2018届高考数学(理)大一轮复习顶层设计作业 29平面向量的应用 Word版 含解析
- 格式:doc
- 大小:128.00 KB
- 文档页数:10
1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题. 2.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,是力F 与位移s 的数量积,即W =F·s =|F||s |cos θ(θ为F 与s 的夹角).3.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数),解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题. 【知识拓展】1.若G 是△ABC 的重心,则GA →+GB →+GC →=0.2.若直线l 的方程为:Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)若AB →∥AC →,则A ,B ,C 三点共线.( √ ) (2)向量b 在向量a 方向上的投影是向量.( × )(3)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( × ) (4)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )(5)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ )1.(教材改编)已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形答案 B解析 AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6), ∴|AB →|=22+(-2)2=22,|AC →|=16+64=45, |BC →|=36+36=62,∴|AB →|2+|BC →|2=|AC →|2, ∴△ABC 为直角三角形.2.已知在△ABC 中,|BC →|=10,AB →·AC →=-16,D 为边BC 的中点,则|AD →|等于( ) A .6 B .5 C .4 D .3答案 D解析 在△ABC 中,由余弦定理可得,AB 2+AC 2-2AB ·AC ·cos A =BC 2,又AB →·AC →=|AB →|·|AC →|·cos A =-16,所以AB 2+AC 2+32=100,AB 2+AC 2=68.又D 为边BC 的中点,所以AB →+AC→=2AD →,两边平方得4|AD →|2=68-32=36,解得|AD →|=3,故选D.3.(2017·武汉质检)平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是____________. 答案 x +2y -4=0解析 由OP →·OA →=4,得(x ,y )·(1,2)=4, 即x +2y =4.4.(2016·银川模拟)已知向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 答案 4解析 设a 与b 夹角为α, ∵|2a -b |2=4a 2-4a·b +b 2 =8-4|a||b |cos α=8-8cos α, ∵α∈[0,π],∴cos α∈[-1,1], ∴8-8cos α∈[0,16],即|2a -b |2∈[0,16], ∴|2a -b |∈[0,4]. ∴|2a -b |的最大值为4.5.已知一个物体在大小为6 N 的力F 的作用下产生的位移s 的大小为100 m ,且F 与s 的夹角为60°,则力F 所做的功W =________ J. 答案 300解析 W =F ·s =|F ||s |cos 〈F ,s 〉 =6×100×cos 60°=300(J).题型一 向量在平面几何中的应用例1 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA→+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心 答案 (1)12(2)C解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →)=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝⎛⎭⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12. (2)由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究本例(2)中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________. 答案 内心解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.思维升华 向量与平面几何综合问题的解法 (1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.(1)在△ABC 中,已知向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形 B .直角三角形 C .等腰非等边三角形 D .三边均不相等的三角形(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________. 答案 (1)A (2)5解析 (1)AB →|AB →|,AC →|AC →|分别为平行于AB →,AC →的单位向量,由平行四边形法则可知AB →|AB →|+AC →|AC →|为∠BAC 的平分线.因为(AB →|AB →|+AC →|AC →|)·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|·⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC =12,所以cos ∠BAC =12,又0<∠BAC <π,故∠BAC =π3,所以△ABC 为等边三角形. (2)以D 为原点,分别以DA ,DC 所在直线为x 轴、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =y .则D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,y ),P A →=(2,-y ),PB →=(1,a -y ), 则P A →+3PB →=(5,3a -4y ), 即|P A →+3PB →|2=25+(3a -4y )2, 由点P 是腰DC 上的动点,知0≤y ≤a . 因此当y =34a 时,|P A →+3PB →|2的最小值为25.故|P A →+3PB →|的最小值为5. 题型二 向量在解析几何中的应用例2 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则yx =________________________________________________________________________. 答案 (1)2x +y -3=0 (2)±3解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx=±3.思维升华 向量在解析几何中的“两个”作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a·b =0(a ,b 为非零向量),a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较简捷的方法.(2016·合肥模拟)如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值为________.答案 -92解析 ∵圆心O 是直径AB 的中点,∴P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →, ∵PO →与PC →共线且方向相反,∴当大小相等时,乘积最小.由条件知,当PO =PC =32时,最小值为-2×32×32=-92.题型三 向量的其他应用 命题点1 向量在不等式中的应用 例3 已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是________. 答案 18解析 因为OA →=(x,1),OB →=(2,y ),所以OA →·OB →=2x +y ,令z =2x +y ,依题意,不等式组所表示的可行域如图中阴影部分所示(含边界),观察图象可知,当目标函数z =2x +y 过点C (1,1)时,z max =2×1+1=3,目标函数z =2x +y 过点F (a ,a )时,z min =2a +a =3a ,所以3=8×3a ,解得a =18.命题点2 向量在解三角形中的应用例4 (2016·合肥模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则△ABC 最小角的正弦值等于( ) A.45 B.34 C.35 D.74答案 C解析 ∵20aBC →+15bCA →+12cAB →=0, ∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0, ∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴△ABC 最小角为角A , ∴cos A =b 2+c 2-a 22bc=169a 2+259a 2-a 22×43a ×53a =45,∴sin A =35,故选C.命题点3 向量在物理中的应用例5 如图,一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态.已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为( )A .27B .2 5C .2D .6答案 A解析 如题图所示,由已知得F 1+F 2+F 3=0,则F 3=-(F 1+F 2),即F 23=F 21+F 22+2F 1·F 2=F 21+F 22+2|F 1|·|F 2|·cos 60°=28.故|F 3|=27. 思维升华 利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.(1)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是______.(2)已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________. 答案 (1)3 (2)3解析 (1)由图象可知,M ⎝⎛⎭⎫12,1,N ()x N ,-1,所以OM →·ON →=⎝⎛⎭⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝⎛⎭⎫2-12=3. (2)∵OP →=(x ,y ),OM →=(1,1),ON →=(0,1),OQ →=(2,3), ∴OP →·OM →=x +y ,OP →·ON →=y ,OQ →·OP →=2x +3y ,即在⎩⎨⎧0≤x +y ≤1,0≤y ≤1条件下,求z =2x +3y 的最大值,由线性规划知识得,当x =0,y =1时,z max =3.三审图形抓特点典例 (2016·太原一模)已知A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2一个周期内的图象上的四个点,如图所示,A ⎝⎛⎭⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6E 为函数图象的对称中心,C 为图象最低点―――――――――――→作出点C 的对称点MD 、B 两点对称 CD 和MB 对称―――――――――――→CD →在x 轴上的投影是π12BM 在x 轴上的投影OF =π12――――――→A (-π6,0),AF =π4―→T =π―→ω=2――――――――→y =sin (2x +φ)和y =sin 2x 图象比较φ2=π6―→φ=π3解析 由E 为该函数图象的一个对称中心,作点C 的对称点M ,作MF ⊥x 轴,垂足为F ,如图.B 与D 关于点E 对称,CD →在x 轴上的投影为π12,知OF =π12.又A ⎝⎛⎭⎫-π6,0,所以AF =T 4=π2ω=π4,所以ω=2.同时函数y =sin(ωx +φ)图象可以看作是由y =sin ωx 的图象向左平移得到,故可知φω=φ2=π6,即φ=π3.答案 A1.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 C解析 由(BC →+BA →)·AC →=|AC →|2, 得AC →·(BC →+BA →-AC →)=0, 即AC →·(BC →+BA →+CA →)=0, 2AC →·BA →=0, ∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形.2.(2016·山东)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( )A .4B .-4 C.94 D .-94答案 B解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0, 即t m ·n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0, 由已知得t ×34|n |2×13+|n |2=0,解得t =-4,故选B.3.(2016·南宁模拟)已知向量a =(cos α,-2),b =(sin α,1)且a ∥b ,则sin 2α等于( ) A .3B .-3C.45 D .-45答案 D解析 由a ∥b 得cos α+2sin α=0,∴cos α=-2sin α,又sin 2α+cos 2α=1, ∴5sin 2α=1,sin 2α=15,cos 2α=45,sin 2α=2sin αcos α=-cos 2α=-45.4.(2016·武汉模拟)设△ABC 的三个内角为A ,B ,C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m·n =1+cos(A +B ),则C 等于( ) A.π6 B.π3 C.2π3 D.5π6答案 C解析 依题意得3sin A cos B +3cos A sin B =1+cos(A +B ),3sin(A +B )=1+cos(A +B ),3sin C +cos C =1,2sin(C +π6)=1,sin(C +π6)=12.又π6<C +π6<7π6,因此C +π6=5π6,C =2π3. 5.已知点A (-2,0),B (3,0),动点P (x ,y )满足P A →·PB →=x 2,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 答案 D解析 ∵P A →=(-2-x ,-y ),PB →=(3-x ,-y ), ∴P A →·PB →=(-2-x )(3-x )+y 2=x 2, ∴y 2=x +6,即点P 的轨迹是抛物线.*6.若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是________. 