苏教版集合配套习题
- 格式:doc
- 大小:247.50 KB
- 文档页数:8
集合 练习一、选择题 Z#xx#k1、下列四组对象,能构成集合的是 ( )A 某班所有高个子的学生B 著名的艺术家 ZxxkC 一切很大的书D 倒数等于它自身的实数2、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( )A . {1,2,3} B. {2} C. {1,3,4} D. {4}3、以下六个关系式:①{}00∈,②{}0⊇∅,③Q ∉3.0, ④N ∈0, ⑤{}{}a b b a ,,⊆,⑥{}2|20,x x x Z -=∈是空集,其中错误的个数是 ( )A 4B 3C 2D 14、点的集合M ={(x,y)|xy≥0}是指 ( )A.第一象限内的点集B.第三象限内的点集C. 第一、第三象限内的点集D. 不在第二、第四象限内的点集5、若{1,2}⊆A ⊆{1,2,3,4,5}则满足条件的集合A 的个数是 ( )A. 6B. 7C. 8D. 9 6、满足{}{}5,3,13,1=⋃A 的所有集合A 的个数 ( )A 、1个B 、2个C 、3个D 、4个7、设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是 ( )A }{2a a ≥B }{1a a ≤C }{1a a ≥D }{2a a ≤8、设集合{}(,)1A x y y ax ==+,{}(,)B x y y x b ==+,且{}(2,5)A B =,则( )A .3,2a b ==B .2,3a b ==C .3,2a b =-=-D .2,3a b =-=-9、如图,U 是全集,M 、P 、S 是U 的3个子集,则阴影部分所表示的集合是 ( ) ZXXK]A 、 ()S N MB 、 ()S N M ZxxkC 、 ()S C N M uD 、 ()S C N M uZxxk10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有( )A .a b P +∈B .a b Q +∈ 学+科+网Z+X+X+K]C .a b R +∈D .a b +不属于P 、Q 、R 中的任意一个二、填空题11、已知{}30|<≤∈=x N x A 的真子集的个数是 。
第2课时集合的表示A级必备知识基础练1.用列举法表示大于2且小于5的自然数组成的集合应为( )A.{x|2<x<5,x∈N}B.{2,3,4,5}C.{2<x<5}D.{3,4}2.(武汉洪山校级月考)集合{x∈Z|(3x-1)(x-4)=0}可化简为( )A.{13} B.{4}C.{13,4} D.{-13,-4}3.集合{(x,y)|y=2x-1}表示( )A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合4.集合3,52,73,94,…用描述法可表示为( )A.x x=2n+12n,n∈N*B.x x=2n+3n,n∈N*C.x x=2n-1n,n∈N*D.x x=2n+1n,n∈N*5.(上海金山校级月考)集合{x|1≤x≤3,x∈N}用列举法可以表示为.6.已知集合A={x|x2+2x+a=0},若1∈A,则A= .7.用适当的方法表示下列集合:(1)方程x2+y2-4x+6y+13=0的解集;(2)1 000以内被3除余2的正整数组成的集合;(3)二次函数y=x2-10图象上的所有点组成的集合.B级关键能力提升练8.(菏泽期中)如果集合A={x|ax2+4x+1=0}中只有一个元素,则a的值是( )A.0B.4C.0或4D.不能确定9.(山东临沂高一期中)已知b 是正数,且集合{x|x 2-ax+16=0}={b},则a-b=( ) A.0B.2C.4D.810.已知集合A={a 2,0,-1},B={a,b,0},若A=B,则(ab)2 021的值为( ) A.0 B.-1C.1D.±111.(多选题)下列选项表示的集合P 与Q 相等的是( ) A.P={x|x 2+1=0,x ∈R},Q=⌀ B.P={2,5},Q={5,2} C.P={(2,5)},Q={(5,2)} D.P={x|∈Z},Q={x|∈Z}12.(多选题)下列选项能正确表示方程组{2x +y =0,x -y +3=0的解集的是( )A.(-1,2)B.{(x,y)|x=-1,y=2}C.{-1,2}D.{(-1,2)}13.(多选题)已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是( )A.(1,2)∈BB.A=BC.0∉AD.(0,0)∉B14.已知集合A={x,y},B={2x,2x2},且A=B,则集合A= .15.用列举法表示集合A={(x,y)|x+y=5,x∈N*,y∈N*}是A= ;用描述法表示“所有被4除余1的整数组成的集合”是.16.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求实数c的值.C级学科素养创新练17.已知集合A={x|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的所有取值组成的集合;(2)若A中只有一个元素,求a的值,并把这个元素写出来;(3)若A中至多有一个元素,求a的所有取值组成的集合.第2课时集合的表示1.D 大于2且小于5的自然数为3和4,所以用列举法表示其组成的集合为{3,4}.2.B 解方程得x1=13,x2=4,因为x∈Z,所以x=4,故集合为{4},故选B. 3.D 集合{(x,y)|y=2x-1}的代表元素是(x,y),x,y满足的关系式为y=2x-1,因此集合表示的是满足关系式y=2x-1的点组成的集合,故选D.4.D 由3,52,73,94,即31,52,73,94从中发现规律,x=2n+1n,n∈N*,故可用描述法表示为x x=2n+1n,n∈N*.5.{1,2,3} 由于1≤x≤3,x∈N,∴x可取1,2,3.则集合{x|1≤x≤3,x∈N}用列举法可以表示为{1,2,3}.6.{-3,1} 把x=1代入方程x2+2x+a=0,可得a=-3,解方程x2+2x-3=0可得A={-3,1}.7.解(1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3, 所以方程的解集为{(x,y)|x=2,y=-3}.(2)集合的代表元素是数,用描述法可表示为{x|x=3k+2,k∈N,且x<1000}.(3)二次函数y=x2-10图象上的所有点组成的集合用描述法表示为{(x,y)|y=x2-10}.8.C 当a=0时,集合A={x|ax 2+4x+1=0}={-14},只有一个元素,满足题意;当a≠0时,由集合A={x|ax 2+4x+1=0}中只有一个元素,可得Δ=42-4a=0,解得a=4.则a 的值是0或4.故选C.9.C 由题意可知方程x 2-ax+16=0有两个相等的正实数根,故Δ=a 2-64=0.又方程两根之和为正数,即a>0,所以a=8.因此方程变为x 2-8x+16=0,且根为4,故b=4.所以a-b=8-4=4.故选C.10.B 根据集合中元素的互异性可知a≠0,b≠0.因为A=B,所以a=-1或b=-1.当a=-1时,b=a 2=1,此时(ab)=(-1)=-1;当b=-1时,a 2=a,因为a≠0,所以a=1,此时(ab)=(-1)=-1.故选B.11.ABD 对于A,集合P 中方程x 2+1=0无实数根,故P=Q=⌀;对于B,集合P 中有两个元素2,5,集合Q 中有两个元素2,5,故P=Q;对于C,集合P 中有一个元素是点(2,5),集合Q 中有一个元素是点(5,2),元素不同,P≠Q;对于D,集合P={x|∈Z}表示所有奇数构成的集合,集合Q={x|∈Z}也表示所有奇数构成的集合,P=Q.故选ABD.12.BD 由{2x +y =0,x -y +3=0,解得{x =-1,y =2,所以方程组的解集为{(x,y)|x=-1,y=2}或{(-1,2)}.故选BD.13.ACD 由已知集合A={y|y≥1},集合B 是由抛物线y=x 2+1上的点组成的集合,故A 正确,B 错误,C 正确,D 正确.故选ACD.14.12,1 由题意,集合A={x,y},B={2x,2x 2},且A=B,则x=2x 或x=2x 2.若x=2x,可得x=0,此时集合B 不满足集合中元素的互异性,舍去;若x=2x 2,可得x=12或x=0(舍去),当x=12时,可得2x=1,2x 2=12,即A=B=12,1.15.{(1,4),(2,3),(3,2),(4,1)} {x|x=4k+1,k ∈Z}由题意A={(1,4),(2,3),(3,2),(4,1)},所有被4除余1的整数组成的集合为{x|x=4k+1,k ∈Z}. 16.解分两种情况进行讨论.①若a+b=ac,a+2b=ac 2,消去b,得a+ac 2-2ac=0.当a=0时,集合B 中的三个元素均为0,与集合中元素的互异性矛盾,故a≠0,所以c 2-2c+1=0,即c=1,但当c=1时,B 中的三个元素相同,不符合题意. ②若a+b=ac 2,a+2b=ac,消去b,得2ac 2-ac-a=0. 由①知a≠0,所以2c 2-c-1=0,即(c-1)(2c+1)=0, 解得c=-12或c=1(舍去),当c=-12时,经验证,符合题意.综上所述,c=-12.17.解(1)当a=0时,-3x+2=0,此时x=23,所以A 不是空集,不符合题意;当a≠0时,若A 是空集,则Δ=9-8a<0,所以a>98.综上可知,a 的所有取值组成的集合为a a>98.(2)当a=0时,-3x+2=0,此时x=23,满足条件,此时A 中仅有一个元素23;当a≠0时,Δ=9-8a=0,所以a=98,此时方程为98x 2-3x+2=0,即(3x-4)2=0,解得x=43,此时A 中仅有一个元素43.综上可知,当a=0时,A 中只有一个元素为23;当a=98时,A 中只有一个元素为43.(3)A 中至多有一个元素,即方程ax 2-3x+2=0只有一个实数根或无实数根. 则a=0或Δ=9-8a<0,解得a=0或a>98.故a 的所有取值组成的集合为a a=0,或a>98.。
1.1 集合的含义及其表示1、把集合{}243|0x x x -+=用列举法表示为( )A. {}1,3B. {}1|,3x x x ==C. {}2430x x -+=D. {}1,3x x ==2、已知集合{}10,A x x a =≤=则a 与集合A 的关系是( )A. a A ∈B. a A ∉C. a A =D. {}a A ∈3、给出下列关系:①12R ∈R ;③3N ∈;④Q .其中正确的个数为()A.1B.2C.3D.44、下面四个说法中正确的是( )A. 10以内的质数组成的集合是{}0,2,3,5,7B.由1,2,3组成的集合可表示为{}1,2,3或{}3,1,2C.方程2210x x -+=的解集是{}1,1D. 0与{}0表示同一个集合5、已知,x y 为非零实数,则集合{}xy xyM m m x y xy ==++为( )A.{}0,3B.{}1,3C.{}1,3-D.{}1,3-6、对于任意两个正整数,m n ,定义某种运算“⊗”如下:当,m n 都为正偶数或正奇数时, m n m n ⊗=+;当,m n 中一个为正偶数,另一个为正奇数时, m n mn ⊗=.则在此定义下,集合(){},|16M a b a b =⊗=中的元素个数是( )A.18个B.17个C.16个D.15个7、已知集合{},,A a b c =中任意2个元素的和构成的集合为{}1,2,3,则集合A 中任意2个元素的差的绝对值构成的集合是( )A. {}1,2,3B. {}1,2C. {}0,1D. {}0,1,28、方程组3{1x y x y +=-=-的解集不能表示为( )A. ()3{,}1x y x y x y +=⎧⎨-=-⎩B. ()1{,}2x x y y =⎧⎨=⎩C. {}1,2D. (){,1,2}x y x y ==9、对集合{}1,5,9,13,17用描述法来表示,其中正确的是() A. {x x 是小于18的正奇数} B. {41,,x x k k Z =+∈且5}k < C. {43,,x x t t N =-∈且5}t ≤ D. *{43,,x x s s N =-∈且5}s ≤10、集合(){}1, 2y y x x =-表示( )A.方程21y x =-B.点(),x yC.平面直角坐标系中的所有点组成的集合D.一次函数21y x =-图象上的所有点组成的集合11、若集合2{|10}x ax x ++=有且只有一个元素,则实数a 的取值集合是___________;12、给出下列说法:①集合{}3|? x N x x ∈=用列举法表示为{}1,0,1-;②实数集可以表示为{|x x 为所有实数}或{} R ;③方程组3,{1x y x y +=-=-的解集为{}1,2?x y ==. 其中不正确说法的个数为__________.13、以方程2560x x -+=和方程220x x --=的根为元素的集合中共有__________个元素.14、已知集合(){}(){},21,,|3|,A x y y x B x y y x a A ==+==+∈,且a B ∈,则a 为________.15、下列命题中正确的是__________(填序号).①0与{}0表示同一集合;②由1,2,3组成的集合可表示为{}1,2,3或{}3,2,1;③方程()()2120x x --=的所有解的集合可表示为{}1,1,2;④集合{}|25x x <<可以用列举法表示.答案以及解析1答案及解析:答案:A解析:解方程2430x x -+=得1x =或3,应用列举法表示解集即为{}1,32答案及解析:答案:A10,所以a A ∈故选A.3答案及解析:答案:B解析:①12R ∈R ,错误;③3Q ∈正确;④Q ,错误,所以正确的个数为2,故选B4答案及解析:答案:B解析:10以内的质数组成的集合是{}2,3,5,7,故A 错误;由集合元素的互异性知{}1,2,3和{}3,1,2相等,故B 正确;方程2210x x -+=的解集应为{}1故C 错误;由集合的表示方法知0不是集合,故D 错误.故选B,5答案及解析:答案C解析 当0x >,0y > 时,3m =;当0x <,0y < 时,1m =-;当0x >,0y < 时,1m =-;当0x <,0y > 时,1m =-.故{}1,3M =-6答案及解析:解析:因为11516+=,21416+=,31316+=,41216+=,51116+=,61016+=,7916+=,8816+=,11616⨯=,集合M 中的元素是有序数对(),a b ,所以集合M 中的元素共有82117⨯+=个,故选B.考点:集合元素的概念、对新定义的理解和计数原理.7答案及解析:答案:B解析:由题意,不妨令 1?23a b b c a c +=⎧⎪+=⎨⎪+=⎩,解得 1?02a b c =⎧⎪=⎨⎪=⎩,所以集合{}0,1,2A =.则集合A 中任意2个元素的差的绝对值是1,2,故集合A 中任意2个元素的差的绝对值构成的集合是{}1,2 :.故选B.8答案及解析:答案:C解析:原方程组的解为1{2x y == 其解集中只含有一个元素,可表示为A,B,D. C 不符合,故选C.9答案及解析:答案:D解析:A 中小于18的正奇数除给定集合中的元素外,还有 3,7,11,15;B 中除给定集合中的元素外,还有-3, -7, -11,…;C 中0t =时,3x =-,不属于给定的集合;只有D 是正确的.故选D.10答案及解析:解析:本题中的集合是点集.其表示一次函数21y x =-图象上的所有点组成的集合.故选D.11答案及解析:答案:{|0a a =或1}4a =解析:12答案及解析:答案:①②③解析:对于①,集合{}3|? x N x x ∈=中的元素是指满足3x x =的自然数,故有0,1x =,用列举法表示即为{}0,1,故错误;对于②,实数集不能表示成{} R ,它表示的是有一个元素的集合,故不正确;对于③,方程的解集为(){}1,2?,故不正确.13答案及解析:答案:3解析:方程2560x x -+=的根是2,3,方程220x x --=的根是1,2-.根据集合中元素的互异性知,以两方程的根为元素的集合中共有3个元素.14答案及解析:答案:()2,5解析:集合,A B 都表示直线上点的集合, a A ∈表示a 是直线21y x =+上的点, a B ∈表示a 是直线3y x =+上的点,所以a 是直线21y x =+与3y x =+的交点,即a 为()2,5.15答案及解析:答案:②解析:对于①,0表示元素与{}0不同;对于③,不满足集合中元素的互异性,故不正确;对于④,无法用列举法表示,只有②满足集合中元素的无序性,是正确的.。
