义和性质,让学生初步了解并掌握相关知识。
3.操练(15分钟)让学生通过观察和分析具体的案例,运用圆周角的知识解决问题,巩固所学内容。
4.巩固(5分钟)让学生完成一些练习题,检查对圆周角知识的掌握程度,并对存在的问题进行讲解和辅导。
5.拓展(5分钟)引导学生进一步思考和探讨圆周角在实际问题中的应用,培养学生的解决问题的能力。
人教版九年级数学上册24.1.4《圆周角》教学设计一. 教材分析《圆周角》是人民教育出版社九年级数学上册第24章《圆》的第四节内容。
本节主要让学生通过探究圆周角的性质,掌握圆周角定理及其推论,并能在实际问题中运用。
圆周角定理是圆的内接四边形定理的重要组成部分,对于学生理解圆的性质,解决与圆有关的问题具有重要意义。
二. 学情分析学生在学习本节内容前,已经掌握了圆的基本概念、圆的性质、圆的周长和面积等知识。
但学生对于圆周角的理解和应用还不够深入,需要通过本节内容的学习,进一步巩固和提高。
同时,学生对于几何图形的观察和分析能力有待提高,需要在教学过程中加强引导和培养。
三. 教学目标1.知识与技能目标:使学生掌握圆周角定理及其推论,能运用圆周角定理解决简单问题。
2.过程与方法目标:通过观察、分析、推理等方法,培养学生的几何思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:圆周角定理及其推论。
2.难点:圆周角定理的证明和应用。
五. 教学方法1.采用问题驱动法,引导学生观察、分析、推理,从而得出圆周角定理。
2.运用案例教学法,让学生通过实际问题,运用圆周角定理解决问题。
3.采用小组合作学习法,培养学生的团队合作意识。
六. 教学准备1.准备相关的几何模型和图片,以便于学生观察和分析。
2.准备一些实际问题,供学生练习和应用。
3.准备PPT,用于展示和讲解。
七. 教学过程1.导入(5分钟)利用PPT展示一些与圆有关的实际问题,引导学生思考圆周角的概念。
2.呈现(10分钟)利用PPT展示圆周角定理的内容,让学生初步了解圆周角定理。
3.操练(10分钟)让学生分组讨论,通过观察、分析、推理,证明圆周角定理。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生运用圆周角定理解决一些实际问题,巩固所学知识。
5.拓展(10分钟)让学生进一步探索圆周角定理的推论,了解圆周角定理在几何中的应用。
24.1.4 圆周角一、【教材分析】知识技能1、理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2、掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明.过程方法1、培养学生观察、分析、想象、归纳和逻辑推理的能力;2、渗透由“特殊到一般”,由“一般到特殊”,体验分类讨论的数学思想方法.教学目标情感态度敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.教学重点圆周角定理及定理的三个推论的应用.教学难点圆周角定理的证明,三个推论的灵活应用.二、【教学流程】教学环节问题设计师生活动二次备课情景创设观察与思考:(教师边演示自制教具边介绍,其中底面圆片上标注好有关的字母、线条)假设这是一个圆柱形的房子,同学们可以站在房中通过圆弧形玻璃窗AB向外观看外面的风景,同学甲站在圆心O的位置,同学乙站在正创设问题情境,开展学习活动,引起学生学习的兴趣图图c图画出来.3、利用第2题的图形,分别证明图a、图b、图c中的∠B OC=2∠B AC.4、用自己的语言说出圆周角定理的内容是什么?(1)在同圆或等圆中,同弧或等弧所对的圆周角相等;动,归纳出:⑴在圆周角的一条边上(如图a);⑵在圆周角的内部(如图b);⑶在圆周角的外部(如图c).学生自己独立完成图a的证明.对于图b、图c两种情况的证明,我们可以先尝试让学生小组交流,寻找证题方法,教师可以参与小组讨论,及时给予引导、点拨,然后板书展示证明过程,最后全班进行点评,引导学生体会“转换化归”在解决从特殊到一般问题时的应用思路和方法.以小组为单位讨论、探索,教师参与其中,指导帮助学生完成问题的解答.最后归纳通过制作演示折纸,培养学生动手操作的能力,促进学生参与教学的意识的形成.学会分类讨论、转换化归是教学突破的关键通过观察、交流、归纳,锻炼学生的逻辑思维能力,体验分类讨论的数学思想方法C三、【板书设计】四、【教后反思】本节课首先设计了一个问题情境,展示了圆心角与圆周角的位置关系,引出圆周角的概念.然后通过测量、猜想,得出同弧所对的圆周角等于圆心角的一半的结论.接着通过让学生折纸,观察与思考,利用分类讨论的思想方法,分三种情况给出系统的证明及思维过程.至此我们利用迁移、转化的思想方法化未知为已知,将圆周角的问题转化为圆心角来求解.其后为进一步探索圆周角的其他性质,我们又以设置的问题为导线,将学生带入到教学活动中,同时再次通过交流、讨论、合作、归纳出圆周角定理的三个推论,并运用它们进行解题,实现从认识到应用的转化.。