答案 ⎣⎡⎦⎤π6,5π6解析 如图,向量α与β在单位圆O 内,由于|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,故以向量α,β为两边的三角形的面积为14,故β的终点在如图所示的线段AB 上(α∥AB →,且圆心O 到AB 的距离为12),因此夹角θ的取值范围为⎣⎡⎦⎤π6,5π6.7.在菱形ABCD 中,若AC =4,则CA →·AB →=________. 答案 -8解析 设∠CAB =θ,AB =BC =a ,由余弦定理得:a 2=16+a 2-8a cos θ,∴a cos θ=2, ∴CA →·AB →=4×a ×cos(π-θ)=-4a cos θ=-8.8.已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π3.以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为______. 答案3解析 ∵|a +b |2-|a -b |2=4a·b =4|a ||b |cos π3=4>0,∴|a +b |>|a -b |,又|a -b |2=a 2+b 2-2a·b =3, ∴|a -b |= 3.9.已知|a |=2|b |≠0,且关于x 的函数f (x )=13x 3+12|a |x 2+a ·b x 在R 上有极值,则向量a 与b的夹角的范围是__________. 答案 ⎝⎛⎦⎤π3,π解析 设a 与b 的夹角为θ. ∵f (x )=13x 3+12|a |x 2+a ·b x ,∴f ′(x )=x 2+|a |x +a ·b . ∵函数f (x )在R 上有极值,∴方程x 2+|a |x +a ·b =0有两个不同的实数根,即Δ=|a |2-4a ·b >0,∴a ·b <a 24,又∵|a |=2|b |≠0,∴cos θ=a ·b |a ||b |<a 24a 22=12,即cos θ<12,又∵θ∈[0,π],∴θ∈⎝⎛⎦⎤π3,π.*10.已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是________. 答案 6解析 圆(x -2)2+y 2=4的圆心C (2,0),半径为2,圆M (x -2-5cos θ)2+(y -5sin θ)2=1,圆心M (2+5cos θ,5sin θ),半径为1, ∵CM =5>2+1,故两圆相离.如图所示,设直线CM 和圆M 交于H ,G 两点,则PE →·PF →最小值是HE →·HF →,HC =CM -1=5-1=4,HF =HE =HC 2-CE 2=16-4=23,sin ∠CHE =CE CH =12,∴cos ∠EHF =cos 2∠CHE =1-2sin 2∠CHE =12,HE →·HF →=|HE →|·|HF →|·cos ∠EHF =23×23×12=6.11.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足P A →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程.解 设M (x ,y )为所求轨迹上任一点, 设A (a,0),Q (0,b )(b >0),则P A →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ), 由P A →·AM →=0,得a (x -a )+3y =0.① 由AM →=-32MQ →,得(x -a ,y )=-32(-x ,b -y )=⎝⎛⎭⎫32x ,32(y -b ), ∴⎩⎨⎧x -a =32x ,y =32y -32b ,∴⎩⎨⎧a =-x 2,b =y3.∴b >0,y >0,把a =-x 2代入①,得-x2⎝⎛⎭⎫x +x 2+3y =0, 整理得y =14x 2(x ≠0).∴动点M 的轨迹方程为y =14x 2(x ≠0).12.已知角A ,B ,C 是△ABC 的内角,a ,b ,c 分别是其所对边长,向量m =(23sin A2,cos 2A 2),n =(cos A2,-2),m ⊥n .(1)求角A 的大小; (2)若a =2,cos B =33,求b 的长. 解 (1)已知m ⊥n ,所以m·n =(23sin A 2,cos 2A 2)·(cos A2,-2)=3sin A -(cos A +1)=0,即3sin A -cos A =1,即sin(A -π6)=12,因为0<A <π,所以-π6<A -π6<5π6.所以A -π6=π6,所以A =π3.(2)在△ABC 中,A =π3,a =2,cos B =33,sin B =1-cos 2B =1-13=63.由正弦定理知a sin A =bsin B ,所以b =a ·sin Bsin A =2×6332=423.*13.已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且(PC →+12PQ →)·(PC →-12PQ →)=0.(1)求动点P 的轨迹方程;(2)若EF 为圆N :x 2+(y -1)2=1的任意一条直径,求PE →·PF →的最值. 解 (1)设P (x ,y ),则Q (8,y ). 由(PC →+12PQ →)·(PC →-12PQ →)=0,得|PC →|2-14|PQ →|2=0,即(2-x )2+(-y )2-14(8-x )2=0,化简得x 216+y 212=1.∴动点P 在椭圆上,其轨迹方程为x 216+y 212=1.(2)∵PE →=PN →+NE →,PF →=PN →+NF →, 且NE →+NF →=0.∴PE →·PF →=PN →2-NE →2=(-x )2+(1-y )2-1 =16(1-y 212)+(y -1)2-1=-13y 2-2y +16=-13(y +3)2+19.∵-23≤y ≤2 3.∴当y =-3时,PE →·PF →的最大值为19, 当y =23时,PE →·PF →的最小值为12-4 3. 综上,PE →·PF →的最大值为19,最小值为12-4 3.。
(完整版)2018高考试题分类汇编——平面向量编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2018高考试题分类汇编——平面向量)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2018高考试题分类汇编——平面向量的全部内容。
2018高考分类汇编 —-平面向量1、【北京理】6.设a ,b 均为单位向量,则“33-=+a b a b ”是“⊥a b ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案:C ;解析:33-=+a b a b 等号两边分别平方得0⋅=a b 与⊥a b 等价,故选C 。
考点:考查平面向量的数量积性质及充分必要条件的判定; 备注:高频考点.2、【北京文】设向量(,),(,)101==-a b m ,若()⊥-a ma b ,则=m答案:1-【解析】因为(,),(,),101a b m ==- 所以(,)(,)(,).011ma b m m m m -=--=+- 由()⊥-a ma b 得()0a ma b ⋅-=,所以()10a ma b m ⋅-=+=,解得.1m =-【考点】本题考查向量的坐标运算,考查向量的垂直。
3、【1卷文7理6】6.在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A.3144AB AC - B 。
1344AB AC - C 。
3144AB AC + D 。
1344AB AC + 答案:A解析:在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A .4、【2卷理】4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .0【答案】B【解析】2(2)2||213⋅-=-⋅=+=a a b a a b ,故选B .5、【2卷文】4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4 B .3 C .2 D .0【答案】B解析:向量,a b 满足1,1a a b =⋅=-,则2(22213a a b a a b ⋅-=-⋅=+=),故选B .6、【3卷文理】13.已知向量()1,2a =,()2,2b =-,()1,c λ=,若()//2c a b +,则λ= .12解析:依题意可得()()()22,42,24,2a b +=+-=,又()1,c λ=,()//2c a b + 所以4210λ⨯-⨯=,解得12λ=. 点评:本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题. 7、【上海】8.在平面直角坐标系中,已知点(1,0)A -、(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =,则AE BF ⋅的最小值为 . 答案:3-解析:设(0,),(0,2)E m F m +,则(1,),(2,2)AE m BF m ==-+,2(2)AE BF m m ⋅=-++2222(1)3m m m =+-=+-,最小值为3-.解法2:()()2AE BF AO OE BO OF AO BO AO OF OE BO OE OF OE OF ⋅=+⋅+=⋅+⋅+⋅+⋅=⋅-取EF 中点G ,则21OE OF OG ⋅=-.显然20OG ≥(当E F 、关于原点对称). 所以1OE OF ⋅-≥.则3AE BF ⋅-≥.8、【天津理】8.如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==,若点E 为边CD 上的动点,则AE BE ⋅的最小值为( ) A .2116 B .32 C .2516D .3BCDE【答案】A【基本解法1】连接AC ,则易证明ABC ADC △≌△,所以60DAC BAC ∠=∠=︒所以BC CD ==(01)DE DC λλ=<<, 则()()()()(1)AE BE AD DE BC CE AD DC BC DC λλ⋅=+⋅+=+⋅--2(1)AD BC DC BC DC λλλ=⋅+⋅--2cos30cos 60(1)AD BC DC BC DC λλλ=⋅︒+⋅︒--22331213322416λλλ⎛⎫=-+=-+ ⎪⎝⎭,当14λ=时,AE BE ⋅取得最小值,最小值为2116.【基本解法1】连接AC ,则易证明ABC ADC △≌△,所以60DAC BAC ∠=∠=︒, 所以BC CD ==D为坐标原点,,DA DC 所在方向为,x y 轴正方向 建立如图所示平面直角坐标系,过B 作BF x ⊥轴于点FBD则1cos 60,sin 602AF AB BF AB =︒==︒=32B ⎛ ⎝⎭, BCDE设(0DEλλ=<<,则(1,0),(0,)A Eλ,223321(1,),2222416AE BEλλλλ⎛⎫⎛⎫⋅=-⋅--=-+=-+⎪ ⎪⎪ ⎪⎝⎭⎝⎭,当4λ=时,AE BE⋅取得最小值,最小值为2116.9、【天津文】8.在如图的平面图形中,已知1,2,120OM ON MON==∠=︒,2,2BM MA CN NA==,则BC OM⋅的值为( )A.15-B.9- C.6- D.0ABCMNO【答案】C解析:)(333-=+-=+=)(33-==,则633)(32-=-⋅=⋅-=⋅.10、【浙江卷】9.已知a b e,,是平面向量,e是单位向量,若非零向量a与e的夹角为3π,向量b满足2430b e b-⋅+=,则a b-的最小值是()A1 B1 C.2 D.2【答案】A解析:解法1:(配方法)由2430b e b-⋅+=得22441b e b e-⋅+=,即()221b e-=,因此21b e-=.如图,OE e=,2OF e=,3POEπ∠=,则向量b的终点在以F为圆心,1为半径的圆上,而a的终点A在射线OP上,a b AB-=,问题转化为圆上的点与射线上的点连线长度最小,显然其最小值为圆心到射线的距离减去半径即为1.H解法2:(向量的直径圆式)由2430b e b -⋅+=,得22430b e b e -⋅+=,所以()()30b e b e -⋅-=, 如图,,3,OE e OH e OB b ===,则0EB EH ⋅=,即终点B 在以EH 为直径的圆上,以下同解法1. 解法3:(绝对值性质的应用)由2430b e b -⋅+=,得22441b e b e -⋅+=,即()221b e -=, 因此21b e -=,而由图形得23a e -≤,所以()()222231a b a e b e a e b e -=------=-≥,所以a b -的最小值为1.解法4:(坐标法)设a b e ,,起点均为原点,设(1,0)e =,(,)b x y =,则a 的终点A 在射线(0)y x =>上,由2430b e b -⋅+=,得22430x y x +-+=,即22(2)1x y -+=,所以向量b 的终点在圆22(2)1x y -+=上,a b -的最小值即为求圆上一点到射线(0)y x =>上一点的最小距离,1.。
A 组 专项基础训练(时间:40分钟)1.(2016·安徽皖江名校联考)在△ABC 中,已知向量AB →=(2,2),|AC →|=2,AB →·AC →=-4,则△ABC 的面积为( )A .4B .5C .2D .3【解析】 ∵AB →=(2,2),∴|AB →|=22+22=2 2. ∵AB →·AC →=|AB →|·|AC →|cos A =22×2cos A =-4, ∴cos A =-22,∵0<A <π,∴sin A =22, ∴S △ABC =12|AB →|·|AC →|sin A =2.【答案】 C2.(2017·安徽江淮十校第一次联考)在等腰△ABC 中,∠BAC =90°,AB =AC =2,BC →=2BD →,AC →=3AE →,则AD →·BE →的值为( )A .-43B .-13C.13D.43【解析】 由已知得AD →·BE →=12(AB →+AC →)·⎝⎛⎭⎪⎫BA →+13AC →=-12AB →2+16AB →·AC →+12AC →·BA →+16AC→2.①因为△ABC 是等腰直角三角形,∠BAC =90°,AB =AC =2,所以①式=-12×22+0+0+16×22=-43.故选A. 【答案】 A3.已知向量a =(2cos α,2sin α),b =(3cos β,3sin β),若a 与b 的夹角为60°,则直线x cos α-y sin α+12=0与圆(x -cos β)2+(y +sin β)2=12的位置关系是( )A .相交B .相交且过圆心C .相切D .相离【解析】 ∵a =(2cos α,2sin α),b =(3cos β,3sin β),∴|a |=2,|b |=3.∴a ·b =6cos αcos β+6sin αsin β=6cos(α-β). 而a ·b =|a ||b |cos 60°=3, ∴6cos(α-β)=3⇒cos(α-β)=12.则圆心(cos β,-sin β)到直线x cos α-y sin α+12=0的距离d =⎪⎪⎪⎪⎪⎪cos αcos β+sin αsin β+12=⎪⎪⎪⎪⎪⎪cos (α-β)+12=1>22=r ,∴相离. 【答案】 D4.(2016·驻马店质检)若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形 【解析】 因为(OB →-OC →)·(OB →+OC →-2OA →)=0, 即CB →·(AB →+AC →)=0,∵AB →-AC →=CB →, ∴(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|, 所以△ABC 是等腰三角形,故选C. 【答案】 C5.