目前常用AD,DA芯片简介
- 格式:doc
- 大小:31.50 KB
- 文档页数:3
常用AD芯片介绍AD芯片是指模数转换芯片(Analog-to-Digital Converter),主要用于将模拟信号转换为数字信号。
它在现代电子设备中扮演着极为重要的角色,并广泛应用于通信、医疗、工业控制、汽车电子以及消费电子等领域。
下面将介绍几种常用的AD芯片。
1.AD7780:AD7780是一款高精度、低功耗的24位模数转换器。
它具有灵活的配置选项,可用于多种测量应用,如温度、压力、力量和湿度传感器。
AD7780能够提供高达23.8位的有效分辨率,具有低噪声和低漂移性能。
该芯片还提供了多种接口选项,如SPI接口和串行接口数据格式,以满足不同系统的需要。
2.AD7671:AD7671是一款12位的高速模数转换器。
它具有高采样率和低功耗的特点,能够提供高达1MSPS的转换速率。
AD7671还具有低失真、高信噪比和快速响应等优点,适用于高速数据采集和信号处理应用。
该芯片还提供了多种输入范围和接口选项,以满足不同应用场景的需求。
3.AD7903:AD7903是一款8位的高速模数转换器。
它具有高速采样率和低功耗的特点,能够提供高达20MSPS的转换速率。
AD7903还具有低功耗和小封装等优点,适用于便携式和嵌入式应用。
该芯片还配备了内部参考电压和自校准电路,提高了转换的精度和稳定性。
4.AD7175-2:AD7175-2是一款高精度、低功耗的24位模数转换器。
它具有内置低噪声放大器和可编程增益放大器,能够适应不同信号强度的测量需求。
AD7175-2具有极低的失真和漂移性能,能够提供高达23.8位的有效分辨率。
该芯片还支持多种接口选项,如SPI接口和I²C接口,以方便与其他外围设备的连接。
5.AD7760:AD7760是一款高精度、低功耗的24位模数转换器。
它能够提供高达256kSPS的转换速率,并具有低噪声和低漂移性能。
AD7760还具有自动校准和过采样滤波器等功能,提高了转换的精度和稳定性。
ADC芯片介绍ADC,即模数转换器(Analog-to-Digital Converter),是一种将模拟信号转换成数字信号的电子设备。
它是数字系统中的重要组成部分,广泛应用于通信系统、仪器仪表、工业自动化、医疗设备等领域。
本文将介绍ADC芯片的基本原理、分类、特点以及应用领域等相关内容。
一、ADC芯片的基本原理1.采样:采样是指将模拟信号在一定时间间隔内取样,即在一段时间内获取一系列的模拟信号值。
采样过程中需要考虑采样频率和抗混叠滤波等问题。
2.量化:量化是指将采样到的模拟信号值转换为具有离散数值的数字信号。
量化过程中需要确定量化位数和量化级数等参数,并利用ADC芯片内部的比较器和计数器等电路实现。
通过采样和量化两个过程,ADC芯片可以将模拟信号转换为数字信号,进而被数字系统所处理。
二、ADC芯片的分类根据其工作原理和结构,ADC芯片可以分为几种不同的类型。
1.逐次逼近型ADC:逐次逼近型ADC芯片是一种常见的ADC芯片类型,它通过逐次逼近的方式进行模拟信号到数字信号的转换。
逐次逼近型ADC芯片具有较高的分辨率和较低的功耗,适用于对精度要求较高的应用领域。
2.并行型ADC:并行型ADC芯片是一种将模拟信号同时转换为多个比特的数字信号的ADC芯片类型。
它具有高速和高精度的特点,但功耗较大。
并行型ADC芯片适用于对采样速度要求较高的应用场景,如通信系统中的信号处理和无线电频谱分析等。
3. Sigma-Delta型ADC:Sigma-Delta型ADC芯片主要应用于对信噪比要求较高的应用场景。
它通过过采样和累积量化的方式实现高精度的模数转换。
Sigma-Delta型ADC芯片适用于音频处理、音频编解码等领域。
三、ADC芯片的特点1.分辨率高:ADC芯片的分辨率是指其能够表示的电压值的最小差值。
分辨率越高,ADC芯片对模拟信号的转换精度越高。
2.采样速度快:ADC芯片的采样速度是指其每秒钟能够进行的采样次数。
常用ADC 芯片简介各种类型的单片集成ADC 有很多种,读者可根据自己的要求参阅手册进行选择。