2414 圆周角
第2课时圆内接四边形的性质及圆周角定理的综合运用
一、教学目标
1知道圆内接多边形和多边形的外接圆的意义,知道圆内接四边形的对角互补,会简单运用这个结论
2培养演绎推理能力和识图能力
二、教学重点和难点
1重点:圆内接四边形的对角互补
2难点:结论的证明
三、教学过程
(一)基本训练,巩固旧知
1填空:如图,
= °
2填空:如图,∠BA=55°,∠AD=45°,则∠DB= °,∠BD= °,∠BD= °
3用三角尺画出下面这个圆的圆心x
50︒
40︒
A
B
C
D
(二)创设情境,导入新课 (师出示下面的板书)
圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半 推论1:同弧或等弧所对的圆周角相等
推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径
师:(指准板书)前面我们学习了圆周角定理和它的两个结论,本节课我们要学习什么?我们要学习圆周角定理的第三个推论(板书:推论3) 师:推论3怎么说?让我们先看下面的问题 (三)尝试指导,讲授新课 (师出示下图)
师:(指准图)这是四边形ABD ,这个四边形有一个特点,什么特点?(稍停)这个四边形的四个顶点,点A ,点B ,点,点D 都在⊙O 上,我们把这个四边形叫做圆内接四边形(板书:四边形ABD 叫做圆内接四边形),我们还把⊙O 叫做四边形ABD 的外接圆(板书:⊙O 叫做四边形ABD 的外接圆)
师:(出示圆内接三角形图片,并指准)这是一个三角形,这个三角形的所有顶点都在这个圆上,我们把这个三角形叫做圆内接三角形,把这个圆叫做这个三角形的外接圆 师:(出示圆内接五边形图片,并指准)这是五边形,这个五边形的所有顶点都在这个圆上,我们把这个五边形叫做圆内接五边形,把这个圆叫做这个五边形的外接圆
师:(出示圆内接五边形图片,并指准)一般地说,如果一个多边形的所有顶点都在同一个
O
A
B
C
D
.
圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆
师:知道了圆内接多边形的概念,(指黑板上的圆内接四边形)现在我们还是回看圆内接四边形
师:圆内接四边形有一个重要的性质,什么性质?圆内接四边形的对角互补(板书:圆内接四边形的对角互补)
师:圆内接四边形的对角互补,什么意思?(指准图)就是说,∠A+∠=180°,∠B+∠D=180°,(板书:∠A+∠=180°,∠B+∠D=180°)
师:用圆周角定理可以推出这个结论,怎么推?大家自己先想一想(让生思考片刻)
师:我们一起证明,(指板书)先证明∠A+∠=180°
师:怎么证明∠A+∠=180°?连结OB,OD(边讲边用虚线连结OB,OD)
师:(把BAD描成红色,并指准)这条红弧所对的圆周角是哪个?
生:(齐答)∠
师:红弧所对的圆周角是∠(边讲边用红笔标∠),那红弧所对的圆心角是哪个?
生:(齐答)∠BOD
师:红弧所对的圆心角是∠BOD(边讲边用红笔标∠BOD)
师:(把BCD描成黄色,并指准)这条黄弧所对的圆周角是哪个?
生:(齐答)∠A
师:黄弧所对的圆周角是∠A(边讲边用红笔标∠A),那黄弧所对的圆心角是哪个?生:……
师:(指准图)黄弧所对的圆心角是这个角(边讲边用黄笔标这个角)
师:(指准图)根据圆周角定理,∠A等于这个圆心角的一半,∠等于这个圆心角的一半,所以∠A+∠等于这个角加上这个角的一半这个角加上这个角等于360°,所以∠A+∠等于360°的一半,等于180°
师:同样道理可以证明∠B+∠D=180°
师:(指板书)推论3是一个很有用的结论,下面就请同学们利用这个结论做几个练习
(四)试探练习,回授调节
4如图,四边形ABD 是⊙O 的内接四边形,∠A=60°, 填空:
(1)∠BD= °; (2)∠DE= °; (3)∠B+∠D= °
5如图,四边形ABD 是⊙O 的内接四边形, ∠BOD=100°, 则∠BAD= °, ∠BD= °
(五)尝试指导,讲授新课 师:下面我们看一道例题 (师出示例题)
例 求证:圆内接四边形的任何一个外角都等于它的内对角
(师画出图形写出已知求证,然后让生说证明思路,最后师写出证明过程,图形、已知、求证及证明过程如下)
已知:如图,四边形ABD 是⊙O 的内接四边形 求证:∠DE=∠A
证明:∵∠DE+∠BD=180°, 又∵∠A+∠BD=180°, ∴∠DE=∠A (六)归纳小结,布置作业
师:(指准板书)本节课我们学习了圆周角定理的推论3,圆内接四边形的对角互补;还学习了一个例题,利用推论3证明了圆内接四边形的任何一个外角都等于它的内对角这个结
论像别的定理、推论一样可以在做题的时候直接拿用
E
.D C
B
A
O
A
B
O C
D E
D
A
O
B
C
.A
B C
D
(作业:P88习题67)
课外补充作业
6如图,∠A=30°,∠AB=50°,则∠E= °,∠D= °,∠AB= °
四、板书设计。