§1.2子集、全集、补集课时目标 1.理解子集、真子集的意义,会判断两集合的关系.2.理解全集与补集的意义,能正确运用补集的符号.3.会求集合的补集,并能运用Venn图及补集知识解决有关问题.1.子集如果集合A的__________元素都是集合B的元素(若a∈A则a∈B),那么集合A称为集合B的________,记作______或______.任何一个集合是它本身的______,即A⊆A.2.如果A⊆B,并且A≠B,那么集合A称为集合B的________,记为______或(______).3.______是任何集合的子集,______是任何非空集合的真子集.4.补集设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的______,记为______(读作“A在S中的补集”),即∁S A={x|x∈S,且x∉A}.5.全集如果集合S包含我们所要研究的各个集合,这时S可以看做一个______,全集通常记作U.集合A相对于全集U的补集用Venn图可表示为一、填空题1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是________.2.满足条件{1,2}M⊆{1,2,3,4,5}的集合M的个数是________.3.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=________.4.已知全集U=R,集合M={x|x2-4≤0},则∁U M=________.5.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是_____________________________.6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是________.7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________. 8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=________,∁U B =______,∁B A=________.9.已知全集U,A B,则∁U A与∁U B的关系是____________________.二、解答题10.设全集U={x∈N*|x<8},A={1,3,5,7},B={2,4,5}.(1)求∁U(A∪B),∁U(A∩B);(2)求(∁U A)∪(∁U B),(∁U A)∩(∁U B);(3)由上面的练习,你能得出什么结论?请结事Venn图进行分析.11.已知集合A={1,3,x},B={1,x2},设集合U=A,求∁U B.能力提升12.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.13.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.1.子集概念的多角度理解(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任意x∈A能推出x∈B.(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.2.∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.3.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.§1.2子集、全集、补集知识梳理1.任意一个子集A⊆B B⊇A子集 2.真子集A B B A3.空集空集 4.补集∁S A 5.全集作业设计1.P Q解析∵P={x|y=x+1}={x|x≥-1},Q={y|y≥0},∴P Q.2.7解析M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.3.{3,9}解析在集合U中,去掉1,5,7,剩下的元素构成∁U A.4.{x|x<-2或x>2}解析∵M={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.5.②解析由N={-1,0},知N M.6.S P=M解析运用整数的性质方便求解.集合M、P表示成被3整除余1的整数集,集合S表示成被6整除余1的整数集.7.-3解析∵∁U A={1,2},∴A={0,3},故m=-3.8.{0,1,3,5,7,8}{7,8}{0,1,3,5}解析由题意得U={0,1,2,3,4,5,6,7,8},用Venn图表示出U,A,B,易得∁U A={0,1,3,5,7,8},∁U B={7,8},∁B A={0,1,3,5}.9.∁U B∁U A解析画Venn图,观察可知∁U B∁U A.10.解 (1)∵U ={x ∈N *|x <8}={1,2,3,4,5,6,7},A ∪B ={1,2,3,4,5,7},A ∩B ={5},∴∁U (A ∪B )={6},∁U (A ∩B )={1,2,3,4,67}.(2)∵∁U A ={2,4,6},∁U B ={1,3,6,7},∴(∁U A )∪(∁U B )={1,2,3,4,6,7},(∁U A )∩(∁U B )={6}. (3)∁U (A ∪B )=(∁U A )∩(∁U B )(如左下图);∁U (A ∩B )=(∁U A )∪(∁U B )(如右下图).11.解 因为B ⊆A ,因而x 2=3或x 2=x . ①若x 2=3,则x =±3.当x =3时,A ={1,3,3},B ={1,3},此时∁U B ={3};当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}. ②若x 2=x ,则x =0或x =1.当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1; 当x =0时,A ={1,3,0},B ={1,0},U =A ={1,3,0},从而∁U B ={3}. 综上所述,∁U B ={3}或{-3}或{3}. 12.解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎪⎨⎪⎧a 2+2a -3=5,b =3.解得⎩⎪⎨⎪⎧ a =2,b =3或⎩⎪⎨⎪⎧a =-4,b =3经检验都符合题意.13.解 (1)当a =0时,A =∅,满足A ⊆B . (2)当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1},A ⊆B ,∴⎩⎨⎧1a≥-1,2a ≤1,∴a ≥2.(3)当a <0时,A ={x |2a <x <1a}.∵A ⊆B ,∴⎩⎨⎧2a≥-1,1a ≤1,∴a ≤-2.综上所述,a=0或a≥2或a≤-2.。
第一章集合1集合的概念 .................................................................................................................. - 1 -2集合的表示 .................................................................................................................. - 5 -3子集、真子集............................................................................................................... - 8 -4补集、全集 ................................................................................................................ - 14 -5交集、并集 ................................................................................................................ - 18 -1集合的概念基础练习1.若a是R中的元素,但不是Q中的元素,则a可以是( )A.3.14B.-5C.D.【解析】选D.由题意知a应为无理数,故a可以为.2.下列说法中正确的个数是( )(1)大于3小于5的自然数构成一个集合.(2)直角坐标平面内第一象限的一些点组成一个集合.(3)方程(x-1)2(x+2)=0的解组成的集合有3个元素.A.0B.1C.2D.3【解析】选B.(1)正确,(1)中的元素是确定的,只有一个,可以构成一个集合.(2)不正确,“一些点”标准不明确,不能构成一个集合.(3)不正确,方程的解只有1和-2,集合中有2个元素.3.若由a2,2 019a组成的集合M中有两个元素,则a的取值可以是( )A.0B.2 019C.1D.0或2 019【解析】选C.若集合M中有两个元素,则a2≠2 019a.即a≠0且a≠2 019.4.已知集合A是由偶数组成的,集合B是由奇数组成的,若a∈A,b∈B,则a+b____A, ab____A.(填“∈”或“∉”)【解析】因为a∈A,b∈B,所以a是偶数,b是奇数,所以a+b是奇数,ab是偶数,故a+b∉A,ab∈A.答案:∉∈5.已知集合A含有3个元素a-2,2a2+5a,12,且-3∈A,求a的值.【解题指南】由-3∈A,分两种情况进行讨论,注意根据集合中元素的互异性进行检验.【解析】因为-3∈A,所以a-2=-3或2a2+5a=-3,解得a=-1或a=-.当a=-1时,a-2=-3,2a2+5a=-3,集合A不满足元素的互异性,所以舍去a=-1.当a=-时,经检验,符合题意.故a=-.【补偿训练】设A是由满足不等式x<6的自然数组成的集合,若a∈A且3a∈A,求a的值. 【解析】因为a∈A且3a∈A,所以解得a<2.又a∈N,所以a=0或1.提升训练一、选择题(每小题5分,共20分)1.下列三个命题:①集合N中最小的数是1;②-a∉N,则a∈N;③a∈N,b∈N,则a+b 的最小值是2.其中正确命题的个数是( )A.0B.1C.2D.3【解析】选A.根据自然数的特点,显然①③不正确.②中若a=,则-a∉N且a∉N,显然②不正确.2.已知集合A中元素x满足-≤x≤,且x∈N*,则必有( )A.-1∈AB.0∈AC.∈AD.1∈A【解析】选D.因为x∈N*,且-≤x≤,所以x=1,2.所以1∈A.3.设集合A含有-2,1两个元素,B含有-1,2两个元素,定义集合A☉B,满足x1∈A,x2∈B,且x1x2∈A☉B,则A☉B中所有元素之积为( )A.-8B.-16C.8D.16【解析】选C.因为集合A含有-2,1两个元素,B含有-1,2两个元素,由题意得,集合A☉B中所有元素是2,-4,-1,它们的积为:2×(-4)×(-1)=8.4.(多选题)下列各组中集合P与Q,表示同一个集合的是( )A.P是由元素1,,π构成的集合,Q是由元素π,1,|-|构成的集合B.P是由π构成的集合,Q是由3.141 59构成的集合C.P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合D.P是由满足不等式-1≤x≤1的整数构成的集合,Q是由方程x=0的解构成的集合【解析】选AD.由于A,D中P,Q的元素完全相同,所以P与Q表示同一个集合,而B,C中P,Q的元素不相同,所以P与Q不能表示同一个集合.二、填空题(每小题5分,共10分)5.不等式x-a≥0的解集为A,若3∉A,则实数a的取值范围是________.【解析】因为3∉A,所以3是不等式x-a<0的解,所以3-a<0,解得a>3.答案:a>36.由实数x,-x,|x|,,-所组成的集合,最多含________个元素.【解析】当x>0时,x=|x|=,-=-x<0,此时集合共有2个元素,当x=0时,x=|x|==-=-x=0,此时集合共有1个元素,当x<0时,=|x|=-=-x,此时集合共有2个元素,综上,此集合最多有2个元素.答案:2三、解答题7.(10分)设集合S中的元素x=m+n,m,n∈Z.(1)若a∈Z,则a是否是集合S中的元素?(2)对S中的任意两个元素x1,x2,则x1+x2,x1·x2是否属于S?【解析】(1)a是集合S中的元素, 因为a=a+0×∈S.(2)不妨设x1=m+n,x2=p+q,m,n,p,q∈Z.则x1+x2=(m+n)+(p+q)=(m+p)+(n+q),因为m,n,p,q∈Z. 所以n+q∈Z,m+p∈Z.所以x1+x2∈S,x1·x2=(m+n)·(p+q)=(mp+2nq)+(mq+np),m,n,p,q∈Z.故mp+2nq∈Z,mq+np∈Z.所以x1·x2∈S.综上,x1+x2,x1·x2都属于S.【补偿训练】定义满足“如果a∈A,b∈A,那么a±b∈A,且ab∈A,且∈A(b≠0)”,则集合A为“闭集”.试问数集N,Z,Q,R是否分别为“闭集”?若是,请说明理由;若不是,请举反例说明.【解析】①数集N,Z不是“闭集”,例如,3∈N,2∈N,而=1.5∉N;3∈Z,-2∈Z,而=-1.5∉Z,故N,Z不是闭集.②数集Q,R是“闭集”.由于两个有理数a与b的和,差,积,商,即a±b,ab,(b≠0)仍是有理数,所以Q是闭集,同理R也是闭集.2集合的表示基础练习1.下列集合中,不同于另外三个集合的是( )A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}【解析】选D.A是列举法;C是描述法;对于B要注意集合的代表元素是y,但实质上表示的都是0,故与A,C相同;而D表示该集合含有一个元素,即方程“x=0”.2.(2020·镇江高一检测)下列集合表示同一集合的是( )A.M={(3,2)},N={(2,3)}B.M={(x,y)|x+y=1},N={y|x+y=1}C.M={4,5},N={5,4}D.M={1,2},N={(1,2)}【解析】选C.