粉体测试技术及仪器讲解
- 格式:doc
- 大小:3.21 MB
- 文档页数:17
粉体综合特性测试仪的特性介绍测试仪操作规程粉体综合特性测试仪是一种紧要用于评价粉体物理特性的仪器。
该仪器的测试项目包括粉体的振实密度、松装密度、安眠角、抹刀角、崩溃角、差角、分散度、凝集度、粉体综合特性测试仪是一种紧要用于评价粉体物理特性的仪器。
该仪器的测试项目包括粉体的振实密度、松装密度、安眠角、抹刀角、崩溃角、差角、分散度、凝集度、流动度等项目。
计算项目包括差角、空隙率压缩度(压缩率)、流动性指数、喷流性指数等项目。
1、差角:休止角与崩溃角之差称差角。
差角越大,粉体的流动性与喷流性越强2、压缩度:同一个试样的振实密度与松装密度之差与振实密度之比为压缩度。
压缩度也称为压缩率。
压缩度越小,粉体的流动性越好。
3、空隙率:空隙率是指粉体中的空隙占整个粉体体积的百分比。
空隙率因粉体的粒子形状、排列结构、粒径等因素的不同而变化。
颗粒为球形时,粉体空隙率为40%左右;颗粒为超细或不规定形状时,粉体空隙率为70—80%或更高。
粉体综合特性测试仪的特点是一机多用、操作简便、重复性好、测定条件简单更改、配套完整等。
它的研制成功为粉体特性测试的普遍开展供应了一个新的测试手段。
该仪器紧要用于粉体生产企业、大专院校、科研机构的材料科学讨论领域,在与粉体流动特性相关的生产领域也将有广泛的应用前景。
—专业分析仪器服务平台,试验室仪器设备交易网,仪器行业专业网络宣扬媒体。
相关热词:等离子清洗机,反应釜,旋转蒸发仪,高精度温湿度计,露点仪,高效液相色谱仪价格,霉菌试验箱,跌落试验台,离子色谱仪价格,噪声计,高压灭菌器,集菌仪,接地电阻测试仪型号,柱温箱,旋涡混合仪,电热套,场强仪万能材料试验机价格,洗瓶机,匀浆机,耐候试验箱,熔融指数仪,透射电子显微镜。
功能特点:只需将传感器插入样品中,打开电源开关.2—5秒钟测试值即显示在液晶显示器上2—5秒钟即可看到测试值;无来自仪器及耗材对人身健康的任何危害;无任何耗材的附加费用;低能耗;DC12V充电器;9V充电电池;PPm—100%大量程测试范围,可供选择;应用本仪器可广泛应用于化工石油、乳化液、水煤桨、制药、建材、食品加工、造纸等行业液体、浆体、悬浮物的浓度快速测试。
FT-3500粉体压缩强度测试仪一. 原理和理论:颗粒在压缩时要经历初步压缩、颗粒重排、初始结构形成、弹性形变、塑性形变、颗粒破碎、结合键形成、进一步压实及去除压力后的弹性恢复等系列变化,颗粒结构被破坏并发生重组形成新的结合键及压缩体;通过对粉体施加屈服强度变形所需的主应力,来分析粉体的体积变化与压力关系即(主应力与粉体密度的变化关系),时间与屈服强度变化关系,屈服强度与压缩高度变化关系,采用经验方程法:Heckel、Kawakita、Adams方程及川北方程线性回归方程的压缩理论来分析粉体颗粒新品、研发固体产品比如在药物处方及工艺选择方面及压实密度对压力的要求等的预测性分析工具.本机型还可以实现粉体电阻、电阻率、电导率的测量(导体粉末),可通过粉体压缩与阻抗的变化关系或者粉末体压缩过程中的静电测量(绝缘粉体颗粒).通过电性能的变化来判断粉体压缩特性.二. 目前比较认可的压缩成形机理认为:粒子受压时,粒子间距离很近,从而在粒子间产生范德华力,静电力等的引力;粒子受压时,其塑性形变使粒子间的接触面积增大;粒子受压破碎时,产生的新生表面有较大表面自由能;粒子受压变形时,粒子相互嵌合而产生的机械结合力;粒子受压时,由于摩擦力而产生的热,特别是颗粒间支撑点处局部温度较高,使熔点较低的物料部分地熔融,解除压力后重新固化而在粒子间形成“固体桥”;在水溶性粒子的接触点处析出结晶而形成的“固体桥”.三. 