(2015·辽阳一模)在△ABC 中,如图,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →·AF →等于( )A.89B.109C.259 D.269【解析】 若|AB →+AC →|=|AB →-AC →|,则AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,即有AB →·AC →=0.E ,F 为BC 边的三等分点,则AE →·AF →=(AC →+CE →)·(AB →+BF →)=⎝ ⎛⎭⎪⎫AC →+13CB →·⎝ ⎛⎭⎪⎫AB →+13BC →=⎝ ⎛⎭⎪⎫23AC→+13AB →·⎝ ⎛⎭⎪⎫13AC →+23AB →=29AC →2+29AB →2+59AB →·AC →=29×(1+4)+0=109.故选B. 【答案】 B6.(2016·合肥联考)已知|a |=1,|b |=2,a 与b 的夹角为60°,则a +b 在a 上的投影为________.【解析】 ∵|a +b |2=a 2+b 2+2a ·b =1+4+2×1×2×12=7,∴|a +b |=7,cos 〈a+b ,a 〉=(a +b )·a |a +b |·|a |=1+17=277.∴a +b 在a 上的投影为|a +b |·cos 〈a +b ,a 〉=7×277=2.【答案】 27.(2015·潍坊模拟)如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.【解析】 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos 60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),所以AO →2=14(1+3+9)=134,所以|OA →|=132.【答案】1328.在△ABC 中,若OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的________(填“重心”、“垂心”、“内心”、“外心”).【解析】 ∵OA →·OB →=OB →·OC →, ∴OB →·(OA →-OC →)=0, ∴OB →·CA →=0,∴OB ⊥CA ,即OB 为△ABC 底边CA 上的高所在直线. 同理OA →·BC →=0,OC →·AB →=0,故O 是△ABC 的垂心. 【答案】 垂心9.(2017·上海静安区一模)如图,已知O 为坐标原点,向量OA →=(3cos x ,3sin x ),OB →=(3cos x ,sin x ),OC →=(3,0),x ∈⎝⎛⎭⎪⎫0,π2.(1)求证:(OA →-OB →)⊥OC →;(2)若△ABC 是等腰三角形,求x 的值. 【解析】 (1)证明 ∵OA →-OB →=(0,2sin x ),∴(OA →-OB →)·OC →=0×3+2sin x ×0=0, ∴(OA →-OB →)⊥OC →.(2)若△ABC 是等腰三角形,则AB =BC , ∴(2sin x )2=(3cos x -3)2+sin 2x , 整理得2cos 2x -3cos x =0, 解得cos x =0,或cos x =32. ∵x ∈⎝⎛⎭⎪⎫0,π2,∴cos x =32,x =π6.10.(2015·德州一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 【解析】 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π, 所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得asin A =bsin B ,则sin B =b sin A a =5×4542=22,因为a >b ,所以A >B ,则B =π4.由余弦定理得(42)2=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1,故向量BA →在BC →方向上的投影为 |BA →|cos B =c cos B =1×22=22.B 组 专项能力提升 (时间:20分钟)11.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为( )A .6B .7C .8D .9【解析】 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,所以AC 为圆直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈,PB →=(x -2,y ),所以PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37,所以x =-1时有最大值49=7,故选B.【答案】 B12.(2016·山东)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( )A .4B .-4 C.94 D .-94【解析】 方法一 ∵n ⊥(t m +n ),∴n ·(t m +n )=0,∴t m ·n +n 2=0.∵4|m |=3|n |,cos 〈m ,n 〉=13,∴t |m ||n |×13+n 2=0,∴13×34|n |2t +n 2=0.∵|n |≠0,∴t =-4.故选B.方法二 ∵4|m |=3|n |,∴设|m |=3k ,|n |=4k (k >0). ∵n ⊥(t m +n )=0,∴t m ·n +n 2=0,∴12k 2t ×13+16k 2=0,解得t =-4.故选B.【答案】 B13.(2016·北京)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【解析】 若|a |=|b |,则(a +b )·(a -b )=0,不一定有|a +b |=|a -b |,故充分条件不成立;若|a +b |=|a -b |,则a ·b =0,不一定有|a |=|b |,因此必要条件也不成立.故选D.【答案】 D14.(2016·江苏)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.【解析】 设BD →=a ,DF →=b ,则BA →·CA →=(a +3b )·(-a +3b )=9|b |2-|a |2=4,BF →·CF →=(a +b )·(-a +b )=|b |2-|a |2=-1,解得|a |2=138,|b |2=58.则BE →·CE →=(a +2b )·(-a +2b )=4|b |2-|a |2=78.【答案】 7815.(2016·宣城模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=1.(1)判断△ABC 的形状; (2)求边长c 的值;(3)若|AB →+AC →|=22,求△ABC 的面积. 【解析】 (1)由AB →·AC →=BA →·BC →=1, 得bc ·cos A =ac ·cos B ,由正弦定理, 即sin B cos A =sin A cos B , ∴sin(A -B )=0,∴A =B ,即△ABC 是等腰三角形. (2)由AB →·AC →=1,得bc ·cos A =1,又bc ·b 2+c 2-a 22bc=1,则b 2+c 2-a 2=2,又a =b ,∴c 2=2,即c = 2.(3)由|AB →+AC →|=22,得2+b 2+2=8, ∴b =2,又c =2, ∴cos A =24,sin A =144, ∴S △ABC =12bc ·sin A =12×2×2×144=72.。
第五章平面向量与复数1.平面向量(1)平面向量的实际背景及基本概念①了解向量的实际背景.②理解平面向量的概念和两个向量相等的含义.③理解向量的几何表示.(2)向量的线性运算①掌握向量加法、减法的运算,理解其几何意义.②掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.③了解向量线性运算的性质及其几何意义.(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义.②掌握平面向量的正交分解及其坐标表示.③会用坐标表示平面向量的加法、减法与数乘运算.④理解用坐标表示的平面向量共线的条件.(4)平面向量的数量积①理解平面向量数量积的含义及其物理意义.②了解平面向量的数量积与向量投影的关系.③掌握数量积的坐标表达式,会进行平面向量数量积的运算.④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.(5)向量的应用①会用向量方法解决某些简单的平面几何问题.②会用向量方法解决简单的力学问题与其他一些实际问题.2.数系的扩充和复数的引入(1)理解复数的基本概念,理解复数相等的充要条件.(2)了解复数的代数表示法及其几何意义.(3)能进行复数代数形式的四则运算,了解两个具体复数相加、相减的几何意义.5.1 平面向量的概念及线性运算1.向量的有关概念(1)向量:既有____________又有____________的量叫做向量,向量的大小,也就是向量的____________(或称模).AB →的模记作____________.(2)零向量:____________的向量叫做零向量,其方向是________的.(3)单位向量:长度等于__________________的向量叫做单位向量.a||a 是一个与a 同向的____________.-a|a |是一个与a ________的单位向量.(4)平行向量:方向________或________的________向量叫做平行向量.平行向量又叫_________,任一组平行向量都可以移到同一直线上.规定:0与任一向量____________.(5)相等向量:长度____________且方向____________的向量叫做相等向量.(6)相反向量:长度____________且方向____________的向量叫做相反向量.(7)向量的表示方法:用________表示;用____________表示;用________表示.2.向量的加法和减法 (1)向量的加法①三角形法则:以第一个向量a 的终点A 为起点作第二个向量b ,则以第一个向量a 的起点O 为________以第二个向量b 的终点B 为________的向量OB →就是a 与b 的________(如图1).推广:A 1A 2→+A 2A 3→+…+A n-1A n →=____________.图1图2②平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作▱ABCD ,则以A 为起点的__________就是a 与b 的和(如图2).在图2中,BC →=AD →=b ,因此平行四边形法则是三角形法则的另一种形式.③加法的运算性质:a +b =____________(交换律);(a +b )+c =____________(结合律);a +0=____________=a .(2)向量的减法已知向量a ,b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=____________,即a -b 表示从向量b 的终点指向向量a (被减向量)的终点的向量(如图).3.向量的数乘及其几何意义(1)定义:实数λ与向量a 的积是一个向量,记作____________,它的长度与方向规定如下:①||λa =____________;②当λ>0时,λa 与a 的方向____________; 当λ<0时,λa 与a 的方向____________; 当λ=0时,λa =____________. (2)运算律:设λ,μ∈R ,则: ①λ(μa )=____________; ②(λ+μ)a =____________; ③λ(a +b )=____________. 4.两个向量共线定理向量a (a ≠0)与b 共线的充要条件是有且只有一个实数λ,使得____________.自查自纠1.(1)大小 方向 长度 ||AB → (2)长度为0任意(3)1个单位长度 单位向量 方向相反 (4)相同 相反 非零 共线向量 平行 (5)相等 相同 (6)相等 相反 (7)字母 有向线段 坐标2.(1)①起点 终点 和 A 1A n → ②对角线AC →③b +a a +(b +c ) 0+a (2)a -b 3.(1)λa ①|λ||a | ②相同 相反 0 (2)①μ(λa ) ②λa +μa ③λa +λb 4.b =λa设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( )A .0B .1C .2D .3解:向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则当a 为零向量时,a 的方向任意;当a 不为零向量时,a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.故选D .设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →解:AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=-13AB→+43AC →.故选A .(2015·湖北联考)已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →等于( )A .2OA →-OB →B .-OA →+2OB →C.23OA →-13OB →D .-13OA →+23OB →解:由2AC →+CB →=0得2OC →-2OA →+OB →-OC →=0,故OC →=2OA →-OB →.故选A .在平行四边形ABCD 中,点E 为CD 的中点,AM→=mAB →,AN →=nAD →(mn ≠0),若MN →∥BE →,则n m=________.解:MN →=AN →-AM →=nAD →-mAB →,BE →=BC →+CE →=AD →-12AB →,因为MN →∥BE →,且向量AD →和AB →不共线,所以n 1=-m -12,解得nm=2.故填2.直角三角形ABC 中,斜边BC 长为2,O 是平面ABC 内一点,点P 满足OP →=OA →+12(AB →+AC →),则|AP→|=________.解:如图,取BC 边中点D ,连接AD ,则12(AB →+AC →)=AD →,OP →=OA →+12(AB →+AC →)⇒OP →=OA →+AD →⇒OP →-OA →=AD→⇒AP →=AD →,因此|AP →|=|AD →|=1.故填1.类型一 向量的基本概念给出下列命题:①两个向量相等,则它们的起点相同,终点也相同;②若|a |=|b |,则a =b ;③若AB →=DC →,则四点A ,B ,C ,D 构成平行四边形; ④在▱ABCD 中,一定有AB →=DC →; ⑤若m =n ,n =p ,则m =p . 其中不正确的个数是( ) A .2B .3C .4D .5解:两个向量起点相同,终点也相同,则两个向量相等;但两个相等向量,不一定有相同的起点和终点,故①不正确.若|a |=|b |,由于a 与b 方向不确定,所以a ,b 不一定相等,故②不正确.若AB →=DC →,可能有A ,B ,C ,D 在一条直线上的情况,所以③不正确.正确的是④⑤.故选B .【点拨】从共线向量、单位向量、相反向量等的概念及特征逐一进行考察.(1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制.(3)相等向量的关键是方向相同且长度相等.(4)共线向量即为平行向量,它们均与起点无关.