对于A,两个集合中的元素不同;对于B,一个集合中元素是点,一个集合中元素是实数,故不同;对于C,列举法表示集合时,与元素顺序无关,故是相同的集合;对于D,两个集合中,一个元素是数,一个元素是点,故不同.3.(2020·哈尔滨高一检测)设集合B={x|x2-4x+m=0},若1∈B,则B= ( )A. B.C. D.【解析】选A.因为集合B={x|x2-4x+m=0},1∈B,所以1-4+m=0,解得m=3.所以B={x|x2-4x+3=0}={1,3}.4.(2020·承德高一检测)若A={-2,2,3,4},B={x|x=t2,t∈A},用列举法表示集合B 为________.【解析】由题意可知集合B是由A中元素的平方构成的,故B={4,9,16}.答案:{4,9,16}【补偿训练】用列举法表示集合{(x,y)|(x+1)2+|y-1|=0,x,y∈R}为________.【解析】因为(x+1)2≥0,|y-1|≥0,所以(x+1)2=0且|y-1|=0,故有x=-1且y=1,因此答案为{(-1,1)}.答案:{(-1,1)}5.用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合.(2)24的正因数组成的集合.(3)自然数的平方组成的集合.(4)由0,1,2这三个数字抽出一部分或全部数字(没有重复)所组成的自然数组成的集合.【解析】(1)用描述法表示为{x|2<x<5且x∈Q}.(2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)用描述法表示为{x|x=n2,n∈N}.(4)用列举法表示为{0,1,2,10,12,20,21,102,120,210,201}.提升训练一、选择题(每小题5分,共20分)1.下面对集合{1,5,9,13,17}用描述法表示,其中正确的一个是( )A.{x|x是小于18的正奇数}B.{x|x=4k+1,k∈Z,k<5}C.{x|x=4t-3,t∈N,t<5}D.{x|x=4s-3,s∈N*,s<6}【解析】选 D.集合中的元素除以4余1,故元素可以用4k+1(0≤k≤4,k∈Z)或4k-3(1≤k≤5,k∈Z)来表示.2.(2020·济宁高一检测)设集合A={x|x2-x-2=0},B={x||x|=y+2,y∈A},则集合B 是( )A.{-4,4}B.{-4,-1,1,4}C.{0,1}D.{-1,1}【解析】选B.解集合A中方程x2-x-2=0,得到x=2或x=-1,因为y∈A,即y=2或y=-1,得|x|=y+2=4或|x|=y+2=1,故x=±4或x=±1,所以集合B={-4,-1,1,4}.3.(2020·鹤壁高一检测)定义集合A,B的一种运算:A*B={x|x=x1+x2,x1∈A,x2∈B},若A={1,2,3},B={1,2},则A*B中的所有元素之和为 ( ) A.21 B.18 C.14 D.9【解析】选C.因为A*B={x|x=x1+x2,x1∈A,x2∈B},A={1,2,3},B={1,2},所以A*B={2,3,4,5},所以A*B中的所有元素之和为:2+3+4+5=14.【补偿训练】若A={1,2,3},B={3,5},用列举法表示A⊗B={2a-b|a∈A,b∈B}= ________.【解析】因为A={1,2,3},B={3,5},又A⊗B={2a-b|a∈A,b∈B},所以A⊗B={-3,-1,1,3}.答案:{-3,-1,1,3}4.(多选题)下列各组中的M,P表示同一集合的是( )A.M={3,-1},P={(3,-1)}B.M={(3,1)},P={(1,3)}C.M={y|y=-1},P={t|t=-1}D.集合M={m|m+1≥5},P={y|y=x2+2x+5,x∈R}【解析】选CD.在A中,M={3,-1}是数集,P={(3,-1)}是点集,二者不是同一集合;在B中,M={(3,1)},P={(1,3)}表示的不是同一个点的集合,二者不是同一集合;在C中,M={y|y=-1}={y|y≥-1},P={t|t=-1}={t|t≥-1},二者表示同一集合;在D中,M={m|m≥4,m∈R},即M中元素为大于或等于4的所有实数, P={y|y=(x+1)2+4},y=(x+1)2+4≥4,所以P中元素也为大于或等于4的所有实数,故M,P表示同一集合.二、填空题(每小题5分,共10分)5.(2020·无锡高一检测)已知集合{a,b,c}={0,1,2}且下列三个关系:①a≠2;②b=2;③c≠0有且只有一个正确,则100a+10b+c=________.【解析】若只有①正确,则c=0,a=1,b=2与②不正确矛盾;若只有②正确,则b=2,a=2,c=0与a≠b矛盾;若只有③正确,则a=2,c=1,b=0符合题意.所以100a+10b+c=100×2+10×0+1=201.答案:201【补偿训练】已知集合A={x|x2+px+q=0}={2},则p=________,q=________.【解析】由得答案:-4 46.(2020·济南高一检测)设a,b,c为非零实数,m=+++,则m的所有值组成的集合为________.【解题指南】根据a,b,c三个数中负数的个数分类讨论.【解析】当a,b,c均为负数时,,,,均为-1,故m=-4;当a,b,c只有一个为正数时,,,,中必有两个为1,两个为-1,故m=0;当a,b,c有两个为正数时,,,,中必有两个为1,两个为-1,故m=0; 当a,b,c均为正数时,,,,均为1,故m=4,所以由m=+++的所有值组成的集合的元素有0,-4,4,则所求集合为{-4,0,4}.答案:{-4,0,4}三、解答题7.(10分)设A表示集合{2,3,a2+2a-3},B表示集合{|a+3|,2},若5∈A,且5∉B,求实数a的值.【解析】因为5∈A,且5∉B,所以解得故a=-4.3子集、真子集基础练习1.以下四个关系:∅∈{0},0∈∅,{∅}⊆{0},∅{0},其中正确的个数是( )A.1B.2C.3D.4【解析】选A.集合与集合间的关系是⊆,因此∅∈{0}错误;{ ∅}表示只含有一个元素(此元素是∅)的集合,所以{∅}⊆{0}错误;空集不含有任何元素,因此0∈∅错误; ∅{0}正确.因此正确的只有1个.2.(2020·宿迁高一检测)已知集合A={x|x=x2},B={1,m,2},若A⊆B,则实数m的值为( )A.2B.0C.0或2D.1【解析】选B.由题意,集合A={x|x=x2}={0,1},因为A⊆B,所以m=0.【补偿训练】已知集合A={1+x2,x},B={1,2,3},且A⊆B,则实数x的值是( )A.-1B.1C.3D.4【解析】选B.集合A={1+x2,x},B={1,2,3},且A⊆B,则集合B包含集合A的所有元素,x=1时,代入A检验,A={2,1},符合题意,x=2时,代入A检验,A={5,2},不符合题意,x=3时,代入A检验,A={10,3}不符合题意,综上,实数x的值是1.3.(2020·南通高一检测)满足{1}⊆A⫋{1,2,3}的集合A的个数为( )A.2B.3C.8D.4【解析】选B.满足条件的集合A有3个,即A={1,2}或{1,3}或{1}.4.已知集合U,S,T,F的关系如图所示,则下列关系正确的是( )①S∈U;②F⊆T;③S⊆T;④S⊆F;⑤S∈F;⑥F⊆U.A.①③B.②③C.③④D.③⑥【解析】选D.元素与集合之间的关系才用∈,故①⑤错;子集的区域要被全部包含,故②④错.5.(2020·邢台高一检测)已知集合A=,B={b,b a,-1},若A=B,则a+b=________.【解析】若=-1,即a=-1时,b=2,经验证符合题意;若-=-1,即a=b,则无解.所以a+b=1.答案:16.判断下列每组中集合之间的关系:(1)A={x|-3≤x<5},B={x|-1<x<2}.(2)A={x|x=2n-1,n∈N*},B={x|x=2n+1,n∈N*}.(3)A={x|x是平行四边形},B={x|x是菱形},C={x|x是四边形},D={x|x是正方形}.(4)A={x|-1≤x<3,x∈Z},B={x|x=,y∈A}.【解析】(1)将两个集合在数轴上表示出来,如图所示,显然有B A.(2)当n∈N*时,由x=2n-1知x=1,3,5,7,9,….由x=2n+1知x=3,5,7,9,….故A={1,3,5,7,9,…},B={3,5,7,9,…},因此B A.(3)由图形的特点可画出Venn图,如图所示,从而可得D B A C.(4)依题意可得:A={-1,0,1,2},B={0,1,2},所以B A.提升训练一、单选题(每小题5分,共20分)1.(2020·赣州高一检测)已知集合M={x|-<x<,x∈Z},则下列集合是集合M的子集的为( )A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤,x∈N}【解析】选D.因为集合M={x|-<x<,x∈Z}={-2,-1,0,1},所以在A中:P={-3,0,1}不是集合M的子集,故A错误;在B中:Q={-1,0,1,2}不是集合M的子集,故B错误;在C中:R={y|-π<y<-1,y∈Z}={-3,-2}不是集合M的子集,故C错误;在D中:S={x||x|≤,x∈N}={0,1}是集合M的子集,故D正确. 2.若x,y∈R,A={(x,y)|y=x},B=,则集合A,B间的关系为( )A.A BB.A BC.A=BD.A⊆B【解析】选B.B=={(x,y)|y=x,且x≠0},所以B A.3.(2020·泰州高一检测)已知集合A={x|x<a},B={x|0<x<2}.若B⊆A,则实数a的取值范围为( )A.[2,+∞)B.(2,+∞)C.(-∞,2)D.(-∞,2]【解析】选A.因为集合A={x|x<a},B={x|0<x<2}.因为B⊆A,所以a≥2.4.(2020·南昌高一检测)已知集合A=,B=,且A是B的真子集.若实数y在集合中,则不同的集合共有( )A.4个B.5个C.6个D.7个【解析】选A.因为A是B的真子集,y在集合{0,1,2,3,4}中,由集合元素的互异性知y=0或y=3,当y=3时,B={1,2,3,4},x可能的取值为:2,3,4;当y=0时,B={0,1,2,4},x可能的取值为:0,2,4;由互异性可知集合{x,y}共有2+2=4个.二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)5.设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠ ,B⊆A,则(a,b)可能是( ) A.(-1,1) B.(-1,0)C.(0,-1)D.(1,1)【解析】选ACD.当a=-1,b=1时,B={x|x2+2x+1=0}={-1},符合;当a=-1,b=0时,B={x|x2+2x=0}={0,-2},不符合;当a=0,b=-1时,B={x|x2-1=0}={-1,1},符合;当a=b=1时,B={x|x2-2x+1=0}={1},符合.6.已知集合M={x|x2-9=0},则下列式子表示正确的有( )A.3∈MB.{-3}∈MC.∅⊆MD.{3,-3}⊆M【解析】选ACD.根据题意,集合M={x|x2-9=0}={-3,3},依次分析4个选项: 对于A,3∈M,3是集合M的元素,正确;对于B,{-3}是集合,有{-3}⊆M,故B选项错误;对于C,∅⊆M,空集是任何集合的子集,正确;对于D,{3,-3}⊆M,任何集合都是其本身的子集,正确.三、填空题(每小题5分,共10分)7.已知集合A={x|ax2-5x+6=0},若2∈A,则集合A的子集的个数为________.【解析】依题意得:4a-10+6=0,解得a=1.则x2-5x+6=0,解得x1=2,x2=3,所以A={2,3},所以集合A的子集个数为4.答案:4【补偿训练】集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则a的取值为________. 【解析】由集合有两个子集可知,该集合是单元素集合,当a=1时,满足题意.当a≠1时,由Δ=9+8(a-1)=0可得a=-.答案:1或-8.图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,请作适当的选择填入下面的空格:A为________;B为________;C为________;D为________.【解析】由Venn图可得A B,C D B,A与D之间无包含关系,A与C之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A为小说,B为文学作品,C为叙事散文,D为散文.答案:小说文学作品叙事散文散文四、解答题(每小题10分,共20分)9.已知集合M⊆{1,2,3,4,5},且当a∈M时,有6-a∈M,试求M所有可能的结果. 【解析】若M只含1个元素,则M={3};若M只含2个元素,则M={1,5},{2,4};若M只含3个元素,则M={1,3,5},{2,3,4};若M只含4个元素,则M={1,2,4,5};若M含5个元素,则M={1,2,3,4,5}.所以M可能的结果为:{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5},共7个.10.已知集合A={x|x2-9x+14=0},集合B={x|ax+2=0},若B A,求实数a的取值集合.【解析】A={x|x2-9x+14=0}={2,7},因为B A,所以若a=0,即B= 时,满足条件.若a≠0,则B=,若B A,则-=2或7,解得a=-1或-.则实数a的取值的集合为.创新练习1.(2020·南昌高一检测)若x∈A,则∈A,就称A是伙伴关系集合,集合M={-1,0, ,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为 ( )A.15B.16C.32D.256【解析】选A.因为若x∈A,则∈A,所以0∉A,当-1∈A时,=-1∈A,当1∈A时,=1∈A,当2∈A时,∉A,当3∈A时,∈A,当4∈A时,∈A,所以集合M的所有非空子集中,具有伙伴关系的集合中有-1,1,和3成对出现,和4成对出现,所以从上述4个元素(元素对)中选取,组成的非空集合共有15个. 2.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围. 【解析】(1)当a=0时,A= ,满足A⊆B.(2)当a>0时,A=.又因为B={x|-1<x<1},A⊆B,所以所以a≥2.(3)当a<0时,A=.因为A⊆B,所以所以a≤-2.综上所述,a的取值范围为{a|a≥2或a≤-2或a=0}.【误区警示】解答本题,研究集合中元素满足的性质时,容易忽视分a=0,a>0,a<0三种情况讨论.4补集、全集基础练习A= ( )1.已知全集U={x|x≥-3},集合A={x|-2<x≤4},则UA. {x|-2≤x<4}B. {x| x<-2或x>4}C. {x|-3≤x≤-2}D. {x|-3≤x≤-2或x>4}【解析】选D.将全集U,集合A表示在数轴上,如图所示.所以UA={x|-3≤x≤-2或x>4}.2.设全集U和集合A,B,P,满足A=U B,B=UP,则A与P的关系是( )A.A=PB.A⊆PC.P⊆AD.A≠P【解析】选A.由A=U B,得UA=B.又因为B=U P,所以UP=UA,即A=P.3.已知A={0,2,4,6},U A={-1,-3,1,3},UB={-1,0,2},集合B=__________.