这里主要介绍两种集成ADC 和一个应用实例。
一、集成ADC 简介1.ADC 0809ADC0809是一种逐次比较型ADC ,它是采用CMOS 工艺制成的8位8通道A/D 转换器,采用28只引脚的双列直插封装,其原理图和引脚图示于图1。
表1 通道选择表该转换器有三个主要组成部分:256个电阻组成的电阻阶梯及树状开关、逐次比较寄存器SAR 和比较器。
电阻阶梯和开关树是ADC 0809的特点。
ADC 0809与一般逐次比较ADC 另一个不同点是,它含有一个8通道单端信号模拟开关和一个地址译码器,地址译码器选择8个模拟信号之一送入ADC 进行A/D 转换,因此适用于数据采集系统。
表1为通道选择表。
图(b )为引脚图。
各引脚功能如下:图1 ADC 0809原理图和引脚图(1)IN 0 ~ IN 7是8路模拟输入信号; (1) A DDA 、ADDB 、ADDC 为地址选择端; (2) 2-1~2-8为变换后的数据输出端; (3) S TART (6脚)是启动输入端,输入启动脉冲的下降沿使ADC 开始转换。
脉冲宽度要求大于100ns ;(4) A LE (22脚)是通道地址锁存输入端。
当ALE 上升沿来到时,地址锁存器可对ADDA 、ADDB 、ADDC 锁定,为了稳定锁存地址,即在ADC 转换周期内模拟多路器稳定地接通在某一通道,ALE 脉冲宽度应大于100ns 。
下一个ALE 上升沿允许通道地址更新。
实际使用中,要求ADC 开始转换之前地址就应锁存,所以通常将ALE 和START 连在一起,使用同一个脉冲信号,上升沿锁存地址,下降沿启动转换。
(5) O E (9脚)为输出允许端,它控制ADC 内部三态输出缓冲器。
当OE = 0时,输出端为高阻态,当OE =1时,允许缓冲器中的数据输出。
(6) E OC (7脚)是转换结束信号,由ADC 内部控制逻辑电路产生。
AD转换、DA转换是什么意思?ADC、DAC又是什么意思?展开全文A/D转换、D/A转换是什么意思?ADC、DAC又是什么意思?A/D转换=模拟/数字转换,意思是模拟讯号转换为数字讯号;D/A转换=数字/模拟转换,意思是数字讯号转换为模拟讯号;ADC=模拟/数字转换器,DAC=数字/模拟转换器。
什么是超取样?超取样有何作用?超取样是CD机中采用的一种技术,用于提高放音质量。
CD片上的数据讯号被读出后,通过DSP电路的插值处理,将44.1kHz的标准取样率提升一倍到数倍,这就是超取样。
为什么要超取样呢?这涉及到D/A转换之后的噪声滤除问题。
数码讯号经过D/A转换之后,会在音频频带以外的高端产生一个镜象频带,这是一种噪声,必须用低通滤波器滤除,否则经过非线性器件后会折回到音频频带内,对放音效果产生很大的破坏。
该镜像噪声频带的位置和取样频率有关,频率越高,镜像频带就离音频频带越远。
对于标准取样频率来说,必须用衰减十分陡峭的滤波器才能滤掉靠近音频频带的镜像噪声。
但衰减陡峭的滤波器很难设计,相位失真很大,难免会影响到音频频带的高端部分,使音质下降,这就是早期的CD机数码味比较重的重要原因。
如果采用超取样,就可以把镜像噪声推到远离音频频带的位置,这时只需要衰减平缓的低通滤波器就行了,设计难度大大降低,相位特性得以改善,使放音质量获得显著的改善。
数模转换器目录简介解析转换原理D/A转换器分类数模转换器的位数DAC简介数模转换器,又称D/A转换器,简称DAC,它是把数字量转变成模拟的器件。
D/A转换器基本上由4个部分组成,即权电阻网络、运算放大器、基准电源和模拟开关。
模数转换器中一般都要用到数模转换器,模数转换器即A/D转换器,简称ADC,它是把连续的模拟信号转变为离散的数字信号的器件。
解析一种将二进制数字量形式的离散信号转换成以标准量(或参考量)为基准的模拟量的转换器,简称 DAC或D/A 转换器。
最常见的数模转换器是将并行二进制的数字量转换为直流电压或直流电流,它常用作过程控制计算机系统的输出通道,与执行器相连,实现对生产过程的自动控制。
常用da芯片DA芯片是数字到模拟转换芯片,它的作用是将数字信号转换为模拟信号输出。