(5)向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图象的移动混为一谈.下列命题中,正确的是________.(填序号)①有向线段就是向量,向量就是有向线段; ②向量a 与向量b 平行,则a 与b 的方向相同或相反;③向量AB →与向量CD →共线,则A ,B ,C ,D 四点共线; ④如果a ∥b ,b ∥c ,那么a ∥c ;⑤两个向量不能比较大小,但它们的模能比较大小.解:①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量;②不正确,若a 与b 中有一个为零向量,零向量的方向是任意的,故两向量方向不一定相同或相反;③不正确,共线向量所在的直线可以重合,也可以平行;④不正确,如果b 为零向量,则a 与c 不一定平行;⑤正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小.故填⑤.类型二 向量的线性运算在△ABC 中,E ,F 分别为AC ,AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试用a ,b 表示AG →.解法一:AG →=AB →+BG →=AB →+23BE →=AB →+23(AE →-AB →)=AB →+23⎝ ⎛⎭⎪⎫12AC →-AB →=13AB →+13AC →=13a +13b.解法二:由于G 是△ABC 的中线BE 与CF 的交点,所以G 为△ABC 的重心.延长AG 交BC 于H ,由重心的性质知,AG →=23AH →=23×12(AB →+AC →)=13a +13b .【点拨】(1)进行向量运算时,要尽可能转化到平行四边形或三角形中,选用从同一顶点出发的基本向量或首尾相接的向量,运用向量加、减法运算及数乘运算来解决.(2)除了充分利用相等向量、相反向量和线段的比例关系外,有时还需要利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.(3)在解答用已知向量线性表示未知向量的问题时,可以利用共线向量定理,将共线向量用参数表示,再利用平面向量基本定理,建立参数的方程(组)求解参数,最后得出结论.(1)设P 是△ABC 所在平面内一点,BC →+BA →=2BP →,则( )A.PA →+PB →=0 B.PC →+PA →=0 C.PB →+PC →=0D.PA →+PB →+PC →=解:如图,根据向量加法的几何意义有BC →+BA →=2BP →⇔P 是AC 的中点,故PC →+PA →=0.故选B .(2)(2014·全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A.AD →B.12AD → C.BC →D.12BC → 解:EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →.故选A . 类型三 向量共线的充要条件及其应用已知A ,B ,C 是平面内三个不相同的点,O 是平面内任意一点,求证:向量OA →,OB →,OC →的终点A ,B ,C 共线的充要条件是存在实数λ,μ,使得OC →=λOA →+μOB →,且λ+μ=1.证明:(1)先证必要性.若OA →,OB →,OC →的终点A ,B ,C 共线,则AB →∥BC →, 所以存在实数m 使得BC →=mAB →,即OC →-OB →=m (OB →-OA →),所以OC →=-mOA →+(1+m )OB →.令λ=-m ,μ=1+m ,则λ+μ=-m +1+m =1, 即存在实数λ,μ,使得OC →=λOA →+μOB →,且λ+μ=1.(2)再证充分性.若OC →=λOA →+μOB →,且λ+μ=1,则OC →=λOA →+(1-λ)OB →,所以OC →-OB →=λ(OA →-OB →),即BC →=λBA →, 所以BC →∥BA →,又BC 与BA 有公共点B ,所以A ,B ,C 三点共线. 综合(1)(2)可知,原命题成立.【点拨】证明三点A ,B ,C 共线,借助向量,只需证明由这三点A ,B ,C 所组成的向量中有两个向量共线,即证明存在一个实数λ,使AB →=λBC →.但证明两条直线AB ∥CD ,除了证明存在一个实数λ,使AB →=λCD →外,还要说明两直线不重合.注意:本例的结论可作定理使用.(1)已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( )A .A ,B ,DB .A ,B ,C C .B ,C ,DD .A ,C ,D解:BD →=BC →+CD →=(-5a +6b )+(7a -2b )=2a +4b =2(a +2b )=2AB →,所以A ,B ,D 三点共线.故选A .(2)设两个非零向量a 与b 不共线,若k a +b 和a +k b 共线,则实数k =________.解:因为k a +b 和a +k b 共线,所以存在实数λ,使k a +b =λ(a +k b ),即k a +b =λa +λk b .所以(k -λ)a =(λk -1)b .因为a ,b 是两个不共线的非零向量,所以k -λ=λk -1=0,所以k 2-1=0.所以k =±1.故填±1.(3)如图,在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点.若AN →=λAB →+μAC →,则λ+μ的值为()A .12B .13C .14D .1解:由N 为AM 的中点,可得AN →=12AM →=λAB →+μAC →,整理得AM →=2λAB →+2μAC →,由B ,M ,C 三点共线可得2λ+2μ=1,即λ+μ=12.故选A .1.准确理解向量的概念,请特别注意以下几点: (1)a ∥b ,有a 与b 方向相同或相反两种情形; (2)向量的模与数的绝对值有所不同,如|a |=|b |⇒/ a =±b ;(3)零向量的方向是任意的,并不是没有,零向量与任意向量平行;(4)对于任意非零向量a ,a||a 是与a 同向的单位向量,这也是求单位向量的方法;(5)向量平行,其所在直线不一定平行,两向量还可能在一条直线上;(6)只要不改变向量a 的大小和方向,可以自由平移a ,平移后的向量与a 相等,所以线段共线与向量共线是有区别的,当两向量共线且有公共点时,才能得出线段共线,向量的共线与向量的平行是一致的.2.向量具有大小和方向两个要素,既能像实数一样进行某些运算,又有直观的几何意义,是数与形的完美结合.向量是一个几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析、判断,这是研究平面向量最重要的方法与技巧.3.向量加法的三角形法则可简记为“首尾相接,指向终点”;减法法则可简记为“起点重合,指向被减向量”;加法的平行四边形法则可简记 “起点重合,指向对角顶点”.4.平面向量的三种线性运算的结果仍为向量,在三种线性运算中,加法是最基本、最重要的运算,减法运算与数乘运算都以加法运算为基础,都可以归结为加法运算.5.对于两个向量共线定理(a (a ≠0)与b 共线⇔存在唯一实数λ使得b =λa )中条件“a ≠0”的理解:(1)当a =0时,a 与任一向量b 都是共线的; (2)当a =0且b ≠0时,b =λa 是不成立的,但a 与b 共线.因此,为了更具一般性,且使充分性和必要性都成立,我们要求a ≠0.换句话说,如果不加条件“a ≠0”,“a 与b 共线”是“存在唯一实数λ使得b =λa ”的必要不充分条件.1.设a ,b 都是非零向量,下列四个条件中,使a|a |=b|b |成立的充分条件是( ) A .a =-b B .a ∥bC .a =2bD .a ∥b 且|a |=|b |解:由题意a |a |=b|b |表示与向量a 和向量b 同向的单位向量相等,故a 与b 同向共线.故选C .2.已知向量a ,b 不共线,c =k a +b (k ∈R ),d =a -b .如果c ∥d ,那么( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向解:因为c ∥d ,所以存在实数λ,使得c =λd ,即k a +b =λ(a -b ),所以⎩⎪⎨⎪⎧k =λ,1=-λ, 解得⎩⎪⎨⎪⎧k =-1,λ=-1. 此时c =-d .所以c 与d 反向.故选D .3.已知O ,A ,M ,B 为平面上四点,且OM →=λOB →+(1-λ)OA →,实数λ∈(1,2),则( )A .点M 在线段AB 上 B .点B 在线段AM 上C .点A 在线段BM 上D .O ,A ,M ,B 四点一定共线解:由题意得OM →-OA →=λ(OB →-OA →),即AM →=λAB →.又λ∈(1,2),所以点B 在线段AM 上.故选B .4.已知O 是△ABC 所在平面内一点,D 为BC 的中点,且2OA →+OB →+OC →=0,则( )A.AO →=2OD →B.AO →=OD →C.AO →=3OD →D .2AO →=OD →解:因为D 为BC 的中点,所以由2OA →+OB →+OC →=0得OB →+OC →=-2OA →=2AO →,即2OD →=2AO →,所以AO →=OD →.故选B .5.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解:由题意得AD →=AB →+BD →=AB →+13BC →,BE →=BA →+AE →=BA →+13AC →,CF →=CB →+BF →=CB →+13BA →,因此AD →+BE →+CF →=CB →+13(BC →+AC →-AB →)=CB →+23BC →=-13BC →,故AD →+BE →+CF →与BC →反向平行.故选A .6.在平行四边形ABCD 中,点E 是AD 的中点,BE与AC 相交于点F ,若EF →=mAB →+nAD →(m ,n ∈R ),则m n的值为( )A .-2B .-12C .2D.12解:设AB →=a ,AD →=b ,则EF →=m a +n b ,BE →=AE →-AB →=12b -a ,由向量EF →与BE →共线可知存在非零实数λ,使得EF →=λBE →,即m a +n b =12λb -λa ,又a 与b 不共线,则⎩⎪⎨⎪⎧m =-λ,n =12λ, 消去λ得m n =-2.故选A .7.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD →=12AB →,BE →=23BC →.若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解:DE →=BE →-BD →=23BC →-12BA →=23(AC →-AB →)+12AB →=-16AB→+23AC →, 因为DE →=λ1AB →+λ2AC →,所以λ1=-16,λ2=23,从而λ1+λ2=12.故填12.8.已知D 为△ABC 的BC 边上的中点,点P 满足PA →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.解:PA →+BP →+CP →=0,则CA →+BP →=0,即CA →=PB →,则P 为以AB ,AC 为邻边的平行四边形的第四个顶点,如图所示.因此AP →=-2PD →,则λ=-2. 故填-2.9.如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b 表示BC →和MN →.解:BC →=BA →+AD →+DC →=-a +b +12a =b -12a .MN →=MD →+DA →+AN →=-14a +(-b )+12a =14a -b .10.设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 与a +k b 共线. 解:(1)证明:因为AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),所以BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →. 所以AB →,BD →共线,又因为它们有公共点B ,所以A ,B ,D 三点共线. (2)因为k a +b 与a +k b 共线,所以存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b ,所以(k -λ)a =(λk -1)b , 因为a ,b 是不共线的两个非零向量,所以k -λ=λk -1=0,即k 2-1=0,所以k =±1.11.如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.解:因为A ,M ,D 三点共线, 所以OM →=λ1OD →+(1-λ1)OA → =12λ1b +(1-λ1)a ,① 因为C ,M ,B 三点共线,所以OM →=λ2OB →+(1-λ2)OC →=λ2b +1-λ24a ,②由①②可得⎩⎪⎨⎪⎧12λ1=λ2,1-λ1=1-λ24, 解得⎩⎪⎨⎪⎧λ1=67,λ2=37. 故OM →=17a +37b.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上 解:若C ,D 调和分割点A ,B ,则AC →=λAB →(λ∈R ),AD →=μAB →(μ∈R ),且1λ+1μ=2.对于选项A ,若C 是线段AB 的中点,则AC →=12AB →⇒λ=12⇒1μ=0,故A 选项错误;同理B 选项错误;对于选项C ,若C ,D 同时在线段AB上,则0<λ<1,0<μ<1⇒1λ+1μ>2,C选项错误;对于选项D,若C,D同时在线段AB的延长线上,则λ>1,μ>1⇒1λ+1μ<2,故C,D不可能同时在线段AB的延长线上,D选项正确.故选D.。