【解析】因为A={0,2,4,6},UA={-1,-3,1,3}, 所以U={-3,-1,0,1,2,3,4,6}.而UB={-1,0,2},所以B=U (UB)={-3,1,3,4,6}.答案:{-3,1,3,4,6}4.已知全集U={-1,0,1},集合A={0,|x|},则UA=________.【解析】根据题意知,|x|=1,所以A={0,1},U={-1,0,1},所以UA={-1}.答案:{-1}5.(1)已知U={n|n是小于10的正整数},A={n|n是3的倍数,n∈U},求UA.(2)已知U={x|x是三角形},A={x|x是等腰三角形},B={x|x是等边三角形},求UB和AB;(3)已知全集U=R,A={x|3≤x<10},B={x|2<x≤7},求U A,UB.【解析】(1)因为U={1,2,3,4,5,6,7,8,9}, A={3,6,9},所以UA={1,2,4,5,7,8}.(2)UB={x|x是三边不都相等的三角形};AB={x|x是有且仅有两边相等的三角形}. (3)因为A={x|3≤x<10},B={x|2<x≤7},所以借助于数轴知U A={x|x<3,或x≥10},UB={x|x≤2,或x>7}.提升训练一、选择题(每小题5分,共20分)1.(2020·南通高一检测)若全集U=且UA=,则集合A的真子集共有( ) A.7个 B.5个C. 3个D. 8个【解析】选A.由题意知,集合A有三个元素,所以A的真子集个数为7个.【补偿训练】设全集U={x||x|<4,且x∈Z},S={-2,1,3},若UP⊆S,则这样的集合P共有( ) A.5个 B.6个 C.7个 D.8个【解析】选D.U={-3,-2,-1,0,1,2,3},因为U (UP)=P,所以存在一个UP,即有一个相应的P(如当U P={-2,1,3}时,P={-3,-1,0,2},当UP={-2,1}时,P={-3,-1,0,2,3}等),由于S的子集共有8个,所以P也有8个.2.已知集合I,M,N的关系如图所示,则I,M,N的关系为( )A.(I M)⊇(IN) B.M⊆(IN)C.(I M)⊆(IN) D.M⊇(IN)【解析】选C.由题图知M⊇N,所以(I M)⊆(IN).3.(多选题)已知集合A={x|x<-1或x>5},C={x|x>a},若RA⊆C,则a的值可以是( ) A.-2 B.- C. -1 D.0【解析】选AB.R A={x|-1≤x≤5},要使RA⊆C,则a<-1.故a的值可以是-2和-.4.设集合U={-1,1,2,3},M={x|x2+px+q=0},若UM={-1,1},则实数p和q的值分别为( )A.0,-1B.-1,0C.-5,6D.5,-6【解析】选 C.因为UM={-1,1},所以M={2,3},即2,3是x2+px+q=0的根,所以-p=2+3,q=2×3.所以p=-5,q=6.二、填空题(每小题5分,共10分)5.已知集合U={x∈N|x≤10},A={小于10的正奇数},B={小于11的质数},则U A=________,UB=________.【解析】U={0,1,2,3,4,5,6,7,8,9,10}, 因为A={小于10的正奇数}={1,3,5,7,9}, 所以UA={0,2,4,6,8,10}.因为B={小于11的质数}={2,3,5,7},所以UB={0,1,4,6,8,9,10}.答案:{0,2,4,6,8,10} {0,1,4,6,8,9,10} 【补偿训练】设U={x|-5≤x<-2,或2<x ≤5,x ∈Z},A={x|x 2-2x-15=0},B={-3,3,4},则UA=________,U B=________.【解析】方法一:在集合U 中,因为x ∈Z,则x 的值为-5,-4,-3,3,4,5, 所以U={-5,-4,-3,3,4,5}. 又A={x|x 2-2x-15=0}={-3,5}, 所以U A={-5,-4,3,4},U B={-5,-4,5}. 方法二:可用Venn 图表示则U A={-5,-4,3,4},U B={-5,-4,5}. 答案:{-5,-4,3,4} {-5,-4,5}6.已知全集U={x|-1≤x ≤1},A={x|0<x<a},若U A ≠U,则实数a 的取值范围是 ________.【解析】由全集定义知A ⊆U,从而a ≤1. 又U A ≠U,所以A ≠∅,故a>0. 综上可知0<a ≤1. 答案:0<a ≤1 三、解答题7.(10分)已知全集U={2,3,a 2-2a-3},A={b,2},U A={5},(1)求实数a,b 的值; (2)写出集合A 的所有子集.【解析】(1)因为全集U={2,3,a 2-2a-3},A={b,2},U A={5}, 所以a 2-2a-3=5,b=3,所以a=4或-2,b=3;(2)由(1)知A={3,2},故集合A 的所有子集为∅,{2},{3},{2,3}. 【补偿训练】已知集合A={x|x 2-4x+3=0},B={x|ax-6=0}且R A ⊆R B,求实数a 的取值集合. 【解析】因为A={x|x 2-4x+3=0}, 所以A={1,3}.又R A ⊆R B,所以B ⊆A,所以有B=∅,B={1},B={3}三种情形.当B={3}时,有3a-6=0,所以a=2; 当B={1}时,有a-6=0,所以a=6; 当B=∅时,有a=0,所以实数a 的取值集合为{0,2,6}.5交集、并集基础练习1.(2020·宿迁高一检测)设集合A={x|-1≤x≤2,x∈N},集合B={2,3},则A∪B等于( )A.{-1,0,1,2,3}B.{0,1,2,3}C.{1,2,3}D.【解析】选B.由题意,集合A={x|-1≤x≤2,x∈N}={0,1,2},又由集合B={2,3},所以A∪B={0,1,2,3}.【补偿训练】设集合A={a,b},B={a+1,5},若A∩B={2},则A∪B等于( )A.{1,2,5}B.{1,2}C.{1,5}D.{2,5}【解析】选A.因为A∩B={2},所以2∈A,且2∈B,所以a+1=2, 所以a=1,所以b=2. 所以A={1,2},B={2,5},所以A∪B={1,2,5}.2.(2019·全国卷Ⅲ)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B= ( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【解析】选A.因为集合A={-1,0,1,2},B={x|x2≤1}={x|-1≤x≤1},所以A∩B={-1,0,1}.3.设全集U是实数集R,M={x|x<-2或x>2},N={x|1≤x≤3},如图,则阴影部分所表示的集合为( )A.{x|-2≤x<1}B.{x|-2≤x<3}C.{x|x≤2或x>3}D.{x|-2≤x≤2}(M 【解析】选A.由题意,知M∪N={x|x<-2或x≥1},所以阴影部分所表示的集合为U∪N)={x|-2≤x<1}.4.(2020·徐州高一检测)已知集合A={-2,0,1,3},B={x|-<x<},则A∩B的子集个数为________.【解析】因为A={-2,0,1,3},B={x|-<x<},所以A∩B={-2,0,1},所以A∩B的子集个数为23=8个.答案:8【补偿训练】已知集合A={1,2,3},集合B={-1,1,3} ,集合S=A∩B,则集合S的真子集有________个.【解析】由题意可得 S=A∩B={1,3} ,所以集合 S 的真子集的个数为 3 个.答案:35.已知集合A={x|2<x<4},B={x|a<x<3a}.若A∩B={x|3<x<4},则a的值为________.【解析】由A={x|2<x<4},A∩B={x|3<x<4},如图可知a=3,此时B={x|3<x<9},即a=3为所求.答案:36.(2020·镇江高一检测)设U=R,A=,B=或,求(1)A∩B;(2)∩.【解析】由题意得B=或.(1)A∩B=.A=或,(2)因为UB=,U所以∩=.提升训练一、单选题(每小题5分,共20分)1.已知集合M={x|x<0},N={x|x≤0},则( )A.M∩N=∅B.M∪N=RC.M ND.N M【解析】选C.集合M={x|x<0},N={x|x≤0},集合N包含M中所有的元素,且集合N 比集合M多一个元素0,由集合真子集的定义可知:集合M是集合N的子集,且是真子集,所以M={x|x<0}N={x|x≤0}.2.设A,B是非空集合,定义A*B={x|x∈A∪B且x∉A∩B},已知A={x|0≤x≤3}, B={y|y≥1},则A*B等于( )A.{x|1≤x<3}B.{x|1≤x≤3}C.{x|0≤x<1或x>3}D.{x|0≤x≤1或x≥3}【解析】选C.由题意知,A∪B={x|x≥0},A∩B={x|1≤x≤3},则A*B={x|0≤x<1或x>3}.3.(2020·无锡高一检测)已知全集U=N,设集合A={x|x=,k∈,集合B等于 ( )B={x|x>6,x∈N},则A∩NA.{1,4}B.{1,6}C.{1,4,6}D.{4,6}【解析】选C.因为A={x|x=,k∈N}={1,,,,,…},B={x|x>6,x∈N},B={x|x≤6,x∈N}={0,1,2,3,4,5,6},所以NB={1,4,6}.所以A∩N4.(2020·盐城高一检测)设集合M=,N=,若M∩N=∅,则实数a的取值范围是( )A.a≤2B. a≤-1C. a<-1D. a>2【解析】选B.因为M=,N=,若M ∩N=∅,用数轴表示如图,由图可知实数a 的取值范围是a ≤-1. 【补偿训练】 已知集合A=,B=,且A ∩B=∅,求实数a 的取值范围.【解析】当a-1≥2a+1,即a ≤-2时,A=∅, 满足A ∩B=∅;当a-1<2a+1,即a>-2时,A ≠∅, 若A ∩B=∅,则需2a+1≤0或a-1≥1, 解得-2<a ≤-或a ≥2,综上所述,a ∈∪.二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)5.已知集合M,N,P 为全集U 的子集,且满足M ⊆P ⊆N,则下列结论正确的是( ) A.U N ⊆U PB.N P ⊆N MC.(U P)∩M=∅D.(U M)∩N=∅【解析】选ABC.因为集合M,N,P 为全集U 的子集,且满足M ⊆P ⊆N, 所以作出Venn 图,如图所示.由Venn 图,得U N ⊆U P,故A 正确;N P ⊆N M, 故B 正确;(U P)∩M=∅,故C 正确; (U M)∩N ≠∅,故D 错误. 6.U 为全集时,下列说法正确的是 ( )A.若A ∩B=∅,则(U A)∪(U B)=UB.若A ∩B=∅,则A=∅或B=∅C.若A∪B=U,则(U A)∩(UB)= ∅D.若A∪B=∅,则A=B=∅【解析】选ACD.A对,因为(U A)∪(UB)=U(A∩B),而A∩B=∅,所以(U A)∪(UB)=U(A∩B)=U.B错,A∩B=∅,集合A,B不一定要为空集,只需两个集合无公共元素即可.C对,因为(U A)∩(UB)=U(A∪B),而A∪B=U,所以(UA)∩(UB)=U(A∪B)=∅.D对,A∪B=∅,即集合A,B均无元素.综上ACD对.三、填空题(每小题5分,共10分)7.(2020·无锡高一检测)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=______.【解析】因为A∩B={1},所以x=1为方程x2-4x+m=0的解,则1-4+m=0,解得m=3, 所以x2-4x+3=0,解得x=1或x=3,所以集合B=.答案:【补偿训练】(2020·南充高一检测)设集合A={-4,t2},集合B={t-5,9,1-t},若9∈A∩B,则实数t=______.【解析】因为A={-4,t2},B={t-5,9,1-t},且9∈A∩B,所以t2=9,解得:t=3或-3,当t=3时,根据集合元素的互异性可知不合题意,舍去;则实数t=-3.答案:-38.如图所示,图中的阴影部分可用集合U,A,B,C表示为________.【解析】图中的阴影部分的元素既属于A,又属于B,但不属于C,故可用集合U,A,B,C表示为(A∩B)∩(UC).答案:(A∩B)∩(UC)【补偿训练】如图,I是全集,A,B,C是它的子集,则阴影部分所表示的集合是( )A.(I A ∩B)∩CB.(I B ∪A)∩CC.(A ∩B)∩(I C)D.(A ∩I B)∩C【解析】选D.由图可知阴影部分中的元素属于A,不属于B,属于C,则阴影部分表示的集合是(A ∩I B)∩C.四、解答题(每小题10分,共20分) 9.已知集合U={x ∈Z|-2<x<10},A={0,1,3,4,,B={-1,1,4,6,.求A ∩B,U (A ∪B),A ∩(U B),B ∪(U A).【解析】集合U={x ∈Z|-2<x<10}={-1,0,1,2,3,4,5,6,7,8,,A={0,1,3,4,,B={-1,1,4,6,;所以A ∩B={1,4,,A ∪B={-1,0,1,3,4,6,,所以U (A ∪B)={2,5,7,,又U B={0,2,3,5,7,,U A={-1,2,5,6,7,,所以A ∩(U B)={0,,B ∪(U A)={-1,1,2,4,5,6,7,8,.10.(2020·连云港高一检测)集合A={x|-2<x<4},集合B={x|m-1<x<2m+1}. (1)当m=2时,求A ∪B;(2)若A ∩B=B,求实数m 的取值范围. 【解析】(1)当m=2时,集合 B={x|m-1<x<2m+1}={x|1<x<5}, 又A={x|-2<x<4}, 所以A ∪B={x|-2<x<5}.(2)由A ∩B=B,则B ⊆A,当B= 时, 有m-1≥2m+1,解得m ≤-2,满足题意;当B≠∅时,应满足解得-1≤m≤;综上所述,m的取值范围是m∈(-∞,-2]∪.创新练习1.(2020·泰安高一检测)用card(A)来表示有限集合A中元素的个数,已知全集U=A∪B,D=(U A)∪(UB),card(U)=m,card(D)=n,若A∩B非空,则card(A∩B)=( )A.mnB.m+nC.n-mD.m-n【解析】选D.由题意画出Venn图空白部分表示集合D,整体表示全集U,阴影部分表示A∩B, 则card(A∩B)=card(U)-card(D)=m-n.2.设全集U={x|x≤5,且x∈N+},其子集A={x|x2-5x+q=0},B={x|x2+px+12=0},且(UA)∪B={1,3,4,5},求实数p,q的值. 【解析】由已知得U={1,2,3,4,5}.(1)若A=∅,则(U A)∪B=U,不合题意;(2)若A={x0},则x∈U,且2x=5,不合题意;(3)设A={x1,x2},则x1,x2∈U,且x1+x2=5,所以A={1,4}或{2,3}.若A={1,4},则UA={2,3,5},与(U A)∪B={1,3,4,5}矛盾,舍去;若A={2,3},则UA={1,4,5},由(UA)∪B={1,3,4,5}知3∈B,同时可知B中还有一个不等于3的元素x,由3x=12得x=4,即B={3,4}.综上可知A={2,3},B={3,4},所以q=2×3=6,p=-(3+4)=-7.。