常用的DA芯片有很多种类,下面是介绍其中几种常用DA芯片。
1. AD5570:这是一款12位多路输入数字模拟转换器,具有8个独立的模数转换通道。
它具有高分辨率和低失真的特点,广泛应用于工业控制和仪器仪表等领域。
2. MAX5868:这是一款14位高速DA芯片,具有2.2GSPS的速度和低功耗特点。
它内置了补偿电路和校准电路,可以提供优质的模拟输出信号。
3. DAC1208:这是一款8位DAC芯片,具有8个独立的模拟输出通道。
它采用了双电源设计,可以同时输出正负电压,广泛应用于音频设备和通信设备等领域。
4. AD558:这是一款8位电压输出型DA芯片,具有单电源操作和微功耗特性。
它采用串行接口进行数据输入,适用于低成本和低功耗的应用场景。
5. MCP4725:这是一款12位I2C总线数字模拟转换器,具有单电源操作和高精度特点。
它内置了EEPROM存储器,可以保存输出设置,广泛应用于工业自动化和仪器仪表等领域。
6. LTC2644:这是一款12位Rail-to-Rail输出型DA芯片,具有4个独立的模拟输出通道。
它采用了串行接口进行数据输入,支持高速数据传输和多种工作模式。
7. AD5764:这是一款16位电流输出型DA芯片,具有4个独立的模拟输出通道。
它具有高分辨率和精确度高的特点,广泛应用于测试仪器和医疗设备等领域。
以上是常用的几种DA芯片,每一款都有自己独特的特点和应用场景。
随着科技的不断进步,DA芯片的功能将越来越强大,应用范围也会越来越广泛。
AD/DA的常用芯片简介如今出产AD/DA的首要厂家有ADI、TI、BB、PHILIP、MOTOROLA等,武汉力源公司具有多年从事电子商品的履历和雄厚的技才调气支撑,已获得排行国际前列的仿照IC出产厂家ADI、TI 公司署理权,运营全系列适用各种范畴/场合的AD/DA器材。
1.AD公司AD/DA器材AD公司出产的各种模数改换器(ADC)和数模改换器(DAC)(总称数据改换器)一贯坚持商场领导方位,包含高速、高精度数据改换器和如今盛行的微改换器体系(MicroConvertersTM)。
1)带信号调度、1mW功耗、双通道16位AD改换器:AD7705 AD7705是AD公司出品的适用于低频丈量仪器的AD改换器。
它能将从传感器接纳到的很弱的输入信号直接改换成串行数字信号输出,而无需外部外表拓宽器。
选用Sigma;-Delta;的ADC,完毕16位无误码的超卓功用,片内可编程拓宽器可设置输入信号增益。
经过片内操控寄存器调整内部数字滤波器的封闭时刻和更新速率,可设置数字滤波器的榜首个凹口。
在+3V电源和1MHz主时钟时,AD7705功耗仅是1mW。
AD7705是依据微操控器(MCU)、数字信号处理器(DSP)体系的志向电路,能够进一步节约本钱、减小体积、减小体系的凌乱性。
运用于微处理器(MCU)、数字信号处理(DSP)体系,手持式仪器,散布式数据搜团体系。
2)3V/5VCMOS信号调度AD改换器:AD7714AD7714是一个无缺的用于低频丈量运用场合的仿照前端,用于直接从传感器接纳小信号并输出串行数字量。
它运用Sigma;-Delta;改换技能完毕高达24位精度的代码而不会扔掉。
输入信号加至坐落仿照调制器前端的专用可编程增益拓宽器。
调制器的输出经片内数字滤波器进行处理。
数字滤波器的初度陷波经过片内操控寄存器来编程,此寄存器能够调度滤波的截止时刻和树立时刻。
AD7714有3个差分仿照输入(也可所以5个伪差分仿照输入)和一个差分基准输入。