2018版高考数学一轮复习 第五章 平面向量 5.4 平面向量应用举例真题演练集训 理 新人教A 版1.[2016·四川卷]在平面内,定点A ,B ,C ,D 满足|DA →|=|DB →|=|DC →|,DA →·DB →=DB →·DC →=DC →·DA →=-2,动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是( )A.434B.494C.37+634D.37+2334答案:B解析:由|DA →|=|DB →|=|DC →|知,D 为△ABC 的外心.由DA →·DB →=DB →·DC →=DC →·DA →知,D 为△ABC 的内心,所以△ABC 为正三角形,易知其边长为2 3.取AC 的中点E ,因为M 是PC 的中点,所以EM =12AP =12,所以|BM →|max =|BE |+12=72,则|BM →|2max =494,故选B. 2.[2015·福建卷]已知AB →⊥AC →,|AB →|=1t,|AC →|=t .若点P 是△ABC 所在平面内的一点,且AP →=AB→|AB →|+4AC→|AC →|,则PB →·PC →的最大值等于( )A .13B .15C .19D .21答案:A解析:∵ AB →⊥AC →,故以A 为原点,AB ,AC 所在直线为坐标轴建立平面直角坐标系.不妨设B ⎝ ⎛⎭⎪⎫0,1t ,C (t,0),则AP →=⎝ ⎛⎭⎪⎫0,1t 1t+4 t ,0 t =(4,1),故点P 的坐标为(4,1).PB →·PC →=⎝⎛⎭⎪⎫-4,1t -1·(t -4,-1)=-4t -1t +17=-⎝ ⎛⎭⎪⎫4t +1t +17≤-24+17=13.当且仅当4t =1t ,即t =12时(负值舍去)取得最大值13.3.[2015·天津卷]在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF →的最小值为________.答案:2918解析:在等腰梯形ABCD 中,由AB ∥DC ,AB =2,BC =1,∠ABC =60°,可得AD =DC =1. 建立平面直角坐标系如图所示,则A (0,0),B (2,0),C ⎝ ⎛⎭⎪⎫32,32,D ⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,32-(2,0)=⎝ ⎛⎭⎪⎫-12,32, DC →=⎝ ⎛⎭⎪⎫32,32-⎝ ⎛⎭⎪⎫12,32=(1,0). ∵ BE →=λBC →=⎝ ⎛⎭⎪⎫-12λ,32λ,∴ E ⎝ ⎛⎭⎪⎫2-12λ,32λ.∵ DF →=19λDC →=⎝ ⎛⎭⎪⎫19λ,0,∴ F ⎝ ⎛⎭⎪⎫12+19λ,32.∴ AE →·AF →=⎝ ⎛⎭⎪⎫2-12λ,32λ·⎝ ⎛⎭⎪⎫12+19λ,32=⎝ ⎛⎭⎪⎫2-12λ⎝ ⎛⎭⎪⎫12+19λ+34λ=1718+29λ+12λ ≥1718+229λ·12λ=2918, 当且仅当29λ=12λ,即λ=23时等号成立,符合题意.∴ AE →·AF →的最小值为2918.4.[2016·江苏卷]如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.答案:78解析:解法一:以D 为坐标原点,BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立平面直角坐标系,设B (-a,0),C (a,0),A (b ,c ),则E ⎝ ⎛⎭⎪⎫23b ,23c ,F ⎝ ⎛⎭⎪⎫13b ,13c ,BA →=(b +a ,c ), CA →=(b -a ,c ),BF →=⎝ ⎛⎭⎪⎫b3+a ,c 3,CF →=⎝ ⎛⎭⎪⎫b 3-a ,c 3,BE →=⎝ ⎛⎭⎪⎫23b +a ,23c ,CE →=⎝ ⎛⎭⎪⎫23b -a ,23c ,由BA →·CA →=b 2-a 2+c 2=4,BF →·CF →=b 29-a 2+c 29=-1,解得b 2+c 2=458,a 2=138,则BE →·CE →=49(b 2+c 2)-a 2=78.解法二:设BD →=a ,DF →=b ,则BA →·CA →=(a +3b )·(-a +3b )=9|b |2-|a |2=4,BF →·CF →=(a +b )·(-a +b )=|b |2-|a |2=-1,解得|a |2=138,|b |2=58, 则BE →·CE →=(a +2b )·(-a+2b )=4|b |2-|a |2=78.课外拓展阅读巧解平面向量高考题的5种方法向量是既有大小又有方向的量,具有几何和代数形式的“双重性”,常作为工具来解决其他知识模块的问题.在历年高考中都会对该部分内容进行考查,解决这些问题多可利用平面向量的有关知识进行解决.基于平面向量的双重性,一般可以从两个角度进行思考:一是利用其“形”的特征,将其转化为平面几何的有关知识进行解决;二是利用其“数”的特征,通过坐标转化为代数中的有关问题进行解决.下面对辽宁省的一道高考试题采用5种不同的求解方法进行解答.[典例] 若a ,b ,c 均为单位向量,且a·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( )A.2-1 B .1 C. 2D .2解法一:目标不等式法 [思路分析][解析] 因为|a |=|b |=|c |=1,a·b =0,所以|a+b|2=a2+b2+2a·b=2,故|a+b|=2.展开(a-c)·(b-c)≤0,得a·b-(a+b)·c+c2≤0,即0-(a+b)·c+1≤0,整理,得(a+b)·c≥1.而|a+b-c|2=(a+b)2-2(a+b)·c+c2=3-2(a+b)·c,所以3-2(a+b)·c≤3-2×1=1.所以|a+b-c|2≤1,即|a+b-c|≤1.[答案] B解法二:向量基底法[思路分析][解析]取向量a,b作为平面向量的一组基底,设c=m a+n b.由|c|=1,即|m a+n b|=1,可得(m a)2+(n b)2+2mn a·b=1,由题意知,|a|=|b|=1,a·b=0.整理,得m2+n2=1.而a-c=(1-m)a-n b,b-c=-m a+(1-n)b,故由(a-c)·(b-c)≤0,得[(1-m)a-n b]·[-m a+(1-n)b]≤0,展开,得m(m-1)a2+n(n-1)b2≤0,即m2-m+n2-n≤0.又m2+n2=1,故m+n≥1.而a+b-c=(1-m)a+(1-n)b,故(a+b-c)2=[(1-m)a+(1-n)b]=(1-m)2a2+2(1-m)(1-n)a·b+(1-n)2b2=(1-m)2+(1-n)2=m2+n2-2(m+n)+2=3-2(m+n).又m+n≥1,所以3-2(m+n)≤1.故|a +b -c|2≤1,即|a +b -c|≤1. [答案] B 解法三:坐标法 [思路分析][解析] 因为|a|=|b|=1,a·b =0, 所以〈a ,b 〉=π2.设OA →=a ,OB →=b ,OC →=c , 因为a⊥b ,所以OA ⊥OB .分别以OA ,OB 所在的直线为x 轴、y 轴建立平面直角坐标系,如图所示,则a =(1,0),b =(0,1),则A (1,0),B (0,1).设C (x ,y ),则c =(x ,y ),且x 2+y 2=1. 则a -c =(1-x ,-y ),b -c =(-x,1-y ), 故由(a -c )·(b -c )≤0,得 (1-x )×(-x )+(-y )×(1-y )≤0, 整理,得1-x -y ≤0,即x +y ≥1. 而a +b -c =(1-x,1-y ),则|a +b -c |= 1-x 2+ 1-y 2=3-2 x +y . 因为x +y ≥1,所以3-2(x +y )≤1,即|a +b -c|≤1. 所以|a +b -c |的最大值为1. [答案] B解法四:三角函数法 [思路分析][解析] 因为|a|=|b|=1,a·b =0, 所以〈a ,b 〉=π2.设OA →=a ,OB →=b ,OC →=c , 因为a⊥b ,所以OA ⊥OB .分别以OA ,OB 所在的直线为x 轴、y 轴建立平面直角坐标系,如图所示,则a=(1,0),b=(0,1),则A(1,0),B(0,1).因为|c|=1,设∠COA=θ,所以C点的坐标为(cos θ,sin θ).则a-c=(1-cos θ,-sin θ),b-c=(-cos θ,1-sin θ),故由(a-c)·(b-c)≤0,得(1-cos θ)×(-cos θ)+(-sin θ)×(1-sin θ)≤0,整理,得sin θ+cos θ≥1.而a+b-c=(1-cos θ,1-sin θ),则|a+b-c|= 1-cos θ 2+ 1-sin θ 2=3-2 sin θ+cos θ .因为sin θ+cos θ≥1,所以3-2(sin θ+cos θ)≤1,即|a+b-c|≤1.所以|a+b-c|的最大值为1.[答案] B解法五:数形结合法[思路分析][解析] 设OA →=a ,OB →=b ,OC →=c , 因为|a|=|b|=|c|=1,所以点A ,B ,C 在以O 为圆心、1为半径的圆上.易知CA →=a -c ,CB →=b -c ,|c |=|OC →|. 由(a -c )·(b -c )≤0,可知CA →·CB →≤0,则π2≤∠BCA <π(因为A ,B ,C 在以O 为圆心的圆上,所以A ,B ,C 三点不能共线,即∠BCA ≠π),故点C 在劣弧AB 上. 由a·b =0,得OA ⊥OB , 设OD →=a +b ,如图所示,因为a +b -c =OD →-OC →=CD →, 所以|a +b -c |=|CD →|,即|a +b -c |为点D 与劣弧AB 上一点C 的距离,显然,当点C 与A 或B 点重合时,CD 最长且为1,即|a +b -c |的最大值为1. [答案] B。
1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题. 2.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数),解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题. 【知识拓展】1.若G 是△ABC 的重心,则GA →+GB →+GC →=0.2.若直线l 的方程为Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若AB →∥AC →,则A ,B ,C 三点共线.( √ )(2)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( × ) (3)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )(4)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ )1.已知向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 答案 4解析 设a 与b 夹角为α, ∵|2a -b |2=4a 2-4a·b +b 2 =8-4|a||b |cos α=8-8cos α, ∵α∈[0,π],∴cos α∈[-1,1], ∴8-8cos α∈[0,16], 即|2a -b |2∈[0,16], ∴|2a -b |∈[0,4]. ∴|2a -b |的最大值为4.2.设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△AOB 与△AOC 的面积之比为________. 答案 1∶2解析 设D 为AC 的中点, 如图所示,连结OD ,则OA →+OC →=2OD →. 又OA →+OC →=-2OB →,所以OD →=-OB →,即O 为BD 的中点,从而容易得△AOB 与△AOC 的面积之比为1∶2.3.(2016·泰州模拟)平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是____________(填“内心”、“外心”、“重心”或“垂心”). 答案 x +2y -4=0解析 由OP →·OA →=4,得(x ,y )·(1,2)=4, 即x +2y =4.4.在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足AP →=2PM →,则P A →·(PB →+PC →)=________. 答案 -49解析 因为M 是BC 的中点,所以PB →+PC →=2PM →, 所以P A →·(PB →+PC →)=-23AM →·23AM →=-49.5.如图,△ABC 是边长为23的等边三角形,P 是以C 为圆心,1为半径的圆上的任意一点,则(AP →·BP →)min =__________.答案 1解析 取AB 的中点D ,连结CD 、CP (图略). 所以AP →·BP →=(AC →+CP →)·(BC →+CP →) =AC →·BC →+CP →·(AC →+BC →)+CP →2 =(23)2×12-CP →·2CD →+1=7-6cos 〈CP →,CD →〉,当cos 〈CP →,CD →〉=1时,AP →·BP →取得最小值1.题型一 向量在平面几何中的应用例1 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________.(填“内心”“外心”“重心”或“垂心”)答案 (1)12(2)重心解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →)=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝⎛⎭⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12. (2)由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究在本例(2)中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的______.(填“内心”“外心”“重心”“垂心”) 答案 内心解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC的内心.思维升华 向量与平面几何综合问题的解法 (1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.(1)在△ABC 中,已知向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 的形状为__________三角形.(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________. 答案 (1)等边 (2)5解析 (1)AB →|AB →|,AC →|AC →|分别为平行于AB →,AC →的单位向量,由平行四边形法则可知AB →|AB →|+AC →|AC →|为∠BAC 的平分线.因为(AB →|AB →|+AC →|AC →|)·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|·⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC =12,所以cos ∠BAC =12,又0<∠BAC <π,故∠BAC =π3,所以△ABC 为等边三角形.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =y .则D (0,0),A (2,0),C (0,a ),B (1,a ), P (0,y ),P A →=(2,-y ),PB →=(1,a -y ), 则P A →+3PB →=(5,3a -4y ), 即|P A →+3PB →|2=25+(3a -4y )2, 由点P 是腰DC 上的动点,知0≤y ≤a . 因此当y =34a 时,|P A →+3PB →|2的最小值为25.故|P A →+3PB →|的最小值为5. 题型二 向量在解析几何中的应用例2 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则yx =________________________________________________________________________. 答案 (1)2x +y -3=0 (2)±3解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =±3.思维升华 向量在解析几何中的“两个”作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a·b =0(a ,b 为非零向量),a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较简捷的方法.(2016·盐城模拟)如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值为________.答案 -92解析 ∵圆心O 是直径AB 的中点,∴P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →, ∵PO →与PC →共线且方向相反,∴当大小相等时,乘积最小.由条件知,当PO =PC =32时,最小值为-2×32×32=-92.题型三 向量的其他应用命题点1 向量在不等式中的应用 例3 已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是________. 