交集、并集练习1.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于________.2.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N等于________.3.设集合A={y|y=x2+1,x∈R},B={y|y=x+1,x∈R},则A∩B等于________.4.第二十九届夏季奥林匹克运动会于2008年8月8日在北京举行.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则B∪C__________A.5.设M={1,2,4,5},P={1,2,3},则有________(M∩P).6.如图所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是__________.7.满足条件{1,2,3}∪B={1,2,3,4,5}的集合B的个数是__________.8.已知集合A={x|x2+2(a+1)x+a2-1=0},B={x|x2+4x=0},若A∪B=B,则实数a的取值范围是________.9.某市政府对水、电提价,召开听证会,如记对水提价为事件A,对电提价为事件B.现向100名市民调查其对A、B两事件的看法,有如下结果:赞成A的人数是全体的35,其余的不赞成;赞成B的比赞成A的多3人,其余不赞成;另外,对A、B都不赞成的市民人数比对A、B都赞成的市民人数的13多1人,问对A、B都赞成的市民和都不赞成的市民各有多少人?10.已知集合A={x|0≤x≤5},集合B={x|m≤x≤2m-1},且A∪B=A,试用区间符号表示实数m的取值范围.参考答案1.答案:{x |x <-5或x >-3} 2.答案:{(3,-1)} 3.答案:{y |y ≥1}4.答案:=5.答案:6.答案:S ∩M ∩P7.答案:88.答案:{a |a ≤-1或a =1}9.解:赞成A 的人数为100×35=60,赞成B 的人数为60+3=63.如图所示,记100名市民组成的集合为U ,赞成事件A 的市民为集合A ,赞成事件B 的市民为集合B .设对事件A 、B 都赞成的市民人数为x ,则对A 、B 都不赞成的市民人数为3x +1.依题意可得,(60-x )+(63-x )+x +3x+1=100,解得x =36,即对A 、B 两事件都赞成的市民有36人,对A 、B 两事件都不赞成的市民有13人.10.解:∵A ∪B =A ,∴B A .又∵A ={x |0≤x ≤5}≠,∴B =,或B ≠.当B =时,有m >2m -1,∴m <1.当B ≠时,如图,由图可得210215mm m m ,,,解得1≤m ≤3.综上所述,实数m 的取值范围为(-∞,3].别想一下造出大海,必须先由小河川开始。
第一单元 集合 一、填空题 1.集合{1,2,3}的真子集共有______________。
(A )5个 (B )6个 (C )7个 (D )8个2.已知集合A={022≥-x x } B={0342≤+-x x x }则A B ⋃=______________。
3.已知A={1,2,a 2-3a-1},B={1,3},A =⋂B {3,1}则a =______________。
(A )-4或1 (B )-1或4 (C )-1 (D )44.设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(C U A )⋃(C U B )=_____________。
5.设S 、T 是两个非空集合,且S ⊄T ,T ⊄S ,令X=S ,T ⋂那么S ⋃X=____________。
6.设A={x 0152=+-∈px x Z },B={x 052=+-∈q x x Z },若A ⋃B={2,3,5},A 、B 分别为____________。
7.设一元二次方程ax 2+bx+c=0(a<0)的根的判别式042=-=∆ac b ,则不等式ax 2+bx+c ≥0的解集为____________。
8.若M={Z n x n x ∈=,2},N={∈+=n x n x ,21Z},则M ⋂N=________________。
9.已知U=N ,A={0302>--x x x },则C U A 等于_______________。
10.二次函数132+++-=m mx x y 的图像与x 轴没有交点,则m 的取值范围是_______________。
11.不等式652+-x x <x 2-4的解集是_______________。
12.设全集为⋃,用集合A 、B 、C 的交、并、补集符号表图中的阴影部分。
(1) (2)(3)13.若方程8x 2+(k+1)x+k-7=0有两个负根,则k 的取值范围是14.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 。
第一章集合1.1集合的概念与表示................................................................................................. - 1 -第1课时集合的概念.......................................................................................... - 1 -第2课时集合的表示.......................................................................................... - 5 -1.2子集、全集、补集................................................................................................. - 9 -1.3交集、并集 .......................................................................................................... - 14 -第1章测评 ................................................................................................................... - 19 - 1.1集合的概念与表示第1课时集合的概念1.(2020江苏南京高一检测)下列判断正确的个数为()①所有的等腰三角形构成一个集合;②倒数等于它自身的实数构成一个集合;③质数的全体构成一个集合;④由2,3,4,3,6,2构成含有6个元素的集合.A.1B.2C.3D.4,故①正确;若=a,则a2=1,解得a=±1,构成的集合中的元素为1,-1,故②正确;质数的全体构成一个集合,任何一个质数都在此集合中,不是质数的都不在,故③正确;集合中的元素具有互异性,由2,3,4,3,6,2构成的集合含有4个元素,分别为2,3,4,6,故④错误.故选C.2.下列说法:①集合N与集合N+是同一个集合;②集合N中的元素都是集合Z中的元素;③集合Q中的元素都是集合Z中的元素;④集合Q中的元素都是集合R中的元素.其中正确的是()A.②④B.②③C.①②D.①④N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.3.用符号∈或∉填空:(1)-2N+;(2)(-4)2N+;(3)Z;(4)π+3Q.∉(2)∈(3)∉(4)∉4.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a=.x∈N,2<x<a,且集合P中恰有三个元素,∴集合P中的三个元素为3,4,5,∴a=6.5.设A是由满足不等式x<6的自然数组成的集合,若a∈A且3a∈A,求a的值.a∈A且3a∈A,∴解得a<2.又a∈N,∴a=0或1.6.(2020河北师范大学附属中学高一期中)设由“我和我的祖国”中的所有汉字组成集合A,则A中的元素个数为()A.4B.5C.6D.7,集合A中的元素分别为我、和、的、祖、国,共5个元素.故选B.7.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为()A.2B.3C.0或3D.0,2,3均可2∈A可知,m=2或m2-3m+2=2.若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A 的元素为0,3,2,符合题意.8.(2020上海高一月考)如果集合中的三个元素对应着三角形的三条边长,那么这个三角形一定不可能是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形,该三角形一定不可能是等腰三角形.故选D.9.(多选)(2020北京高一检测)下列各组对象能构成集合的是()A.拥有手机的人B.2020年高考数学难题C.所有有理数D.小于π的正整数A,C,D中的元素都是确定的,能构成集合,选项B中“难题”的标准不明确,不符合确定性,不能构成集合.故选ACD.10.(多选)(2020广东深圳第二高级中学高一月考)由a2,2-a,4组成一个集合A,且集合A中含有3个元素,则实数a的取值可以是()A.-1B.-2C.6D.2a2,2-a,4组成一个集合A,且集合A中含有3个元素,所以a2≠2-a,a2≠4,2-a≠4,解得a≠±2,且a≠1.故选AC.11.(多选)(2020山东济南高一检测)已知x,y,z为非零实数,代数式的值所组成的集合是M,则下列判断正确的是()A.0∉MB.2∈MC.-4∈MD.4∈M,分4种情况讨论:①当x,y,z全部为负数时,则xyz也为负数,则=-4;②当x,y,z中只有一个负数时,则xyz为负数,则=0;③当x,y,z中有两个负数时,则xyz为正数,则=0;④当x,y,z全部为正数时,则xyz也为正数,则=4.则M中含有三个元素-4,0,4.分析选项可得C,D正确.故选CD.12.(2020山东潍坊高一检测)如果有一集合含有三个元素1,x,x2-x,则实数x满足的条件是.≠0,且x≠1,且x≠2,且x≠x≠1,x2-x≠1,x2-x≠x,解得x≠0,且x≠1,且x≠2,且x≠.13.若方程ax2+x+1=0的解构成的集合只有一个元素,则a的值为.或a=0时,原方程为一元一次方程x+1=0,满足题意,所求元素即为方程的根x=-1;当a≠0时,由题意知方程ax2+x+1=0只有一个实数根,所以Δ=1-4a=0,解得a=.所以a的值为0或.14.集合A是由形如m+n(m∈Z,n∈Z)的数构成的,试分别判断a=-,b=,c=(1-2)2与集合A的关系.a=-=0+(-1)×,而0∈Z,-1∈Z,∴a∈A.∵b=,而∉Z,∉Z,∴b∉A.∵c=(1-2)2=13+(-4)×,而13∈Z,-4∈Z,∴c∈A.15.设A为实数集,且满足条件:若a∈A,则∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.若a∈A,则∈A.又2∈A,∴=-1∈A.∵-1∈A,∴∈A.∵∈A,∴=2∈A.∴A中必还有另外两个元素,且为-1,.(2)若A为单元素集,则a=,即a2-a+1=0,方程无实数解.∴a≠,∴集合A不可能是单元素集.第2课时集合的表示1.用列举法表示大于2且小于5的自然数组成的集合应为()A.{x|2<x<5,x∈N}B.{2,3,4,5}C.{2<x<5}D.{3,4}2且小于5的自然数为3和4,所以用列举法表示其组成的集合为{3,4}.2.设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中的元素个数为()A.4B.5C.6D.7,B={2,3,4,5,6,8},共有6个元素,故选C.3.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合{(x,y)|y=2x-1}的代表元素是(x,y),x,y满足的关系式为y=2x-1,因此集合表示的是满足关系式y=2x-1的点组成的集合,故选D.4.集合3,,…用描述法可表示为()A.x x=,n∈N*B.x x=,n∈N*C.x x=,n∈N*D.x x=,n∈N*解析由3,,即从中发现规律,x=,n∈N*,故可用描述法表示为x x=,n∈N*.5.(2020山东济宁高一检测)已知集合A={-1,-2,0,1,2},B={x|x=y2,y∈A},则用列举法表示B应为B=.-1)2=12=1,(-2)2=22=4,02=0,所以B={0,1,4}.6.已知集合A={x|x2+2x+a=0},若1∈A,则A=.-3,1}x=1代入方程x2+2x+a=0,可得a=-3,解方程x2+2x-3=0可得A={-3,1}.7.用适当的方法表示下列集合:(1)方程x2+y2-4x+6y+13=0的解集;(2)1 000以内被3除余2的正整数组成的集合;(3)二次函数y=x2-10图象上的所有点组成的集合.方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3,所以方程的解集为{(x,y)|x=2,y=-3}.(2)集合的代表元素是数,用描述法可表示为{x|x=3k+2,k∈N,且x<1 000}.(3)二次函数y=x2-10图象上的所有点组成的集合用描述法表示为{(x,y)|y=x2-10}.8.(2020福建厦门翔安一中高一期中)已知集合M={x|x(x+2)(x-2)=0},则M=()A.{0,-2}B.{0,2}C.{0,-2,2}D.{-2,2}M={x|x(x+2)(x-2)=0}={-2,0,2}.9.(2020河北沧州高一期中)已知集合M={a,2a-1,2a2-1},若1∈M,则M中所有元素之和为()A.3B.1C.-3D.-1a=1,则2a-1=1,矛盾;若2a-1=1,则a=1,矛盾,故2a2-1=1,解得a=1(舍)或a=-1,故M={-1,-3,1},元素之和为-3.故选C.10.(2020上海嘉定第一中学高一月考)已知集合A={a2,0,-1},B={a,b,0},若A=B,则(ab)2 021的值为()A.0B.-1C.1D.±1a≠0,b≠0.因为A=B,所以a=-1或b=-1.当a=-1时,b=a2=1,此时(ab)2 021=(-1)2 021=-1;当b=-1时,a2=a,因为a≠0,所以a=1,此时(ab)2 021=(-1)2 021=-1.故选B.11.(多选)(2020山东潍坊高一检测)下列选项表示的集合P与Q相等的是()A.P={x|x2+1=0,x∈R},Q=⌀B.P={2,5},Q={5,2}C.P={(2,5)},Q={(5,2)}D.P={x|x=2m+1,m∈Z},Q={x|x=2m-1,m∈Z}A,集合P中方程x2+1=0无实数根,故P=Q=⌀;对于B,集合P中有两个元素2,5,集合Q中有两个元素2,5,故P=Q;对于C,集合P中有一个元素是点(2,5),集合Q中有一个元素是点(5,2),元素不同,P≠Q;对于D,集合P={x|x=2m+1,m∈Z}表示所有奇数构成的集合,集合Q={x|x=2m-1,m∈Z}也表示所有奇数构成的集合,P=Q.故选ABD.12.(多选)(2020山东济宁曲阜一中高一月考)下列选项能正确表示方程组的解集的是()A.(-1,2)B.{(x,y)|x=-1,y=2}C.{-1,2}D.{(-1,2)}{(x,y)|x=-1,y=2}或{(-1,2)}.故选BD.13.(多选)(2020江苏连云港高一期中)已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是()A.