高位高速AD、DA模数转换器(A/D)l 8位分辨率l TLV0831 8 位 49kSPS ADC 串行输出,差动输入,可配置为 SE 输入,单通道l TLC5510 8 位 20MSPS ADC,单通道、内部 S、低功耗l TLC549 8 位、40kSPS ADC,串行输出、低功耗、与 TLC540/545/1540 兼容、单通道l TLC545 8 位、76kSPS ADC,串行输出、片上 20 通道模拟 Mux,19 通道l TLC0831 8 位,31kSPS ADC 串行输出,微处理器外设/独立运算,单通道l TLC0820 8 位,392kSPS ADC 并行输出,微处理器外设,片上跟踪与保持,单通道l ADS931 8 位 30MSPS ADC,具有单端/差动输入和外部基准以及低功耗、电源关闭功能l ADS930 8 位 30MSPS ADC,单端/差动输入具有内部基准以及低功耗、电源关闭功能l ADS830 8 位 60MSPS ADC,具有单端/差动输入、内部基准和可编程输入范围l 10位分辨率l TLV1572 10 位 MSPS ADC 单通道 DSP/(Q)SPI IF S 极低功耗自动断电功能l TLV1571 1 通道 10 位 ADC,具有 8 通道输出、DSP/SPI、硬件可配置、低功耗l TLV1549 10 位 38kSPS ADC 串行输出、固有采样功能、终端与 TLC154、 TLC1549x 兼容l TLV1548 10 位 85kSPS ADC 系列输出,可编程供电/断电/转换速率,TMS320 DSP/SPI/QPSI Compat.,8 通道l TLV1544 10 位 85kSPS ADC 串行输出,可编程供电/断电/转换速率,TMS320 DSP/SPI/QPSI 兼容,4 通道l TLV1543 10 位 200 kSPS ADC 串行输出,内置自检测模式,内部 S,引脚兼容。
什么是DSP、AD、DA?它们的作用是什么技术
1.DSP:数字信号处理(Digital Signal Processing,简称DSP)数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。
2.A/D转换器称为模数转换器,可以将模拟信号转换成数字信号的电路。
A/D转换的作用是将时间连续、幅值也连续的模拟量转换为时间离散、幅值也离散的数字信号,因此,A/D转换一般要经过取样、保持、量化及编码4个过程。
在实际电路中,这些过程有的是合并进行的,例如,取样和保持,量化和编码往往都是在转换过程中同时实现的。
数模转换器,又称D/A转换器,简称DAC。
一种将二进制数字量形式的离散信号转换成以标准量(或参考量)为基准的模拟量的转换器,作用是把数字量转变成模拟的器件。
3.D/A转换器又称数模转换器,简称DAC。
一种将二进制数字量形式的离散信号转换成以标准量(或参考量)为基准的模拟量的转换器,作用是把数字量转变成模拟的器件。
D/A转换器(又称数模转换器,简称DAC),一种将二进制数字量形式的离散信号转换成以标准量(或参考量)为基准的模拟量的转换器,作用是把数字量转变成模拟的器件。
A/D转换器(又称模数转换器,或简称ADC),是指将模拟信号转换成数字信号的电路。
A/D转换的作用是将时间连续、幅值也连续的模拟量转换为时间离散、幅值也离散的数字信号。
A/D转换一般要经过取样、保持、量化及编码4个过程。
在实际电路中,这些过程有的是合并进行的,例如,取样和保持,量化和编码往往都是在转换过程中同时实现的。
ad系列芯片AD 系列芯片是美国ADI(Analog Devices Inc.)公司推出的一种高性能、低功耗的模拟集成电路芯片系列。
该系列芯片广泛应用于通信、医疗、工业自动控制、消费电子等领域,具有极高的稳定性、精度和可靠性。
下面将对 AD 系列芯片的特点和应用进行详细介绍。
AD 系列芯片的特点:1. 高精度:AD 系列芯片具有较高的分辨率和精度,可以实现微小信号的精确测量和处理。
其内部集成了高精度的模拟-数字转换器(ADC)和数字-模拟转换器(DAC),可实现模拟信号到数字信号和数字信号到模拟信号的转换。
2. 低功耗:AD 系列芯片采用先进的低功耗技术,具有较低的静态功耗和动态功耗。
这使得它们适合于移动设备和电池供电的应用,可以延长设备的使用时间。
3. 宽工作电压范围:AD 系列芯片具有较宽的工作电压范围,可以适应不同的工作环境和电源条件。
这使得它们能够适应各种应用场景的需求,提高了芯片的灵活性和通用性。
4. 强抗干扰能力:AD 系列芯片具有较高的抗干扰能力,能够有效抵抗来自功率电网、电磁场和其他外部干扰源的干扰。