答案 18解析 因为OA →=(x,1),OB →=(2,y ),所以OA →·OB →=2x +y ,令z =2x +y ,依题意,不等式组所表示的可行域如图中阴影部分所示(含边界),观察图象可知,当目标函数z =2x +y 过点C (1,1)时,z max =2×1+1=3,目标函数z =2x +y 过点F (a ,a )时,z min =2a +a =3a ,所以3=8×3a ,解得a =18.命题点2 向量在解三角形中的应用例4 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则△ABC 最小角的正弦值等于________. 答案 35解析 ∵20aBC →+15bCA →+12cAB →=0, ∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0, ∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴△ABC 最小角为角A ,∴cos A =b 2+c 2-a 22bc =169a 2+259a 2-a 22×43a ×53a=45,∴sin A =35.思维升华 利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.(2016·扬州模拟)如图,在同一平面内,点A 位于两平行直线m ,n 的同侧,且A到m ,n 的距离分别为1,3.点B ,C 分别在m ,n 上,|AB →+AC →|=5,则AB →·AC →的最大值是______.答案214解析 方法一 以直线n 为x 轴,过A 且垂直于n 的直线为y 轴,建立如图所示的直角坐标系,则A (0,3),B (x 1,2),C (x 2,0),从而AB →=(x 1,-1),AC →=(x 2,-3),则AB →·AC →=x 1x 2+3,又因为|AB →+AC →|=5,即(x 1+x 2)2+16=5,故(x 1+x 2)2=9≥4x 1x 2,从而x 1x 2≤94,此时AB →·AC→=x 1x 2+3≤214,当且仅当x 1=x 2时等号成立.方法二 设P 为BC 的中点,则AB →+AC →=2AP →, 从而由|AB →+AC →|=5得|AP →|=52,又AB →·AC →=(AP →+PB →)·(AP →+PC →) =AP →2-PB →2=254-PB →2,因为|BC →|≥2,所以PB →2≥1,故AB →·AC →≤254-1=214,当且仅当|BC →|=2时等号成立.三审图形抓特点典例 (2016·苏州一模)已知A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2一个周期内的图象上的四个点,如图所示,A ⎝⎛⎭⎫-π6,0,B 为y 轴上的点,C 为图象上的 最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值分别为______________.E 为函数图象的对称中心,C 为图象最低点――――――――→作出点C 的对称点MD 、B 两点对称 CD 和MB 对称――――――→CD →在x 轴上的投影是π12BM 在x 轴上的投影OF =π12――――→A (-π6,0)AF =π4―→T =π―→ω=2――――――――→y =sin (2x +φ)和y =sin 2x 图象比较φ2=π6―→φ=π3解析 由E 为该函数图象的一个对称中心,作点C 的对称点M ,作MF ⊥x 轴,垂足为F ,如图.B 与D 关于点E 对称,CD →在x 轴上的投影为π12,知OF =π12.又A ⎝⎛⎭⎫-π6,0,所以AF =T 4=π2ω=π4,所以ω=2.同时函数y =sin(ωx +φ)图象可以看作是由y =sin ωx 的图象向左平移得到,故可知φω=φ2=π6,即φ=π3.答案 2,π31.(教材改编)已知平面向量a ,b ,满足|a |=3,|b |=2,a·b =-3,则|a +2b |=________. 答案7解析 由题意可得|a +2b |=(|a +2b |)2 =a 2+4a·b +4b 2=7.2.(教材改编)已知|a |=1,|b |= 2 ,且a ⊥(a -b ),则向量a 与向量b 的夹角为________. 答案 π4解析 ∵a ⊥(a -b ),∴a ·(a -b )=a 2-a·b =0, ∴a·b =a 2,∵|a |=1,|b |=2, ∴cos 〈a ,b 〉=a·b |a||b |=a 2|a ||b |=22,又∵〈a ,b 〉∈[0,π], ∴向量a 与向量b 的夹角为π4.3.(2016·南京模拟)已知向量a =(cos α,-2),b =(sin α,1)且a ∥b ,则sin 2α=________. 答案 -45解析 由a ∥b 得cos α+2sin α=0, ∴cos α=-2sin α,又sin 2α+cos 2α=1, ∴5sin 2α=1,sin 2α=15,cos 2α=45,sin 2α=2sin αcos α=-cos 2α=-45.4.设△ABC 的三个内角为A ,B ,C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m·n =1+cos(A +B ),则C =________. 答案2π3解析 依题意得3sin A cos B +3cos A sin B =1+cos(A +B ),3sin(A +B )=1+cos(A +B ),3sin C +cos C =1,2sin(C +π6)=1,sin(C +π6)=12.又π6<C +π6<7π6,因此C +π6=5π6,C =2π3. 5.已知点A (-2,0),B (3,0),动点P (x ,y )满足P A →·PB →=x 2,则点P 的轨迹是________. 答案 抛物线解析 ∵P A →=(-2-x ,-y ),PB →=(3-x ,-y ), ∴P A →·PB →=(-2-x )(3-x )+y 2=x 2, ∴y 2=x +6,即点P 的轨迹是抛物线.6.已知A (-1,cos θ),B (sin θ,1),若|OA →+OB →|=|OA →-OB →|(O 为坐标原点),则锐角θ=________. 答案 π4解析 方法一 由向量的几何意义可知,OA →+OB →是以OA 、OB 为邻边作平行四边形OADB的对角线向量OD →,OA →-OB →则是对角线向量BA →,于是对角线相等的平行四边形为矩形,故OA ⊥OB .因此OA →·OB →=0,所以cos θ-sin θ=0,即sin θ=cos θ, 又因为θ为锐角,所以θ=π4.方法二 ∵OA →+OB →=(sin θ-1,cos θ+1), OA →-OB →=(-sin θ-1,cos θ-1),由|OA →+OB →|=|OA →-OB →|可得(sin θ-1)2+(cos θ+1)2=(-sin θ-1)2+(cos θ-1)2, 整理得sin θ=cos θ,于是锐角θ=π4.7.在菱形ABCD 中,若AC =4,则CA →·AB →=________. 答案 -8解析 设∠CAB =θ,AB =BC =a ,由余弦定理得:a 2=16+a 2-8a cos θ,∴a cos θ=2, ∴CA →·AB →=4×a ×cos(π-θ)=-4a cos θ=-8.8.(2016·南京模拟)已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π3.以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为______. 答案3解析 ∵|a +b |2-|a -b |2=4a·b =4|a ||b |cos π3=4>0,∴|a +b |>|a -b |,又|a -b |2=a 2+b 2-2a·b =3, ∴|a -b |= 3.9.设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于________. 答案 2 解析 |x ||b |=|x ||x e 1+y e 2|=|x |x 2+y 2+3xy =1x 2+y 2+3xyx 2=1(y x )2+3y x+1=1(y x +32)2+14.因为(y x +32)2+14≥14,所以|x ||b |的最大值为2.10.(2016·常州期末)如图,直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,动点P 在边BC 上,且满足AP →=mAB→+nAD →(m ,n 均为正实数),则1m +1n的最小值为________.答案7+434解析 方法一 建立如图所示的平面直角坐标系,则A (0,0),B (4,0),D (0,4),C (1,4).又k BC =-43,故BC :y =-43(x -4).又AP →=mAB →+nAD →,AB →=(4,0),AD→=(0,4),所以AP →=(4m,4n ),故P (4m,4n ),又点P 在直线BC 上,即3n +4m =4,即4(1m +1n )=(3n +4m )·(1m +1n )=7+3n m +4mn≥7+212=7+43,所以(1m +1n )min =7+434,当且仅当⎩⎪⎨⎪⎧3n 2=4m 2,3n +4m =4,即m =4-23,n =83-123时取等号(因为m ,n 均为正实数).方法二 因为AP →=mAB →+nAD →, 所以AP →=mAB →+n (AC →+CD →)=mAB →+nAC →-n 4AB →=(m -n 4)AB →+nAC →.又C ,P ,B 三点共线,故m -n 4+n =1,即m +3n4=1,以下同方法一.11.已知向量a =(sin(α+π6),3),b =(1,4cos α),α∈(0,π2).(1)若a ⊥b ,求tan α的值;(2)若a ∥b ,求α的值. 解 (1)因为a ⊥b ,所以sin(α+π6)+12cos α=0,即32sin α+12cos α+12cos α=0, 即32sin α+252cos α=0, 又由题意得cos α≠0,所以tan α=-2533.(2)若a ∥b ,则4cos αsin(α+π6)=3,即4cos α(32sin α+12cos α)=3, 所以3sin 2α+cos 2α=2. 所以sin(2α+π6)=1.因为α∈(0,π2),所以2α+π6∈(π6,7π6),所以2α+π6=π2,即α=π6.12.已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. (1)证明 由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)解 因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1.由此得,cos α=cos(π-β), 由0<β<π,得0<π-β<π, 又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以α=5π6,β=π6.13.在△ABC 中,设内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos A ,sin A ),向量n =(2-sin A ,cos A ),若|m +n |=2. (1)求内角A 的大小;(2)若b =42,且c =2a ,求△ABC 的面积.解 (1)|m +n |2=(cos A +2-sin A )2+(sin A +cos A )2=4+22(cos A -sin A )=4+4cos(π4+A ).∵4+4cos(π4+A )=4,∴cos(π4+A )=0.∵A ∈(0,π),∴π4+A =π2,A =π4.(2)由余弦定理知:a 2=b 2+c 2-2bc cos A , 即a 2=(42)2+(2a )2-2×42×2a cos π4,解得a =42,∴c =8.∴S △ABC =12bc sin A =12×42×8×22=16.14.设向量a =(cos ωx -sin ωx ,-1),b =(2sin ωx ,-1),其中ω>0,x ∈R ,已知函数f (x )=a·b 的最小正周期为4π. (1)求ω的值;(2)若sin x 0是关于t 的方程2t 2-t -1=0的根,且x 0∈⎝⎛⎭⎫-π2,π2,求f (x 0)的值. 解 (1)f (x )=a·b =(cos ωx -sin ωx ,-1)·(2sin ωx ,-1)=2sin ωx cos ωx -2sin 2ωx +1 =sin 2ωx +cos 2ωx =2sin ⎝⎛⎭⎫2ωx +π4. 因为T =4π,所以2π2ω=4π,ω=14.(2)方程2t 2-t -1=0的两根为t 1=-12,t 2=1.因为x 0∈⎝⎛⎭⎫-π2,π2,所以sin x 0∈(-1,1), 所以sin x 0=-12,即x 0=-π6.又由(1)知f (x 0)=2sin ⎝⎛⎭⎫12x 0+π4, 所以f ⎝⎛⎭⎫-π6=2sin ⎝⎛⎭⎫-π12+π4=2sin π6=22.。
§5.4平面向量应用举例考纲展示► 1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题与其他一些实际问题.考点1向量在平面几何中的应用向量在几何中的应用a=(x1,y1),b=(x2,y2),A(x1,y1),B(x2,y2).(1)证明线线平行或点共线问题,常用共线向量定理:a∥b⇔a=λb⇔____________(b≠0).(2)证明垂直问题,常用数量积的运算性质:a⊥b⇔a·b=0⇔____________.(3)平面几何中夹角与线段长度计算:a·b①cos a,b==________________;|a||b|→→②|AB|=|AB|=|AB|2=____________.答案:(1)x1y2-x2y1=0(2)x1x2+y1y2=0x1x2+y2y2(3)①x21+y21·x2+y2②x2-x12+y2-y12[典题1]已知O是平面上的一定点,A,B,C是平面上不共线的三个动点,若动点P满→→→→足OP=OA+λ(AB+AC),λ∈(0,+∞),则点P的轨迹一定通过△ABC的() A.内心B.外心C.重心D.垂心[答案] C→→→→→→→→→→→[解析]由OP=OA+λ(AB+AC),得OP-OA=λ(AB+AC),即AP=λ(AB+AC).根据平行→→→ 四边形法则知,AB+AC是△ABC的中线AD(D为BC的中点)所对应向量AD的2倍,所以点P的- 1 -轨迹必过△ABC的重心.→→ABAC→→( |)[题点发散1]在本例中,若动点P满足OP=OA+λ+,λ∈(0,+∞),则如→→|AB| |AC何选择?答案:A→→ABAC→→( |)解析:由条件,得OP-OA=λ+,|AB| |AC→→→→ABAC→( |)即AP=λ·+.|AB| |AC→→→→→→AB AC ABAC→→而和分别表示平行于AB,AC的单位向量,故+平分∠BAC,→→→→|AB| |AC| |AB| |AC|→即AP平分∠BAC,所以点P的轨迹必过△ABC的内心.→→ABAC→→( |cos C)[题点发散2]在本例中,若动点P满足OP=OA+λ+,λ∈(0,+→→|AB|cos B|AC∞),则如何选择?答案:D解析:由条件,得→→ABAC→( |cos C)AP=λ+,→→|AB|cos B|AC→→→→AB·BC AC·BC→→( |cos C)从而AP·BC=λ+→→|AB|cos B|AC- 2 -→→|AB||BC|cos180°-B→→|AC||BC|cos C=λ·+λ·→|AB|cos B→|AC|cos C=0,→→∴AP⊥BC,则动点P的轨迹一定通过△ABC的垂心.[点石成金]向量与平面几何综合问题的解法(1)坐标法:把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法:适当选取一组基底,利用向量间的关系构造关于未知量的方程进行求解.