(1,2)∈BB.A=BC.0∉AD.(0,0)∉BA={y|y≥1},集合B是由抛物线y=x2+1上的点组成的集合,故A正确,B错误,C正确,D正确.故选ACD.14.(2020上海南洋模范中学高一期中)已知集合A={x,y},B={2x,2x2},且A=B,则集合A=.答案,1解析由题意,集合A={x,y},B={2x,2x2},且A=B,则x=2x或x=2x2.若x=2x,可得x=0,此时集合B不满足集合中元素的互异性,舍去;若x=2x2,可得x=或x=0(舍去),当x=时,可得2x=1,2x2=,即A=B=,1.15.用列举法表示集合A={(x,y)|x+y=5,x∈N*,y∈N*}是A=;用描述法表示“所有被4除余1的整数组成的集合”是.{x|x=4k+1,k∈Z}A={(1,4),(2,3),(3,2),(4,1)},所有被4除余1的整数组成的集合为{x|x=4k+1,k∈Z}.16.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求实数c的值..①若a+b=ac,a+2b=ac2,消去b,得a+ac2-2ac=0.当a=0时,集合B中的三个元素均为0,与集合中元素的互异性矛盾,故a≠0, 所以c2-2c+1=0,即c=1,但当c=1时,B中的三个元素相同,不符合题意.②若a+b=ac2,a+2b=ac,消去b,得2ac2-ac-a=0.由①知a≠0,所以2c2-c-1=0,即(c-1)(2c+1)=0,解得c=-或c=1(舍去),当c=-时,经验证,符合题意.综上所述,c=-.17.(2020天津南开翔宇学校高一月考)已知集合A={x|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的所有取值组成的集合;(2)若A中只有一个元素,求a的值,并把这个元素写出来;(3)若A中至多有一个元素,求a的所有取值组成的集合.当a=0时,-3x+2=0,此时x=,所以A不是空集,不符合题意;当a≠0时,若A是空集,则Δ=9-8a<0,所以a>.综上可知,a的所有取值组成的集合为a a>.(2)当a=0时,-3x+2=0,此时x=,满足条件,此时A中仅有一个元素;当a≠0时,Δ=9-8a=0,所以a=,此时方程为x2-3x+2=0,即(3x-4)2=0,解得x=,此时A 中仅有一个元素.综上可知,当a=0时,A中只有一个元素为;当a=时,A中只有一个元素为.(3)A中至多有一个元素,即方程ax2-3x+2=0只有一个实数根或无实数根.则a=0或Δ=9-8a<0,解得a=0或a>.故a的所有取值组成的集合为a a=0,或a>.1.2子集、全集、补集1.(2020山东青岛高一检测)已知集合M={x|x2-2x=0},U={2,1,0},则∁U M=()A.{0}B.{1,2}C.{1}D.{0,1,2}M={x|x2-2x=0}={0,2},U={2,1,0},则∁U M={1}.故选C.2.集合A={x|-1<x<2},B={x|0<x<1},则()A.B∈AB.A⊆BC.B⊆AD.A=BA={x|-1<x<2},B={x|0<x<1},∴B⊆A.故选C.3.下列关系:①0∈{0};②⌀⫋{0};③{0,1}⊆{(0,1)};④{(a,b)}={(b,a)}.其中正确的个数为()A.1B.2C.3D.4正确,0是集合{0}的元素;②正确,⌀是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.4.已知集合B={-1,1,4},满足条件⌀⫋M⊆B的集合M的个数为()A.3B.6C.7D.8M是集合B的非空子集,集合B中有3个元素,因此非空子集有7个,故选C.5.若集合M=x x=,k∈Z,集合N=x x=,k∈Z,则()A.M=NB.N⊆MC.M⫋ND.以上均不对解析M=x x=,k∈Z=x x=,k∈Z,N=x x=,k∈Z=x x=,k∈Z.又2k+1,k∈Z 为奇数,k+2,k∈Z为整数,所以M⫋N.6.设A={x|1<x<2},B={x|x<a},若A⫋B,则实数a的取值范围是.a|a≥2},因为A⫋B,所以a≥2,即a的取值范围是{a|a≥2}.7.设全集U=R,A={x|x<1},B={x|x>m},若∁U A⊆B,则实数m的取值范围是.m|m<1}∁U A={x|x≥1},B={x|x>m},∴由∁U A⊆B可知m<1,即m的取值范围是{m|m<1}.8.已知集合A={x|x<-1,或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.B=⌀时,2a>a+3,即a>3,显然满足题意.当B≠⌀时,根据题意作出如图所示的数轴,可得解得a<-4或2<a≤3.综上可得,实数a的取值范围为{a|a<-4,或a>2}.9.(2020山东济宁高一月考)如果集合P={x|x>-1},那么()A.0⊆PB.{0}∈PC.⌀∈PD.{0}⊆PP={x|x>-1},∴0∈P,{0}⊆P,⌀⊆P,故A,B,C错误,D正确.故选D.10.已知M={x|x>1},N={x|x>a},且M⫋N,则()A.a≤1B.a<1C.a≥1D.a>1M={x|x>1},N={x|x>a},且M⫋N,∴a<1.故选B.11.集合M={x|x=4k+2,k∈Z},N={x|x=2k,k∈Z},P={x|x=4k-2,k∈Z},则M,N,P的关系为()A.M=P⊆NB.N=P⊆MC.M=N⊆PD.M=P=NM=P={±2,±6…},N={0,±2,±4,±6…},所以M=P⊆N.12.(2020山东济南高一检测)已知A={x|x2-3x+2=0},B={x|ax=1},若B⊆A,则实数a 取值的集合为()A.0,1,B.1,C.0,2,D.-2,解析因为A={x|x2-3x+2=0}={x|(x-1)(x-2)=0}={1,2},又B={x|ax=1},当B=⌀时,方程ax=1无解,则a=0,此时满足B⊆A;当B≠⌀时,a≠0,此时B={x|ax=1}=,为使B⊆A,只需=1或=2,解得a=1或a=.综上,实数a取值的集合为0,1,.故选A.13.已知全集U={1,2,a2-2a+3},A={1,a},∁U A={3},则实数a等于()A.0或2B.0C.1或2D.2,知则a=2.14.(多选)(2020山东五莲教学研究室高一期中)已知集合M={x|-3<x<3,x∈Z},则下列符号语言表述正确的是()A.2∈MB.0⊆MC.{0}∈MD.{0}⊆MM={x|-3<x<3,x∈Z}={-2,-1,0,1,2},∴2∈M,0∈M,{0}⊆M.∴A,D正确,B,C错误.故选AD.15.(多选)(2020福建宁德高一期中)已知集合A={y|y=x2+1},集合B={x|x>2},下列关系正确的是()A.B⊆AB.A⊆BC.0∉AD.1∈AA={y|y=x2+1}={y|y≥1},B={x|x>2},所以B⊆A,0∉A,1∈A.故选ACD.16.(多选)(2020北京高一检测)集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的可能取值为()A.-1B.0C.1D.2解析由题意,B⊆A,当a=0时,B=⌀符合题意;当a≠0时,B=-⊆A,则-=1或-=-1,解得a=-1或a=1,所以实数a的取值为-1,0或1.故选ABC.17.(2020山东东营高一月考)设U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},则a=,b=.4U=R,A={x|a≤x≤b},∴∁U A={x|x<a,或x>b}.∵∁U A={x|x<3,或x>4},∴a=3,b=4.18.集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则a的取值为.或-A有两个子集可知,该集合中只有一个元素,当a=1时,满足题意;当a≠1时,由Δ=9+8(a-1)=0,可得a=-.19.设A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=,试判定集合A与B的关系;(2)若B⊆A,求实数a组成的集合C.a=,则B={5},元素5是集合A={5,3}中的元素,集合A={5,3}中除元素5外,还有元素3,3在集合B中没有,所以B⫋A.(2)当a=0时,由题意B=⌀,又A={3,5},故B⊆A;当a≠0时,B=,又A={3,5},B⊆A,此时=3或=5,则有a=或a=.所以C=0,.20.设集合A={x|-1≤x+1≤6},m为实数,B={x|m-1<x<2m+1}.(1)当x∈Z时,求A的非空真子集的个数;(2)若B⊆A,求m的取值范围.A得A={x|-2≤x≤5}.(1)∵x∈Z,∴A={-2,-1,0,1,2,3,4,5},即A中含有8个元素,∴A的非空真子集个数为28-2=254.(2)当m-1≥2m+1,即m≤-2时,B=⌀⊆A;当m>-2时,B≠⌀,因此,要使B⊆A,则只要解得-1≤m≤2.综上所述,m的取值范围是{m|m≤-2,或-1≤m≤2}.21.(2020山西平遥综合职业技术学校高一月考)已知全集U=R,集合A={x|-2≤x≤3},B={x|2a<x<a+3},且B⊆∁U A,求实数a的取值集合.A={x|-2≤x≤3},所以∁U A={x|x<-2,或x>3}.因为B⊆∁U A,当B=⌀时,2a≥a+3,解得a≥3;当B≠⌀时,由B⊆∁U A,得解得≤a<3或a≤-5.所以实数a的取值集合为a a≤-5,或a≥.1.3交集、并集1.(2020北京八中期末)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4}B.{3,4}C.{3}D.{4},全集U={1,2,3,4},A={1,2},B={2,3},可得A∪B={1,2,3},所以∁U(A∪B)={4}.故选D.2.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.4A={1,2,3,4},B={2,4,6,8},∴A∩B={2,4}.∴A∩B中元素的个数为2.故选B.3.(2021全国甲,理1)设集合M={x|0<x<4},N=,则M∩N=()A. B.C.{x|4≤x<5}D.{x|0<x≤5}解析由交集的定义及图知M∩N=x≤x<4.4.设集合A={(x,y)|y=ax+1},B={(x,y)|y=x+b},且A∩B={(2,5)},则()A.a=3,b=2B.a=2,b=3C.a=-3,b=-2D.a=-2,b=-3A∩B={(2,5)},∴解得故选B.5.若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有()A.1个B.2个C.3个D.4个A∪B=A,∴B⊆A.∵A={0,1,2,x},B={1,x2},∴x2=0或x2=2或x2=x,解得x=0或x=±或x=1.经检验,当x=或-时满足题意.故选B.6.已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=.∩B={1,2,3}∩{y|y=2x-1,x∈A}={1,2,3}∩{1,3,5}={1,3}.7.(2020山东泰兴第三高级中学高一月考)设M={a2,a+1,-3},N={a-3,2a-1,a2+1},若M∩N={-3},则a的值为,此时M∪N=.1{-4,-3,0,1,2}M∩N={-3},∴a-3=-3或2a-1=-3,解得a=0或a=-1.当a=0时,M={0,1,-3},N={-3,-1,1},得M∩N={1,-3},不符合题意,舍去.当a=-1时,M={0,1,-3},N={-4,-3,2},得M∩N={-3},符合题意.此时M∪N={-4,-3,0,1,2}.8.(2020上海浦东华师大二附中高一月考)调查班级40名学生对A,B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成,另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1,则对A,B都赞成的学生有人.A的人数为40×=24,赞成B的人数为24+3=27.设对A,B都赞成的学生数为x,则对A,B都不赞成的学生数为x+1,如图可得x+1+27-x+x+24-x=40,解得x=18.9.已知集合A={x|-2<x<4},B={x|x-m<0,m∈R}.(1)若A∩B=⌀,求实数m的取值范围;(2)若A∩B=A,求实数m的取值范围.∵A={x|-2<x<4},B={x|x<m,m∈R},又A∩B=⌀,∴m≤-2.故实数m的取值范围为{m|m≤-2}.(2)由A∩B=A,得A⊆B.∵A={x|-2<x<4},B={x|x<m,m∈R},∴m≥4.故实数m的取值范围为{m|m≥4}.10.已知集合M={0,1},则满足M∪N={0,1,2}的集合N的个数是()A.2B.3C.4D.8,可知满足M∪N={0,1,2}的集合N有{2},{0,2},{1,2},{0,1,2},共4个.故选C.11.(2020江苏无锡期末)下图中的阴影部分,可用集合符号表示为()A.(∁U A)∩(∁U B)B.(∁U A)∪(∁U B)C.(∁U B)∩AD.(∁U A)∩BA与集合B的补集的交集,所以图中阴影部分可以用(∁U B)∩A表示.12.(2020江苏镇江月考)集合论是德国数学家康托尔于19世纪末创立的.在他的集合理论中,用card(A)表示有限集合中元素的个数,例如:A={a,b,c},则card(A)=3.若对于任意两个有限集合A,B,有card(A∪B)=card(A)+card(B)-card(A∩B).某校举办运动会,高一某班参加田赛的学生有14人,参加径赛的学生有9人,两项都参加的有5人,那么该班参加本次运动会的人数为()A.28B.23C.18D.16A,则card(A)=14,参加径赛的学生组成集合B,则card(B)=9,由题意得card(A∩B)=5,所以card(A∪B)=card(A)+card(B)-card(A∩B)=14+9-5=18,所以该班参加本次运动会的人数为18.故选C.13.(2020天津南开中学高一开学考试)已知集合A={x|x≥-1},B=x a≤x≤2a-1,若A∩B≠⌀,则实数a的取值范围是()A.{a|a≥1}B.a a≥C.{a|a≥0}D.a0≤a≤解析因为A={x|x≥-1},B=x a≤x≤2a-1,若A∩B≠⌀,则B≠⌀且B与A有公共元素,则需解得a≥.故选B.14.(多选)(2020江苏江浦高级中学期中)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B 中的元素有()A.-2B.-1C.0D.1A={x|x>-1},所以∁R A={x|x≤-1},则(∁R A)∩B={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.故选AB.15.(多选)(2020河北曲阳第一高级中学月考)已知集合A={x|x<2},B={x|3-2x>0},则()A.A∩B=x x<B.A∩B≠⌀C.A∪B=x x<D.A∪(∁R B)=R解析∵A={x|x<2},B={x|3-2x>0}=x x<,∁R B=x x≥,∴A∩B=x x<,A∩B≠⌀,A∪B={x|x<2},A∪(∁R B)=R.故选ABD.16.(多选)(2020山东菏泽高一月考)已知集合M={2,-5},N={x|mx=1},且M∪N=M,则实数m的值可以为()A. B.