这使得它们能够在复杂的电磁环境下,保持稳定的性能。
5. 多功能:AD 系列芯片集成了丰富的功能模块和接口,如模拟输入/输出、数字输入/输出、时钟电源管理、通信接口等。
这使得它们可以实现多种功能,满足不同应用的需求。
AD 系列芯片的应用:1. 通信:AD 系列芯片在通信领域广泛应用,可用于无线通信基站、光纤通信、卫星通信等设备。
它们可以实现高速数据通信、信号处理和调制解调等功能。
2. 医疗:AD 系列芯片在医疗设备中有重要应用,如心电图机、血压测量仪、体温计等。
这些芯片能够准确测量生物信号,并提供高质量的信号处理和分析功能。
3. 工业自动控制:AD 系列芯片被广泛用于工业自动控制系统,如温度传感器、压力传感器、流量计等设备。
它们可以实时监测和控制工业过程参数,提高生产效率和产品质量。
4. 消费电子:AD 系列芯片在消费电子产品中有广泛应用,如智能手机、平板电脑、音频设备等。
目前常用AD/DA芯片简介
目前生产AD/DA的主要厂家有ADI、TI、BB、PHILIP、MOTOROLA等,武汉力源公司拥有多年从事电子产品的经验和雄厚的技术力量支持,已取得排名世界前列的模拟IC生产厂家ADI、TI公司代理权,经营全系列适用各种领域/场合的AD/DA器件。
1. AD公司AD/DA器件
AD公司生产的各种模数转换器(ADC)和数模转换器(DAC)(统称数据转换器)一直保持市场领导地位,包括高速、高精度数据转换器和目前流行的微转换器系统(MicroConvertersTM )。
1)带信号调理、1mW功耗、双通道16位AD转换器:AD7705
AD7705是AD公司出品的适用于低频测量仪器的AD转换器。
它能将从传感器接收到的很弱的输入信号直接转换成串行数字信号输出,而无需外部仪表放大器。
采用Σ-Δ的ADC,实现16位无误码的良好性能,片内可编程放大器可设置输入信号增益。
通过片内控制寄存器调整内部数字滤波器的关闭时间和更新速率,可设置数字滤波器的第一个凹口。
在+3V电源和1MHz主时钟时, AD7705功耗仅是1mW。
AD7705是基于微控制器(MCU)、数字信号处理器(DSP)系统的理想电路,能够进一步节省成本、缩小体积、减小系统的复杂性。
应用于微处理器(MCU)、数字信号处理(DSP)系统,手持式仪器,分布式数据采集系统。
2)3V/5V CMOS信号调节AD转换器:AD7714
AD7714是一个完整的用于低频测量应用场合的模拟前端,用于直接从传感器接收小信号并输出串行数字量。
它使用Σ-Δ转换技术实现高达24位精度的代码而不会丢失。
输入信号加至位于模拟调制器前端的专用可编程增益放大器。
调制器的输出经片内数字滤波器进行处理。
数字滤波器的第一次陷波通过片内控制寄存器来编程,此寄存器可以调节滤波的截止时间和建立时间。
AD7714有3个差分模拟输入(也可以是5个伪差分模拟输入)和一个差分基准输入。
单电源工作(+3V或+5V)。
因此,AD7714能够为含有多达5个通道的系统进行所有的信号调节和转换。
AD7714很适合于灵敏的基于微控制器或DSP的系统,它的串行接口可进行3线操作,通过串行端口可用软件
设置增益、信号极性和通道选择。
AD7714具有自校准、系统和背景校准选择,也允许用户读写片内校准寄存器。
CMOS结构保证了很低的功耗,省电模式使待机功耗减至15μW(典型值)。
3)微功耗8通道12位AD转换器:AD7888
AD7888是高速、低功耗的12位AD转换器,单电源工作,电压范围为2.7V~5.25V,转换速率高达125ksps,输入跟踪-保持信号宽度最小为500ns,单端采样方式。
AD7888包含有8个单端模拟输入通道,每一通道的模拟输入范围均为0~Vref。
该器件转换满功率信号可至3MHz。
AD7888具有片内2.5V电压基准,可用于模数转换器的基准源,管脚REF in/REF out允许用户使用这一基准,也可以反过来驱动这一管脚,向AD7888提供外部基准,外部基准的电压范围为1.2V~VDD。