已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,BC=3BE,DC=→→λDF.若AE·AF=1,则λ的值为________.答案:2→→→→1→ 解析:解法一:如图,AE=AB+BE=AB+BC,3→→ 1 → 1→→→→ AF=AD+DF=AD+DC=BC+AB,λλ→→→→→→1 1∴AE·=(AB+)·(BC+AB)AF BC3 λ1→→ 1 →→ 1=( ·+2+ 21+3λ)AB BC AB BCλ 31 4 4=(1+3λ)×2×2×cos120°++=1,λ 3解得λ=2.解法二:建立如图所示平面直角坐标系.- 3 -由题意知,A (0,1),C (0,-1),B (- 3,0),D ( 3,0).由 BC =3BE ,DC =λDF 可求,2 31点 E ,F 的坐标分别为 E(3), - ,-31 1F (3( λ)λ),1- ,-→ →2 3 41 1 1 4 1 ∴AE ·AF = - ,- · 1- ,- =-21- + 1+ =1,(3) (3( λ)-1) ( λ) 3( λ)3λ解得 λ=2.考点 2 平面向量在三角函数中的应用[典 题 2] 在 △ ABC 中 , 角 A , B , C 所 对 的 边 分 别 为 a , b , c , 已 知 向 量 m =(sin A ,cos 2 AA A 2 → → 2) (,-cos ,n = cos ,且 2m·n +|m |= , · =1.2)AB AC22(1)求角 A 的大小; (2)求△ABC 的面积 S .A A Aπ[解] (1)因为 2m·n =2sin cos -2cos 2 =sin A -(cos A +1)= sin4)-1,2(A -2 22 π2π 1又|m|=1,所以 2m·n +|m |=2sin(= ,即 sin= .A-4) 2 ( 4 )A-2因为0<A<π,ππ3π所以-<A-<,4 4 4ππ5π所以A-=,即A=.4 6 125πππ(2)cos A=cos 12=cos( +4 )6- 4 -π π π =cos cos -sin sin 6 4 6 π 46- 2 = , 4 → →因为AB ·AC =bc cos A =1, 所以 bc = 6+ 2.5ππ π 6+ 2又 sin A =sin=sin 4)=,12(+641 1 6+2 2+3 所以△ABC 的面积 S = bc sin A = ( 6+ 2)× = . 2 24 2[点石成金] 1.解决平面向量与三角函数的交汇问题,关键是准确利用向量的坐标运算化 简已知条件,将其转化为三角函数中的有关问题解决.2.熟练掌握向量数量积的坐标运算公式、几何意义、向量的模、夹角的坐标运算公式以 及三角恒等变换、正余弦定理等知识.1.已知 a ,b ,c 为△ABC 的三个内角 A ,B ,C 的对边,向量 m =( 3,-1),n =(cos A ,sinA ).若 m⊥n ,且a cos B +b cos A =c sin C ,则角 A ,B 的大小分别为( )π π 2π π A. , B. , 6 3 3 6 π π π π C. , D. , 3 6 3 3答案:C解析:由 m⊥n ,得 m·n =0, 即 3cos A -sin A =0,π即 2cos(6)=0.A +π π 7π ∵ <A + < , 6 6 6 π π π ∴A + = ,即 A = . 6 2 3又 a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c , 且 a cos B +b cos A =c sin C , 即 c =c sin C ,- 5 -∴sin C=1,又C∈(0,π),π∴C=,2πππ∴B=π--=.3 2 62.△ABC的三个内角A,B,C所对的边长分别是a,b,c,设向量m=(a+b,sin C),n =( 3a+c,sin B-sin A),若m∥n,则角B的大小为________.5π答案:6解析:∵m∥n,∴(a+b)(sin B-sin A)-( 3a+c)sin C=0,a b c又∵==,sin A sin B sin C化简,得a 2+c2-b2=-3ac,a 2+c2-b2 3∴cos B==-.2ac 25π∵0<B<π,∴B=.6考点3向量在解析几何中的应用[典题3]已知平面上一定点C(2,0)和直线l:x=8,P为该平面上一动点,作PQ⊥l,→→→→1 1垂足为Q,且( ·=0.PC+PQ-PQ) (PC)2 2(1)求动点P的轨迹方程;→→(2)若EF为圆N:x2+(y-1)2=1的任意一条直径,求PE·PF的最值.[解](1)设P(x,y),则Q(8,y).→→→→1 1由( )·( )=0,得PC+PQ PC-PQ2 2→ 1→|PC|2-|PQ|2=0,41即(x-2)2+y2-(x-8)2=0,4x2 y2化简得+=1.16 12x2 y2所以点P在椭圆上,其方程为+=1.16 12- 6 -→→→→→→ (2)因为PE·PF=(NE-NP)·(NF-NP)→→→→→→→ =(-NF-NP)·(NF-NP)=NP2-NF2=NP2-1,x2 y2P是椭圆+=1上的任意一点,16 12x20y204y20设P(x0,y0),则有+=1,即x=16-,0216 12 3→1 1又N(0,1),所以NP2=x+(y0-1)2=-y-2y0+17=-(y0+3)2+20.20023 3因为y0∈[-2 3,2 3 ],→所以当y0=-3时,NP2取得最大值20,→→故PE·PF的最大值为19;→→→当y0=2 3时,NP2取得最小值为13-4 (此时x0=0),故·的最小值为12-4 .3 PE PF 3[点石成金]向量在解析几何中的作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a⊥b⇔a·b=0;a∥b⇔a=λb(b≠0),可解决垂直、平行问题.特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较可行的方法.x2→→ 如图所示,直线x=2与双曲线C:-y2=1的渐近线交于E1,E2两点.记=e1,=OE1 OE24→e2,任取双曲线C上的点P,若OP=a e1+b e2(a,b∈R),则ab=()- 7 -1A. B.141 1C. D.2 8答案:A解析:由题意易知,E1(2,1),E2(2,-1),∴e1=(2,1),e2=(2,-1),→故OP=a e1+b e2=(2a+2b,a-b).又点P在双曲线上,2a+2b2∴-(a-b)2=1,41整理可得,4ab=1,∴ab=.4[方法技巧] 1.用向量解决问题时,应注意数形结合思想和转化与化归思想的应用.一般是先画出向量示意图,把问题转化为向量问题解决.2.牢记以下4个结论→→→→ 1 →→→(1)重心:若点G是△ABC的重心,则GA+GB+GC=0或PG=(PA+PB+PC)(其中P为平面3→→→内任意一点);反之,若GA+GB+GC=0,则点G是△ABC的重心.→→→→→→→→→→→ (2)垂心:若点H是△ABC的垂心,则HA·HB=HB·HC=HC·HA或HA2+BC2=HB2+CA2=HC→→→→→→→2+AB2;反之,HA·HB=HB·HC=HC·HA,则点H是△ABC的垂心.→→→→→→→ (3)内心:若点I是△ABC的内心,则有|BC|·IA+|CA|·IB+|AB|·IC=0;反之,若|BC- 8 -→→→→→|·IA+|CA|·IB+|AB|·IC=0,则点I是△ABC的内心.→→→→→→→→→(4)外心:若点O是△ABC的外心,则(OA+OB)·BA=(OB+OC)·CB=(OC+OA)·AC=0或→→→→→→|OA|=|OB|=|OC|;反之,若|OA|=|OB|=|OC|,则点O是△ABC的外心.[易错防范] 1.对三角形“四心”的意义不明,向量关系式的变换出错,向量关系式表达的向量之间的相互位置关系判断错误等.2.注意向量夹角和三角形内角的关系,两者并不等价.3.注意向量共线和两直线平行的关系;两向量a,b夹角为锐角和a·b>0不等价.4.利用向量解决解析几何中的平行与垂直,可有效解决因斜率不存在使问题漏解的情况.真题演练集训→→→→→→→ 1.[2016·四川卷]在平面内,定点A,B,C,D满足|DA|=|DB|=|DC|,DA·DB=DB·DC→→→→→→=DC·DA=-2,动点P,M满足|AP|=1,PM=MC,则|BM|2的最大值是()43 49A. B.4 437+6 3 37+2 33C. D.4 4答案:B→→→解析:由|DA|=|DB|=|DC|知,D为△ABC的外心.→→→→→→由DA·DB=DB·DC=DC·DA知,D为△ABC的内心,所以△ABC为正三角形,易知其边长1 71 → 1为2 3.取AC的中点E,因为M是PC的中点,所以EM=AP=,所以| |max=|BE|+=,BM2 2 2 2→49则|BM| =,故选B.m a2x4→→→ 1→2.[2015·福建卷]已知AB⊥AC,|AB|=,|AC|=t.若点P是△ABC所在平面内的一点,t→→AB4AC→→→且AP=+,则PB·PC的最大值等于()→→|AB| |AC|A.13 B.15C.19 D.21- 9 -答案:A→ →解析:∵ AB ⊥AC ,故以 A 为原点,AB ,AC 所在直线为坐标轴建立平面直角坐标系.不妨1→( t )0,14t ,0设 B( t ),C (t,0),则= + =(4,1),0, AP1 tt故点 P 的坐标为(4,1). → →11PB ·=(-1)·(t -4,-1)=-4t - +17PC -4,tt1=-(+17≤-2 +17=13.4t +t)41 1当且仅当 4t = ,即 t = 时(负值舍去)取得最大值 13. t 23.[2015·天津卷]在等腰梯形 ABCD 中,已知 AB ∥DC ,AB =2,BC =1,∠ABC =60°.动 → → → 1 → → →点 E 和 F 分别在线段 BC 和 DC 上,且BE =λBC ,DF = DC ,则AE ·AF 的最小值为________.9λ29答案: 18解析:在等腰梯形 ABCD 中,由 AB ∥DC ,AB =2,BC =1,∠ABC =60°,可得 AD =DC =1. 建立平面直角坐标系如图所示,3 31 3则 A (0,0),B (2,0),C(,D ,, 2) ( , 2)22→3 31 3BC2) (-= -(2,0)=,( ,,2)22→3 31 3 DC =(-=(1,0)., 2) (2), 2 2→→13∵ BE =λ =λ, λ),BC(- 2213∴ E (2-.λ, λ)22- 10 -→ 1→1 1 1 3∵DF=DC=,∴F2).( ,0) (+,9λ9λ 2 9λ→→1 3 1 1∴AE·=λ,λ)·( +,AF(2-2 2 2 9λ1 1 1 3 172 1=( ++λ=++λ2 2 4 18 9λ 22-λ)(9λ)32)17 2 1 29≥+2 ·λ=,18 9λ 2 182 1 2→→29 当且仅当=λ,即λ=时等号成立,符合题意.∴AE·AF的最小值为.9λ 2 3 18 4.[2016·江苏卷]如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,→→→→→→BA·CA=4,BF·CF=-1,则BE·CE的值是________.7答案:8解析:解法一:以D为坐标原点,BC所在直线为x轴,线段BC的中垂线为y轴建立平面直角坐标系,设B(-a,0),C(a,0),A(b,c),2 2 1 1→则E( ,F,=(b+a,c),b,c) (b,c) BA3 3 3 3→→b cCA=(b-a,c),BF=( 3),+a,3→→b c 2 2CF=( 3),BE=( b+a,c),-a,3 3 3→2 2CE b-a,c)=( ,3 3→→由BA·CA=b2-a2+c2=4,- 11 -→→b2c2BF·CF=-a2+=-1,9 945 13解得b2+c2=,a2=,8 8→→ 4 7则BE·CE=(b2+c2)-a2=.9 8→→→→→→ 解法二:设BD=a,DF=b,则BA·CA=(a+3b)·(-a+3b)=9|b|2-|a|2=4,BF·CF=13 5(a+b)·(-a+b)=|b|2-|a|2=-1,解得|a|2=,|b|2=,则BE·CE=(a+2b)·(-a+8 8→→72b)=4|b|2-|a|2=.8课外拓展阅读巧解平面向量高考题的5种方法向量是既有大小又有方向的量,具有几何和代数形式的“双重性”,常作为工具来解决其他知识模块的问题.在历年高考中都会对该部分内容进行考查,解决这些问题多可利用平面向量的有关知识进行解决.基于平面向量的双重性,一般可以从两个角度进行思考:一是利用其“形”的特征,将其转化为平面几何的有关知识进行解决;二是利用其“数”的特征,通过坐标转化为代数中的有关问题进行解决.下面对辽宁省的一道高考试题采用5种不同的求解方法进行解答.[典例]若a,b,c均为单位向量,且a·b=0,(a-c)·(b-c)≤0,则|a+b-c|的最大值为()A. 2-1 B.1C. 2 D.2解法一:目标不等式法[思路分析]- 12 -展开(a-c)·(b-c)≤0,得a·b-(a+b)·c+c2≤0,即0-(a+b)·c+1≤0,整理,得(a+b)·c≥1.而|a+b-c|2=(a+b)2-2(a+b)·c+c2=3-2(a+b)·c,所以3-2(a+b)·c≤3-2×1=1.所以|a+b-c|2≤1,即|a+b-c|≤1.[答案] B解法二:向量基底法[思路分析][解析]取向量a,b作为平面向量的一组基底,设c=m a+n b.由|c|=1,即|m a+n b|=1,可得(m a)2+(n b)2+2mn a·b=1,由题意知,|a|=|b|=1,a·b=0.整理,得m2+n2=1.而a-c=(1-m)a-n b,b-c=-m a+(1-n)b,故由(a-c)·(b-c)≤0,得[(1-m)a-n b]·[-m a+(1-n)b]≤0,展开,得m(m-1)a2+n(n-1)b2≤0,即m2-m+n2-n≤0.又m2+n2=1,故m+n≥1.而a+b-c=(1-m)a+(1-n)b,故(a+b-c)2=[(1-m)a+(1-n)b]=(1-m)2a2+2(1-m)(1-n)a·b+(1-n)2b2=(1-m)2+(1-n)2=m2+n2-2(m+n)+2=3-2(m+n).又m+n≥1,所以3-2(m+n)≤1.故|a+b-c|2≤1,即|a+b-c|≤1.[答案] B解法三:坐标法[思路分析][解析]因为|a|=|b|=1,a·b=0,π所以〈a,b〉=.2→→→ 设OA=a,OB=b,OC=c,因为a⊥b,所以OA⊥OB.分别以OA,OB所在的直线为x轴、y轴建立平面直角坐标系,如图所示,则a=(1,0),b=(0,1),则A(1,0),B(0,1).设C(x,y),则c=(x,y),且x2+y2=1.则a-c=(1-x,-y),b-c=(-x,1-y),故由(a-c)·(b-c)≤0,得(1-x)×(-x)+(-y)×(1-y)≤0,整理,得1-x-y≤0,即x+y≥1.而a+b-c=(1-x,1-y),则|a+b-c|=1-x2+1-y2=3-2x+y.因为x+y≥1,所以3-2(x+y)≤1,即|a+b-c|≤1.所以|a+b-c|的最大值为1.[答案] B解法四:三角函数法[思路分析][解析]因为|a|=|b|=1,a·b=0,π所以〈a,b〉=.2→→→ 设OA=a,OB=b,OC=c,因为a⊥b,所以OA⊥OB.分别以OA,OB所在的直线为x轴、y轴建立平面直角坐标系,如图所示,则a=(1,0),b=(0,1),则A(1,0),B(0,1).因为|c|=1,设∠COA=θ,所以C点的坐标为(cos θ,sin θ).则a-c=(1-cos θ,-sin θ),b-c=(-cos θ,1-sin θ),故由(a-c)·(b-c)≤0,得(1-cos θ)×(-cos θ)+(-sin θ)×(1-sin θ)≤0,整理,得sin θ+cos θ≥1.而a+b-c=(1-cos θ,1-sin θ),则|a+b-c|=1-cos θ2+1-sin θ2=3-2sin θ+cos θ.因为sin θ+cos θ≥1,所以3-2(sin θ+cos θ)≤1,即|a+b-c|≤1.所以|a+b-c|的最大值为1.[答案] B解法五:数形结合法[思路分析]→→→[解析]设OA=a,OB=b,OC=c,因为|a|=|b|=|c|=1,所以点A,B,C在以O为圆心、1为半径的圆上.→→→ 易知CA=a-c,CB=b-c,|c|=|OC|.由(a-c)·(b-c)≤0,→→ 可知CA·CB≤0,π则≤∠BCA<π(因为A,B,C在以O为圆心的圆上,所以A,B,C三点不能共线,即∠2BCA≠π),故点C在劣弧AB上.由a·b=0,得OA⊥OB,→设OD=a+b,如图所示,→→→ 因为a+b-c=OD-OC=CD,→ 所以|a+b-c|=|CD|,即|a+b-c|为点D与劣弧AB上一点C的距离,显然,当点C与A或B点重合时,CD最长且为1,即|a+b-c|的最大值为1. [答案] B。