-5C.-D.0解析因为M∪N=M,所以N⊆M,当m=0时,N=⌀,满足N⊆M.当m≠0时,N=,若N⊆M,则=2或=-5,解得m=或m=-.综上所述,m=0或m=或m=-,故选ACD.17.已知M={x|y=x2-1},N={y|y=x2-1},则M∩N=.y|y≥-1}{x|y=x2-1}=R,N={y|y=x2-1}={y|y≥-1},故M∩N={y|y≥-1}.18.(2020山西太原第五十三中学月考)已知A={x|x2+px+1=0},M={x|x>0},若A∩M=⌀,则实数p的取值范围为.p|p>-2}A=⌀时,Δ=p2-4<0,解得-2<p<2;当A≠⌀,即p≤-2或p≥2时,此时方程x2+px+1=0的两个根需满足小于等于0,则x1x2=1>0,x1+x2=-p<0,得p>0,则p≥2.综上,实数p的取值范围为{p|p>-2}.19.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.{1,2},因为A∪B=A,所以B⊆A.若B=⌀,则方程x2-4x+a=0无实数根,所以Δ=16-4a<0,所以a>4.若B≠⌀,则a≤4,当a=4时,B={2}⊆A满足条件;当a<4时,1,2是方程x2-4x+a=0的根,此时a无解.所以a=4.综上可得,a的取值范围是{a|a≥4}.20.(2020天津宝坻大钟庄高中月考)已知集合A={x|-3≤x≤6},B={x|x<4},C={x|m-5<x<2m+3,m∈R}.(1)求(∁R A)∩B;(2)若A⊆C,求实数m的取值范围.因为A={x|-3≤x≤6},所以∁R A={x|x<-3,或x>6},故(∁R A)∩B={x|x<-3,或x>6}∩{x|x<4}={x|x<-3}.(2)因为C={x|m-5<x<2m+3},且A⊆C,所以<m<2,所以m的取值范围为m<m<2.21.(2020山东滕州第一中学新校高一月考)已知全集U=R,集合A={x|x>2},B={x|-4<x<4}.(1)求∁U(A∪B);(2)定义A-B={x|x∈A,且x∉B},求A-B,A-(A-B).因为A={x|x>2},B={x|-4<x<4},所以A∪B={x|x>-4},则∁U(A∪B)={x|x≤-4}.(2)因为A-B={x|x∈A,且x∉B},所以A-B={x|x≥4},因此A-(A-B)={x|2<x<4}.第1章测评(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给对象能构成集合的是()A.2020年全国Ⅰ卷数学试题中的所有难题B.比较接近2的全体正数C.未来世界的高科技产品D.所有整数A,B,C的标准不明确,所以不能构成集合;而选项D的元素具有确定性,能构成集合.故选D.2.(2021新高考Ⅰ,1)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}A={x|-2<x<4},B={2,3,4,5},∴A∩B={2,3}.故选B.3.(2020山东,1)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}数形结合)由数轴可知所以A∪B={x|1≤x<4},故选C.4.(2020江苏梅村高级中学月考)已知A={x,x+1,1},B={x,x2+x,x2},且A=B,则()A.x=1或x=-1B.x=1C.x=0或x=1或x=-1D.x=-1x=1时,集合A={1,2,1},B={1,2,1}不满足集合中元素的互异性,排除A,B,C;当x=-1时,A={-1,0,1},B={-1,0,1},A=B,满足题意.故选D.5.(2020江苏吴江中学月考)满足{2}⫋A⊆{1,2,3,4,5},且A中元素之和为偶数的集合A 的个数是()A.5B.6C.7D.8{2}⫋A⊆{1,2,3,4,5},所以2∈A.又A中元素之和为偶数,所以满足条件的集合A有{2,4},{1,2,3},{1,2,5},{2,3,5},{1,2,3,4},{1,2,4,5},{2,3,4,5},共7个,故选C.6.(2020安徽安庆白泽湖中学月考)已知集合A={x|x<1,或x>3},B={x|x-a<0},若B⊆A,则实数a的取值范围为()A.{a|a>3}B.{a|a≥3}C.{a|a<1}D.{a|a≤1}B={x|x<a},因为B⊆A,所以a≤1.故选D.7.(2020山东潍坊月考)设全集U=R,M={x|x<-2,或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为()A.{x|-2≤x<1}B.{x|-2≤x≤3}C.{x|x≤2,或x>3}D.{x|-2≤x≤2}∁R(M∪N).又M={x|x<-2,或x>2},N={x|1≤x≤3},所以M∪N={x|x<-2,或x≥1},则图中阴影部分表示的集合为∁R(M∪N)={x|-2≤x<1}.故选A.8.(2020山西高一月考)某学校组织强基计划选拔赛,某班共有30名同学参加了学校组织的数学、物理两科选拔,其中两科都取得优秀的有6人,数学取得优秀但物理未取得优秀的有12人,物理取得优秀而数学未取得优秀的有4人,则两科均未取得优秀的人数是()A.8B.6C.5D.4,两科都取得优秀的有6人,数学取得优秀物理未取得优秀的有12人,物理取得优秀而数学未取得优秀的有4人,这样共有22人至少取得一科优秀.某班共有30名同学,则两科均未取得优秀的人数是30-22=8.故选A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知集合M={1,m+2,m2+4},且5∈M,则m的可能取值有()A.1B.-1C.3D.25∈M,所以m+2=5或m2+4=5,解得m=3,或m=±1.当m=3时,M={1,5,13},符合题意,当m=1时,M={1,3,5},符合题意,当m=-1时,M={1,1,5},不满足元素的互异性,不成立.所以m=3或m=1.故选AC.10.(2020山东邹城第一中学高一月考)已知全集U=R,A={x|x<2,或x>4},B={x|x≥a},且∁U A⊆B,则实数a的取值可以是()A.1B.3C.2D.4A={x|x<2,或x>4},得∁U A={x|2≤x≤4}.因为∁U A⊆B,B={x|x≥a},所以a≤2,所以实数a的取值可以是1,2.故选AC.11.设全集U={0,1,2,3,4},集合A={0,1,4},B={0,1,3},则()A.A∩B={0,1}B.∁U B={4}C.A∪B={0,1,3,4}D.集合A的真子集个数为8A={0,1,4},B={0,1,3},所以A∩B={0,1},A∪B={0,1,3,4},选项A,C都正确;又全集U={0,1,2,3,4},所以∁U B={2,4},选项B错误;集合A={0,1,4}的真子集有7个,所以选项D错误.12.(2020重庆万州第二高级中学月考)给定数集M,若对于任意a,b∈M,有a+b∈M,且a-b∈M,则称集合M为闭集合,则下列说法错误的是()A.集合M={-4,-2,0,2,4}为闭集合B.正整数集是闭集合C.集合M={n|n=5k,k∈Z}为闭集合D.若集合A1,A2为闭集合,则A1∪A2为闭集合A,4∈M,2∈M,但4+2=6∉M,故A错误;对于B,1∈N*,2∈N*,但1-2=-1∉N*,故B错误;对于C,对于任意a,b∈M,设a=5k1,b=5k2,k1∈Z,k2∈Z,a+b=5(k1+k2),a-b=5(k1-k2),k1+k2∈Z,k1-k2∈Z,所以a+b∈M,a-b∈M,故C正确;对于D,A1={n|n=5k,k∈Z},A2={n|n=3k,k∈Z}都是闭集合,但A1∪A2不是闭集合,如5∈(A1∪A2),3∈(A1∪A2),但5+3=8∉(A1∪A2),故D错误.故选ABD.三、填空题:本题共4小题,每小题5分,共20分.13.设集合A={0,1},B={1,2},C={x|x=a+b,a∈A,b∈B},则集合C的真子集个数为.A={0,1},B={1,2},∴C={x|x=a+b,a∈A,b∈B}={1,2,3}有3个元素,∴集合C的真子集个数为23-1=7.14.(2020湖南雨花雅礼中学高一月考)设A={x|-1<x≤3},B={x|x>a},若A⊆B,则实数a的取值范围是.a|a≤-1},如图所示,∵A⊆B,∴a≤-1.15.(2020江苏玄武南京田家炳高级中学月考)集合A={x|x<1,或x≥2},B={x|a<x<2a+1},若A∪B=R,则实数a的取值范围是.答案a≤a<1集合A={x|x<1,或x≥2},B={x|a<x<2a+1},A∪B=R,∴解得≤a<1,∴实数a的取值范围是a≤a<1.16.(2020山西高一月考)设全集U={1,2,3,4,5,6},用U的子集可表示由0,1组成的6位字符串.如:(2,5)表示的是从左往右第2个字符为1,第5个字符为1,其余均为0的6位字符串010010,并规定空集表示的字符串为000000.若M={1,3,4},则∁U M表示6位字符串为;若A={2,3},集合A∪B表示的字符串为011011,则满足条件的集合B的个数为.4U={1,2,3,4,5,6},M={1,3,4},所以∁U M={2,5,6},则∁U M表示6位字符串为010011.因为集合A∪B表示的字符串为011011,所以A∪B={2,3,5,6}.又A={2,3},所以集合B可能为{5,6},{2,5,6},{3,5,6},{2,3,5,6},即满足条件的集合B的个数为4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2020江苏镇江月考)已知全集U={0,1,2,3,4,5,6,7},集合A={1,2,3},B={1,3,4}.(2)集合C满足(A∩B)⊆C⊆(A∪B),请写出所有满足条件的集合C.由A={1,2,3},B={1,3,4},得A∩B={1,3},A∪B={1,2,3,4}.由U={0,1,2,3,4,5,6,7},得(∁U A)∩(∁U B)={0,5,6,7}.(2)由(A∩B)⊆C⊆(A∪B),A∩B={1,3},A∪B={1,2,3,4},得C可以为{1,3},{1,2,3},{1,3,4},{1,2,3,4}.18.(12分)已知集合A有三个元素:a-3,2a-1,a2+1,集合B也有三个元素:0,1,x(a∈R,x ∈R).(1)若x2∈B,求实数x的值.(2)是否存在实数a,x,使A=B?若存在,求出a,x;若不存在,请说明理由.集合B中有三个元素:0,1,x.x2∈B,当x取0,1,-1时,都有x2∈B,∵集合中的元素都有互异性,∴x≠0,x≠1,∴x=-1.∴实数x的值为-1.(2)不存在.理由如下:a2+1≠0,若a-3=0,则a=3,A={0,5,10}≠B;若2a-1=0,则a=,A=0,-≠B,∴不存在实数a,x,使A=B.19.(12分)已知集合A={x||x-a|=4},集合B={1,2,b}.(1)是否存在实数a,使得对于任意实数b都有A⊆B?若存在,求出相应的a值;若不存在,试说明理由.(2)若A⊆B成立,求出相应的实数对(a,b).不存在.理由如下:若对任意的实数b都有A⊆B,则当且仅当1和2是A中的元素时才有可能.因为A={a-4,a+4},所以这都不可能,所以这样的实数a不存在.(2)由(1)易知,当且仅当时,A⊆B.解得所以所求的实数对为(5,9),(6,10),(-3,-7),(-2,-6).20.(12分)(2020山东枣庄第三中学高一月考)已知集合A={x|a-1<x<2a+1,a∈R},B={x|0<x<1},U=R.(2)若A∩B=⌀,求实数a的取值范围.解(1)当a=时,A=x-<x<2.因为B={x|0<x<1},所以∁U B={x|x≤0,或x≥1}.因此A∩B={x|0<x<1},A∩(∁U B)=x-<x≤0,或1≤x<2.(2)当A=⌀时,显然符合题意,因此有a-1≥2a+1,解得a≤-2;当A≠⌀时,因此有a-1<2a+1,解得a>-2,要想A∩B=⌀,则有2a+1≤0或a-1≥1,解得a≤-或a≥2,而a>-2,所以-2<a≤-或a≥2.综上所述,实数a的取值范围为a a≤-,或a≥2.21.(12分)(2020安徽芜湖一中月考)已知集合A={x|-1≤x≤3},B={x|x<0,或x>2},C={x|m-2≤x≤m+2},m为实数.(1)求A∩B,∁R(A∩B);(2)若A⊆∁R C,求实数m的取值范围.因为A={x|-1≤x≤3},B={x|x<0,或x>2},所以A∩B={x|-1≤x<0,或2<x≤3},∁R(A∩B)={x|x<-1,或0≤x≤2,或x>3}.(2)因为C={x|m-2≤x≤m+2},所以∁R C={x|x<m-2,或x>m+2}.因为A⊆∁R C,所以m-2>3或m+2<-1,解得m>5或m<-3,所以m的取值范围为{m|m<-3,或m>5}.22.(12分)(2020北京八中月考)设a为实数,集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若A∩B≠⌀,A∩C=⌀,求a的值.,B={2,3},C={-4,2}.(1)因为A∩B=A∪B,所以A=B.又B={2,3},则解得a=5.(2)由于A∩B≠⌀,而A∩C=⌀,则3∈A,即9-3a+a2-19=0,解得a=5或a=-2.由(1)知,当a=5时,A=B={2,3}.此时A∩C≠⌀,矛盾,舍去.当a=-2时,经检验,满足题意.因此a=-2.。
§1.1集合的含义及其表示(2)课后训练1. 设a ,b ,c 均为非零实数,则x=||||||||a b c abc a b c abc+++的所有值为元素组成集合是________ 2. 集合}9,7,5,3,1{用描述法表示为 .3. 下列语句中,正确的是 .(填序号)(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,1,2};(3)方程0)2()1(22=--x x 的所有解的集合可表示为{1,1,2,2}(4)集合}54{<<x x 可以用列举法表示.4.所有被3整除的数用集合表示为 .5.下列集合中表示同一集合的是` (填序号)(1)M={3,2},N={2,3} (2)M={(3,2)},N={(2,3)}(3)M={(,)1},{(,)1}x y x y N y x x y +==+= (4) M={1,2},N={(1,2)}6.下列可以作为方程组⎩⎨⎧-=-=+13y x y x 的解集的是 (填序号) (1){1,2},x y ==(2){1,2}(3){(1,2)} (4){(,)12}(5){(,)12}x y x y x y x y ====且或(6)}0)2()1(),{(22=-+-y x y x7.用另一种方法表示下列集合.(1){绝对值不大于2的整数} (2){能被3整除,且小于10的正数}(3)}5,{Z x x x x x ∈<=且 (4)*},*,6),{(N y N x y x y x ∈∈=+(5){5,3,1,1,3--}8.已知{}{}0|,0|22=+-==++=q px x x B q px x x A .当{}2=A 时,求集合B9.用描述法表示图中阴影部分(含边界)的点的坐标集合.10.对于*,N b a ∈,现规定:⎩⎨⎧⨯+=)()(*的奇偶性不同与的奇偶性相同与b a b a b a b a b a ,集合{(,)*36,,*}M a b a b a b N ==∈(1) 用列举法表示b a ,奇偶性不同时的集合M.(2) 当b a ,奇偶性相同时的集合M 中共有多少个元素?【拓展提高】11 设元素为正整数的集合A 满足“若x A ∈,则10x A -∈”.(1)试写出只有一个元素的集合A ;(2)试写出只有两个元素的集合A ;(3)这样的集合A 至多有多少个元素?(4)满足条件的集合A 共有多少个?。