CMOS结构确保正常工作时的功率消耗为2mW(典型值),省电模式下为3μW。
4)微功耗、满幅度电压输出、12位DA转换器:AD5320
AD5320是单片12位电压输出D/A转换器,单电源工作,电压范围为+2.7V~5.5V。
片内高精度输出放大器提供满电源幅度输出,AD5320利用一个3线串行接口,时钟频率可高达30MHz,能与标准的SPI、QSPI、MICROWIRE和DSP接口标准兼容。
AD5320的基准来自电源输入端,因此提供了最宽的动态输出范围。
该器件含有一个上电复位电路,保证D/A转换器的输出稳定在0V,直到接收到一个有效的写输入信号。
该器件具有省电功能以降低器件的电流损耗,5V时典型值为200nA。
在省电模式下,提供软件可选输出负载。
通过串行接口的控制,可以进入省电模式。
正常工作时的低功耗性能,使该器件很适合手持式电池供电的设备。
5V时功耗为0.7mW,省电模式下降为1μW。
5)24位智能数据转换系统MicroConvertersTM:ADuC824
ADuC 824是MicroConvertersTM系列的最新成员,它是AD公司率先推出的带闪烁电可擦可编程存储器〔Flash/EEPROM)的Σ-Δ转换器。
它的独特之处在于将高性能数据转换器,带程序和数据闪烁存储器及8位微控制器集中在一起。
当您为满足工业、仪器仪表和智能传感器接口应用要求选择高精度数据转换时,ADuC824是一种完整的高精度数据采集片上系统。
2. TI公司AD/DA器件
美国德州仪器公司是一家国际性的高科技产品公司,是全球最大半导体产品供应商之一,一九九八年半导体产品销量名列全球第五,其中DSP产品销量全球排名第一,
模拟产品位于全球第一。
1)TLC548/549
TLC548和TLC549是以8位开关电容逐次逼近A/D转换器为基础而构造的CMOS A/D 转换器。
它们设计成能通过3态数据输出与微处理器或外围设备串行接口。
TLC548和TLC549仅用输入/输出时钟和芯片选择输入作数据控制。
TLC548的最高I/OCLOCK输入频率为2.048MHz,而TLC549的I/OCLOCK输入频率最高可达1.1MHz。
TLC548和TLC549的使用与较复杂的TLC540和TLC541非常相似;不过,TLC548
和TLC549提供了片内系统时钟,它通常工作在4MHz且不需要外部元件。
片内系统时钟使内部器件的操作独立于串行输入/输出端的时序并允许TLC548和TLC549象许多软件和硬件所要求的那样工作。
I/OCLOCK和内部系统时钟一起可以实现高速数据传送,对于TLC548为每秒45,500次转换,对于TLC549为每秒40,000次的转换速度。
TLC548和TLC549的其他特点包括通用控制逻辑,可自动工作或在微处理器控制下工作的片内采样-保持电路,具有差分高阻抗基准电压输入端,易于实现比率转换(ratiometricconversion)、定标(scaling)以及与逻辑和电源噪声隔离的电路。
整个开关电容逐次逼近转换器电路的设计允许在小于17μs的时间内以最大总误差为±0.5最低有效位(LSB)的精度实现转换。
2)TLV5616
TLV5616是一个12位电压输出数模转换器(DAC),带有灵活的4线串行接口,可以无缝连接TMS320、SPI、QSPI和Microwire串行口。
数字电源和模拟电源分别供电,电压范围2.7~5.5V。
输出缓冲是2倍增益rail-to-rail输出放大器,输出放大器是AB类以提高稳定性和减少建立时间。
rail-to-rail输出和关电方式非常适宜单电源、电池供电应用。
通过控制字可以优化建立时间和功耗比。
3)TLV5580
TLV5580是一个8位80MSPS高速A/D转换器。
以最高80MHz的采样速率将模拟信号转换成8位二进制数据。
数字输入和输出与3.3VTTL/CMOS兼容。
由于采用3.3V电源和CMOS工艺改进的单管线结构,功耗低。
该芯片的电压基准使用非常灵活,有片内和片外部基准,满量程范围是1Vpp到1.6Vpp,取决于模拟电源电压。
使用外部基准时,可以关闭内部基准,降低芯片功耗。