素质能力检测(五)一、选择题(每小题5分,共60分)1.点M (4,-3)关于点N (5,-6)的对称点是 A.(4,3) B.(29,0) C.(-21,3)D.(6,-9)解析:设M 关于N 的对称点为M '(x ,y ),MN =M N ,把坐标代入即可. 答案:D2.有三个命题:①向量AB 与CD 是共线向量,则A 、B 、C 、D 必在同一直线上;②向量a 与向量b 平行,则a 与b 的方向相同或相反;③四边形ABCD 是平行四边形的充要条件是=.其中正确的是A.②B.③C.①③D.②③解析:①与共线,AB 与CD 也可以平行.②中a 与b 也可能为0.选B. 答案:B3.已知A (1,2),B (4,2),则向量按向量a =(-1,3)平移后得到的向量坐标是 A.(3,0) B.(3,5) C.(-4,3)D.(2,3)解析:=(3,0),向量按任何方向平移后坐标不变. 答案:A4.已知|a |=4,|b |=8且a 与2b -a 互相垂直,则向量a 与b 的夹角是 A.arccos 41 B.π-arccos 41 C.3πD.6π 解析:由a ⊥(2b -a )得a ·(2b -a )=0,∴2|a ||b |cos θ-|a |2=0.∴cos θ=41. 又0≤θ≤π,∴θ=arccos41. 答案:A5.△ABC 中,已知b =10,c =15,C =30°,则此三角形的解的情况是 A.一解 B.两解 C.无解 D.无法确定 解析:由b <c 得B <C ,B 必为小于30°的锐角. 答案:A6.下列命题:①k ∈R ,且k b =0,则k =0或b =0; ②若a ·b =0,则a =0或b =0;③若不平行的两个非零向量a 、b ,满足|a |=|b |,则(a +b )·(a -b )=0; ④若a 与b 平行,则|a ·b |=|a ||b |; ⑤a ∥b ,b ∥c ,则a ∥c . 其中真命题的个数是 A.1 B.2 C.3 D.4 解析:①正确;②错误,若a ⊥b ,则a ·b =0;③正确,因为(a +b )·(a -b )=|a |2-|b |2=0;④正确,可设a =λb ,则a ·b =λb ·b =λ|b |2;⑤错误,若b =0,则对任意a 与c ,均有a ∥b ,b ∥c 成立.答案:C7.已知点P (cos α,sin α),Q (cos β,sin β),则|PQ |的最大值是 A.2B.2C.4D.不存在解析:|PQ |2=(cos β-cos α)2+(sin β-sin α)2=2-2(cos αcos β+sin αsin β)= 2-2cos (α-β),故当cos (α-β)=-1时,|PQ |取最大值2.答案:B8.在△ABC 中,a 2+b 2-c 2=ab ,则角C 为 A.60° B.45°或135° C.120° D.30°解析:cos C =ab c b a 2222-+=21,C =60°.答案:A9.点P 1,P 2,…,P n 是线段AB 的n 个n +1等分点,P ∈{P 1,P 2,…,P n },则P 分有向线段AB 的比λ的最大值和最小值分别是A.n +1,21+n B.n +1,11+n C.n ,n1D.n -1,11-n 解析:由=λ知λ取得最大值时P 为距点B 最近的点P n ,取最小值时为P 1. 答案:C10.若a 与b 的夹角为60°,|b |=2,(a +b )·(a -2b )=-2,则向量a 的模是 A.2 B.5 C.3 D.6 解析:由题意知a 2-a ·b -2b 2=-2,|b |=2,cos60°=21,代入得|a |2-|a |-6=0. ∴|a |=3或|a |=-2(舍去). 答案:C11.命题p :|a |=|b |且a ∥b ;命题q :a =b ,则p 是q 的 A.充分不必要条件 B.必要不充分要件 C.充分必要条件 D.既不充分又不必要条件解析:当a ∥b 且a 与b 方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充分条件,而是必要不充分条件.答案:B12.在平面直角坐标系中,O 为原点,OA =a ,OB =b ,对任意一点M ,它关于A 的对称点为S ,S 关于点B 的对称点为N ,则用a 、b 表示为A.2(b -a )B.21(a -b ) C.a +bD.21(a +b ) 解析:MN =MS +SN =2AS +2SB =2OB -2OA .(四边形OASB 是平行四边形) 答案:A二、填空题(每小题4分,共16分) 13. =3e 1,=3e 2,且=21,则=____________. 解析:=3e 2-3e 1,=31=e 2-e 1,=+=2e 1+e 2. 答案:2e 1+e 214.已知向量a =(1,2),b =(-2,1),若正数k 和t 满足x =a +(t 2+1)b 与y =-k a +t1b 垂直,则k 的最小值是____________.解析:x =(1-2-2t 2,1+2+t 2),y =(-k -t 2,-2k +t1),由x ⊥y 得x ·y =0.又t >0,∴k =t +t1≥2.∴当t =1时,k 的最小值为2.答案:215.在△ABC 中,记BC =a ,AC =b ,AB =c ,若9a 2+9b 2-19c 2=0,则B A C c o tc o t c o t+=____________.解析:B A C cot cot cot +=B BA A C Csin cos sin cos sin cos +=C CB A 2sin cos sin sin =ab c b a c ab 22222-+⋅=22222cc b a -+ =222218999c c b a -+=22218919c c c -=95.答案:9516.已知直线l 1过点(0,t ),方向向量为(1,1),直线l 2过点(t ,1),方向向量为(1,-2),P 为l 1、l 2的交点,当t 变化时,P 的轨迹方程为____________.解析:l 1方程为x -y +t =0,l 2方程为2x +y -1-2t =0,两式消去t 即得P 的轨迹方程. 答案:4x -y -1=0三、解答题(本大题共6小题,共74分) 17.(12分)已知向量a =(3,-4),求: (1)与a 平行的单位向量b ; (2)与a 垂直的单位向量c ;(3)将a 绕原点逆时针方向旋转45°得到的向量e 的坐标.解:(1)设b =λa ,则|b |=1,b =(53,-54)或b =(-53,54). (2)由a ⊥c ,a =(3,-4),可设c =λ(4,3),求得c =(54,53)或c =(-54,-53).(3)设e =(x ,y ),则x 2+y 2=25. 又a ·e =3x -4y =|a ||e |cos45°,即3x -4y =2225,由上面关系求得e =(227,-22),或e =(-22,-227), 而向量e 由a 绕原点逆时针方向旋转45°得到,故e =(227,-22).18.(12分)向量a =(1,cos2θ),b =(2,1),c =(4sin θ,1),d =(21sin θ,1),其中θ∈(0,4π). (1)求a ·b -c ·d 的取值范围;(2)若函数f (x )=|x -1|,判断f (a ·b )与f (c ·d )的大小,并说明理由. 解:(1)a ·b =2+cos2θ,c ·d =2sin 2θ+1=2-cos2θ. ∵a ·b -c ·d =2cos2θ,∴0<θ<4π.∴0<2θ<2π. ∴0<cos2θ<1.∴0<2cos2θ<2. ∴a ·b -c ·d 的取值范围是(0,2).(2)f (a ·b )=|2+cos2θ-1|=|1+cos2θ|=2cos 2θ, f (c ·d )=|2-cos2θ-1|=|1-cos2θ|=2sin 2θ.于是有f (a ·b )-f (c ·d )=2(cos 2θ-sin 2θ)=2cos2θ. ∵0<θ<4π,∴0<2θ<2π. ∴2cos2θ>0.∴f (a ·b )>f (c ·d ).19.(12分)△ABC 的三个内角A 、B 、C 满足下列条件: ①A <B <C ;②A 、B 、C 成等差数列;③tan A ·tan C =2+3. (1)求A 、B 、C 的大小;(2)若AB 边上的高为43,求a 、b 、c 的大小.解:(1)由题意知B =60°,A +C =120°,tan (A +C )=CA CA tan tan 1tan tan -+=-tanB =-3,∴tan A +tan C =3+3.故⎪⎩⎪⎨⎧+==32tan 1tan C A ,或⎪⎩⎪⎨⎧=+=1tan 32tan C A ,(舍),故A =45°,B =60°,C =75°.(2)过C 作CD ⊥AB 于点D ,则CD =43,在Rt △ACD 和Rt △ABC 中,由正弦定理得a =B CD sin =8,b =ACDsin =46,c =AD +DB =43+4. 20.(12分)已知a =(cos θ,sin θ),b =(cos β,sin β),a 与b 之间有关系式|k a +b |=3|a -k b |(k >0).(1)用k 表示a ·b ;(2)求a ·b 的最小值,并求此时a 与b 夹角的大小.解:(1)将|k a +b |=3|a -k b |两边平方得a ·b =k k k 81332222b a )()(-+-=kk 412+.(2)∵(k -1)2≥0, 又k >0,∴k k 412+≥k k 42=21,即a ·b ≥21,cos α=21.又0°≤α≤180°,故a 与b 的夹角为60°.21.(12分)已知矩形ABCD ,E 、F 分别是AD 、BC 的中点,求证:对角线AC ⊥BE ,AC ⊥DF 的充要条件是AB ∶BC =1∶2.证明:设BA =a ,BC =b ,则a ⊥b . AE =21b ,AC =b -a ,BE =BA +AE =a +21b . (1)必要性:∵⊥,∴(b -a )·(a +21b )=0, 即a ·b +21b 2-a 2-21a ·b =0. ∵a ⊥b ,∴a ·b =0. ∴21b 2-a 2=0,即21b 2=a 2,得b 2=2a 2,|b |=2|a |. ∴AB ∶BC =1∶2.(2)充分性:∵AC ·BE =(b -a )·(a -21b )=a ·b +21b 2-a 2-21a ·b , 又∵a ⊥b ,∴a ·b =0. ∴·=21b 2-a 2=21|b |2-|a |2. ∵AB ∶BC =1∶2,∴|a |∶|b |=1∶2.∴|a |2=21|b |2.∴AC ·BE =0. 故AC ⊥BE .同理可证·=0,则⊥.综合(1)(2)知AC ⊥BE ,AC ⊥DF 的充要条件是AB ∶BC =1∶2.22.(14分)设坐标平面上全部向量的集合为V ,a =(a 1,a 2)为V 的一个单位向量.已知从V 到V 的映射f 由f (x )=-x +2(x ·a )a (x ∈V )确定.(1)若x 、y ∈V ,求证:f (x )·f (y )=x ·y ; (2)对于x ∈V ,计算f [f (x )]-x ; (3)设u =(1,0),v =(0,1),若f (u )=v ,求a . (1)证明:f (x )·f (y )=[-x +2(x ·a )a ]·[-y +2(y ·a )a ] =x ·y -4(x ·a )(y ·a )+4(x ·a )(y ·a )a 2=x ·y . (2)解:∵f [f (x )]=f [-x +2(x ·a )a ] =-[-x +2(x ·a )a ]+2{[-x +2(x ·a )a ]·a }a =x -2(x ·a )a +2[-x ·a +2(x ·a )a 2]a =x -2(x ·a )a +2(x ·a )a =x , ∴f [f (x )]-x =0.(3)解:由f (u )=v ,得⎪⎩⎪⎨⎧==-.120122121a a a ,解得⎪⎪⎩⎪⎪⎨⎧==222221a a ,或⎪⎪⎩⎪⎪⎨⎧-=-=.222221a a , ∴a =(22,22)或a =(-22,-22).。
配餐作业(二十九) 平面向量的应用
(时间:40分钟)
一、选择题
1.(2016·河南适应性测试)已知向量m =(1,cos θ),n =(sin θ,-
2),且m ⊥n ,则sin2θ+6cos 2θ的值为( )
A.12
B .2
C .2 2
D .-2
解析 由题意可得m ·n =sin θ-2cos θ=0,则tan θ=2,所以sin2θ
+6cos 2θ=2sin θcos θ+6cos 2θsin 2θ+cos 2θ=2tan θ+6tan 2θ+1
=2。
故选B 。
答案 B
2.已知点M (-3,0),N (3,0)。
动点P (x ,y )满足|MN →|·|MP →|+MN →·NP
→=0,则点P 的轨迹的曲线类型为( )
A .双曲线
B .抛物线
C .圆
D .椭圆
解析 MN →=(3,0)-(-3,0)=(6,0),|MN →|=6,MP →=(x ,y )-(-3,0)=(x +3,y ),NP →=(x ,y )-(3,0)=(x -3,y ),∴|MN →|·|MP →|+MN →·NP
→=6(x +3)2+y 2+6(x -3)=0,化简可得y 2=-12x 。
故点P 的轨迹为抛物线。
故选B 。
答案 B
3.若非零向量AB →与AC →满足⎝ ⎛⎭
⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB →|AB →|·AC →|AC →|=12,则△ABC 为( )
A .三边均不相等的三角形
B .直角三角形
C .等边三角形
D .等腰非等边三角形
解析 由⎝ ⎛⎭
⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0知,角A 的平分线与BC 垂直,∴|AB →|=|AC →|;由AB →|AB →|·AC →|AC →|
=12知,cos A =12,∴A =60°。
∴△ABC 为等边三角形。
故选C 。
答案 C
4.(2016·河南十校测试)已知O 为坐标原点,a =(-1,1),OA
→=a -b ,OB
→=a +b ,当△AOB 为等边三角形时,|AB →|的值是( ) A.269 B.429 C.263 D.83
解析 设b =(x ,y ),∵|OA
→|=|OB →|=|AB →|, ∴|a -b |=|a +b |=2|b |,
∴⎩⎪⎨⎪⎧ a ·b =0,|a |=3|b |,
∴⎩⎪⎨⎪⎧
-x +y =0,2=3·x 2+y 2, ∴⎩⎨⎧ x =33y =33或⎩⎨⎧ x =-33y =-33,。