集合的含义及表示;子集、全集、补集一、选择题:1. 集合A={x|x 是一边为1,一个角为40º的等腰三角形},则A 中元素个数( ) A.2个B.3个C.4个D.无数个 2.集合2{|10}x x -=的真子集的个数为A .4 B. 3 C. 2 D. 13.已知集合M={m ∈R|m ≤12},a=32+,则( ) A.{a}∈M B.a ∉M C{a} M D. {a }=M4.设集合A ={x |x =3n +1,n Z ∈},B ={x |x =3n -2,n Z ∈},C ={x |x =6n +1,n Z ∈},那么( ) A. C A =B B. C B A C. C A B D.A B =C 5.已知全集U,M,N 是U 的非空子集,若C u M ⊇N ,则有( )A. M ⊆C u NB. M C u NC. M= C u ND. M=N 二、填空题:6.用适当的符号填空:{x ︱x 2=-1} {x|x 3=-1}, φ {x ∈R ︱x 2=-4}, 1 {x ︱x 是质数},φ {}φ. 7.若集合A ⊆B, A ⊆C, B={0,1,2,3,4,7,8}, C={0,3,4,7,8}, 则A 的个数为 .8.已知集合A ={x ∈R |a x 2-3x +2=0,a ∈R },若A 中元素至多有1个,则a 的取值范围是_________.9.集合P={x ,1}, Q={y ,1,2}, 其中x , y ∈{1,2,3,4,5,6,7,8,9}, 且P 是Q 的真子集, 把满足上述条件的一对有序整数(x , y )作为一个点, 这样的点的个数是 个.三、解答题:10.已知集合M={x|k-1≤x ≤2k},N={x|1≤x ≤3},且M ⊆N ,求k 的取值范围≠⊂≠⊂≠⊂≠⊂≠⊂≠⊂≠⊂≠⊂11.设集合,N x ,Z x 36xA ⎭⎬⎫⎩⎨⎧∈∈-=试用列举法表示集合。
分层训练1.下列各项中不能组成集合的是()A.所有的正三角形B.数学课本中的所有习题C.所有的数学难题D.所有无理数2.已知2a∈A,a2-a∈A,若A含2个元素,则下列说法中正确的是()A.a取全体实数B.a取除去0以外的所有实数C.a取除去3以外的所有实数D.a取除去0和3以外的所有实数3.给出下列命题①N中最小的元素是1 ②若a∈N则-a∉N ③若a∈N,b∈N,则a+b的最小值是2其中正确的命题个数是()A.0 B.1 C.2 D.34.若方程x2-5x+6=0和方程x2-x-2=0的解为元素的集合为M,则M中元素的个数为()A.1 B.2 C.3 D.45.由a2,2-a,4组成一个集合A,A中含有3个元素,则a的取值可以是()A.1 B.-2 C.6 D.26.设L(A,B)表示直线上全体点组成的集合,“P是直线AB上的一个点”这句话就可以简单地写成___________________________.7.下列对象组成的集体:①不超过45的正整数;②鲜艳的颜色;③中国的大城市;④绝对值最小的实数;⑤高一(2)班中考500分以上的学生,其中为集合的是__________________8.设a,b,c均为非零实数,则x=||||||||a b c abca b c abc+++的所有值为元素组成集合是____________9.说出下列集合的元素①小于12的质数构成的集合;②平方等于本身的数组成的集合;③由||||(,)a ba b Ra b+∈所确定的实数的集合;④抛物线y=x2-2x+1(x为小于5的自然数)上的点组成的集合。
拓展延伸10.关于x的方程ax2+bx+c=0(a≠0),当a,b,c分别满足什么条件时,解集为空集、含一个元素、含两个元素?11.由“x,xy0,|x|,y”组成的集合是同一个集合,则实数x,y的值是否确定的?若确定,请求出来,若不确定,说明理由。
分层训练1.由大于-3且小于11的偶数所组成的集合是()A.{x|-3<x<11,x∈Q} B.{x|-3<x<11 } C.{x|-3<x<11,x=2k,k∈N} D.{x|-3<x<11,x=2k,k∈Z} 2.坐标轴上的点的集合可表示为()A.{(x,y)|x=0,y=0;或x≠0,y=0} B.{(x,y)|x2+y2=0} C.{(x,y)|xy=0}D.{(x,y)|x2+y2≠0} 3.下列四个关系式中,正确的是()A.a∈{a,b} B.{a}≤{a,b} C.a∉{a} D.a≤{a,b}4.下列表示同一个集合的是()A.M={(1,2)},N={(2,1)} B.M={1,2},N={2,1}C.M={y|y=x-1,x∈R},N={y|y=x-1,x∈N}D.M={(x,y)|112yx-=-},N={(x,y)|y-1=x-2}5.集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},R={x|x=4k+1,k∈N},a∈P,b∈Q,则有( ) A.(a+b)∈P B.(a+b)∈Q C.(a+b)∈R D.(a+b)不属于P、Q、R中的任意一个6.集合{x|x∈N*,x<5}的另一种表示法是____________________________7.用适当的方法表示下列集合,并指出是有限集还是无限集?①由所有非负奇数组成的集合;②平面直角坐标系内所有第三象限的点组成的集合;③所有周长等于10cm的三角形组成的集合;④方程x2+x+1=0的实数根组成的集合.8.已知集合M={a,a+d,a+2d},N={a,aq,aq2},其中a≠0,M=N,求q的值.9.设A={2,3,a2+2a-3},B={2,|a+3|},已知5∈A,且5∉B,求实数a的取值.拓展延伸:10.集合a、b∈Z},x1∈A,x2∈A,求证:x1x2∈A11.下面三个集合:①{x|y=x2+3x-2},②{y| y=x2+3x-2},③{(x,y)| y=x2+3x-2}.(1)它们是不是相同的集合?(2)它们的区别在哪里?第3课 子集、全集、补集分层训练1. 设M 满足{1,2,3}⊆M ⊆{1,2,3,4,5,6},则集合M 的个数为 ( )A .8B .7C .6D .52.下列各式中,正确的个数是 ( )①∅={0};②∅⊆{0}; ③∅∈{0};④0={0};⑤0∈{0};⑥{1}∈{1,2,3};⑦{1,2}⊆{1,2,3};⑧{a ,b}⊆{a ,b}.A .1B .2C .3D .43.若U={x|x 是三角形},P={x|x 是直角三角形}则U C P = ( )A .{x|x 是直角三角形}B .{x|x 是锐角三角形}C .{x|x 是钝角三角形}D .{x|x 是钝角三角形或锐角三角形}4.设A={x|1<x<2} ,B={x|x<a},若A 是B 的真子集,则a 的取值范围是 ( )A .a ≥2B .a ≤1C .a ≥1D .a ≤25.若集合A={1,3,x},B={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 ( )A .1B .2C .3D .46.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M 与P 的关系为____________________________.7.集合A={x|x=a 2-4a+5,a ∈R},B={y|y=4b 2+4b+3,b ∈R} 则集合A 与集合B 的关系_____.8.设x ,y ∈R ,B={(x,y)|y-3=x-2},A={(x,y)|32y x --=1},则集合A 与B 的关系是_______________. 9. 已知a ∈R ,b ∈R ,A={2,4,x 2-5x+9},B={3,x 2+ax+a},C={x 2+(a+1)x-3,1}求(1)A={2,3,4}的x 值;(2)使2∈B ,B A ,求a,x 的值; (3)使B= C 的a ,x 的值.10.设全集U={2,4,3-x},M={2,x 2-x+2},U C M ={1},求x .拓展延伸11. 已知集合P={x|x 2+x-6=0},M={x|mx-1=0},若M P ,求实数a 的取值范围.12. 选择题:(1)设集合P={3,4,5},Q={4,5,6,7},定义P ⊕Q ={(a,b)|a ∈P ,b ∈Q}, 则P ⊕Q 的真子集个数 ( )A .23-1B .27-1C .212D .212-1(2)集合M={x|x ∈Z 且121N x∈+},则M 的非空真子集的个数是 ( ) A .30个 B .32个 C .62个 D .64个⊂≠ ⊂ ≠分层训练:1.设全集U={1,2,3,4,5},A={1,3,5},B={2,4,5}则()()U U C A C B =( )A .∅B .{4}C .{1,5}D .{2,5}2.设集合A={x|x ≤5,x ∈N},B={x|x>1,x ∈N },那么A ∩B 等于 ( )A .{1,2,3,4,5}B .{2,3,4,5}C .{3,4,5}D .{x|1<x ≤5,x ∈R }3.若集合P={y|y=x 2+2x-1 ,x ∈N},Q={y|y=-x 2+2x-1 ,x ∈N },则下列各式中正确的是 ( )A .P ∩Q=∅B .P ∩Q={0}C .P ∩Q= {-1}D .P ∩Q=N4.已知P ,M 是非空集合,且P ≠M ,则必有( )A .∅∈P ∩MB .∅=P ∩MC .∅⊆P ∩MD .∅是P ∩M 的真子集5.已知集合A={x|-5<x<5},B={x|-7<x<a},C={x|b<x<2},且A ∩B=C ,则 a ,b 的值为( )A .a =5,b=-7B .a =5,b=-5C .a =2,b=-7D .a =2,b=-56. 设全集U={1,2,3,4},A 与B 是U 的子集,若A ∩B ={1,3 },则称(A,B)为一个“理想配集”.那么符合此条件的“理想配集”的个数是(若A =B ,规定(A,B)=(B, A);若A ≠B ,规定(A,B)与(B, A)是两个不同的“理想配集”) ( )A .4B .8C .9D .167.设A 、B 为两个集合:①A ⊆B ⇔对任意x ∈A ,有x ∉B ;② A ⊆B ⇔A ∩B=∅;③A ∩B ⇔B ∩A ;④A ⊆B ⇔存在x ∈A 使得x ∉B .上述四个命题中正确命题 的序号是_________.8.已知集合M={a ,0},N={x|2x 2-5x<0,x ∈Z},若M ∩N ≠∅,则a 的值为_______________.9. 设U={小于10的正整数},已知A ∩B={2},()()U U C A C B ={1,9},()U C A B ={4, 6,8},求A ,B .拓展延伸:10. 已知集合A={x|x<3},B={x|x<a}①若A ∩B=A ,求实数a 的取值范围.②若A ∩B=B ,求实数a 的取值范围.③若R C A 是R C B 的真子集,求实数a 的取值范围.11.已知A={1,2},B={x|x 2-ax+a-1=0},C={x|x+2x= m},若B ∩C ⊆A ,求a , m 的值.分层训练:1.下列四个推理:①a ∈A ∪B ⇒a ∈A ; ②a ∈A ∩B ⇒a ∈A ∪B ③A ⊆B ⇒A ∪B=B ; ④A ∪B=A ⇒ A ∩B=B 其中正确的个数为 ( )A .1B .2C .3D .42.设集合A={x|-5≤x<1},B={x|x ≤2},则A ∪B 等于 ( )A .[-5,1]B .[-5,2]C .{x|x<1}D .{x|x ≤2}3.①图1中阴影部分所表示的集合是( )②图1中阴影部分所表示的集合是( )图1UC BA 图2ABC U A .B ∩()U C A B B .(A ∪B)∪(A ∪C ) C .(A ∪C)∩U C BD .()U C A C B4.若全集U={1,2,3,4,5,6,7,8},P={3,4,5},Q={1,3,6}则集合{2,7,8}是( )A .P ∪QB .P ∩QC .()(U U C P C Q)D .(U C P ∪Q)5.若集合M={(x,y)|x-y=0},N={(x,y)|x 2-y 2=0},则有 ( )A .M ∩N=MB .M ∪N=MC .M ∩N=∅D .M ∪N=R6.集合P ,Q 满足P ∪Q={a ,b},试求集合P ,Q .问此题的解答共有 ( )A .4 种B .7 种C .9 种D .16种7.设U=R ,M={x|f(x)≠0},N={x|g(x)≠0}那么集合{x|f(x)•g(x)=0}等于 ( )A .R R C M C NB .RC M N C .R M C ND .R R C M C N8.设集合A= [-4,2 ),B= [-1,3 ),C= [a ,+∞) .若(A ∪B)∩C=∅,则a 的取值范围是_________若(A ∪B)∩C ≠∅,则a 的取值范围是_______若(A ∪B)是C 的真子集,则a 的取值范围是_ ___9.已知A={x|x 2+x-6=0},B={x||x|<3},C={x|x 2-2x+1=0},求(A ∩B)∪C .拓展延伸:10.已知A={x|x 2+x-2=0},B={x|mx+1=0},且A ∪B=A ,求实数m 的取值范围.11.已知两个集合A={x|x 2-3x+2=0},B={x| x 2-ax+a-1=0},试问:满足B ⊄A 的实数a 是否存在?若存在,求出a 的所有值,若不存在,请说明理由.第6课 交集、并集分层训练:1、下列命题正确的是( )A.Cu(CuP)={P}B.若M={1,Φ,{2}},则{2}≠⊂MC. C R Q=QD.若N={1,2,3},S={x|x ⊆N},则N ⊇S 2、集合A={1,2,3,4},B ≠⊂A ,且1∈A ∩B ,4∉A ∩B ,则满足上述条件的集合B 的个数是( )A.1B.2C.4D.83、已知M ={y|y=x 2+1,x ∈R},N={y|y=-x 2+1,x ∈R}则M ∩N 是( )A.{0,1 }B.{(0,1)}C.{1}D.以上都不对4、集合A={(x,y)|x+y=0},B={(x,y)|x -y=2},则A ∩B=________.5、设A={x|2x 2-px+q=0},B={x|6x 2+(p+2)x+5+q=0},若A ∩B={21},则A ∪B 等于( ) A.{ 21,31,-4} B.{21,-4} C.{21,31} D.{ 21} 6、若A={1,3,x},B=(x 2,1),且A ∪B={1,3,x},则x 的不同取值有( )A.1个B.2个C.3个D.4个7、若{3,4,m 2-3m -1}∩{2m, -3}={-3},则m=________.8、某班级50人,开设英语和日语两门外语课,规定每人至少选学一门,估计报英语的人数占全班80%到90%之间,报日语的人数占全班32%到40%之间,设M 是两门都学的人数的最大值,m 是两门都学的人数的最小值,则M -m=__________,9、某年级先后举办了数学、历史、音乐的讲座,其中有75人听了数学讲座,68人听了历史讲座,61人听了音乐讲座,17人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有6人听了全部讲座。