功能介绍:采用液压恒压加压测量系统,7寸触摸屏控制,高精度荷重单元控制系统能精确采集应力变化数据,可以任意设置压力、时间数据,位移数据由位移传感器直读,温湿度数据通过传感器获得,多位数的AD芯片来保障数据的分析,全自动模式,手动操作模式及多段设置操作模式并存;配置PC软件可以获得应力与粉体密度关系曲线;时间与粉体屈服强度关系;川北方程线性回归方程的常数 u,v变化关系及时间流动函数关系过程数据的分析和曲线图谱,为生产企业和科研院所研发新品和改善工艺建立数据模型.四. 适用范围:食品、药品、粉末冶金、陶瓷、制药、化工、建筑等行业需要经过压缩或者压铸的粉末和颗粒物料;对粉末固体成形性及压缩性在新品开发,中试放大及生产过程中进行分析研究,常用于粉体企业上下游产业,粉体科研院所和大中专院校,为粉体在强度性能,可压缩性和流动性方面获得可靠的数据.五. 技术指标:。
粉体粒度及其分布测定一.实验目的1.掌握粉体粒度测试的原理及方法;2.了解影响粉体粒度测试结果的主要因素,掌握测试样品制备的步骤和注意要点;3.学会对粉体粒度测试结果数据处理及分析。
二.实验原理图1:微纳激光粒度分析仪工作原理框图粉体粒度及其分布是粉体的重要性能之一,对材料的制备工艺、结构、性能均产生重要的影响,凡采用粉体原料来制备材料者,必须对粉体粒度及其分布进行测定。
粉体粒度的测试方法有许多种:筛分法、显微镜法、沉降法和激光法等。
激光粒度测试是利用颗粒对激光产生衍射和散射的现象来测量颗粒群的粒度分布的,其基本原理为:激光经过透镜组扩束成具有一定直径的平行光,照射到测量样品池中的颗粒悬浮液时,产生衍射,经傅氏(傅立叶)透镜的聚焦作用,在透镜的焦平面上形成一中心圆斑和围绕圆斑的一系列同心圆环,圆环的直径随衍射角的大小即随颗粒的直径而变化,粒径越小,衍射角越大,圆环直径亦大;在透镜的后焦平面位置设有一多元光电探测器,能将颗粒群衍射的光通量接收下来,光--电转换信号再经模数转换,送至计算机处理,根据夫朗和费衍射原理关于任意角度下衍射光强度与颗粒直径的公式,进行复杂的计算,并运用最小二乘法原理处理数据,最后得到颗粒群的粒度分布。
激光粒度测试法具有适应广、速度快、操作方便、重复性好的优点,测量范围为:0.1—几百微米。
但当粒径与所用光的波长相当时,夫朗和费衍射理论的运用有较大误差,需应用米氏理论来修正。
三.仪器设备济南微纳颗粒技术有限公司Winner2000Z智能型激光粒度分析仪、微型计算机、打印机。
四.实验步骤4.1测试前的准备工作1.开启激光粒度分析仪,预热10~15分钟。
启动计算机,并运行相对应的软件。
2.清洗循环系统。
首先,进入控制系统的人工模式,不选择自动进水点击排水,把与被测样品相匹配的分散介质加入样品桶,待管路及样品窗中都充满介质后,再点击排水,关闭排水。
其次,按下冲洗,洗完后,自动排出。
第六章粉体测试技术及仪器内容: 6.1粉体浓度测试方法; 6.2粉体粒度测试技术及其应用; 6.3比表面积测量6.1粉体浓度测试方法粉体浓度通常是指在流体流动过程中一定的容积下粉体的质量。
气体含尘量的基本测量就是在悬浮气流中取得颗粒物试样进行称量。
“等速取样”就是满足在等速条件下气流没有扰动而且所有颗粒并且只有这些颗粒进入取样嘴的准则。
取样点应选在节流部位的下游6倍直径以上的地方或上游3倍直径以上的地方。
取样点应选择在沉降室、收尘器以及可能沉集大颗粒的长水平管道的出口端,否则应测定这些收尘装置中收到的粉尘并从测定值中扣除。
一、等速取样二、滤纸光散射法通过抽滤烟气中飘尘,测量清洁滤纸变脏或变黑引起的透光度改变,求得粉体浓度。
三、粉体浓度测量的其他方法1.电容探头浓度测量技术2.光纤探头浓度测量技术3.光透射法浓度测量6.2粉体粒度测试技术及其应用1.显微镜法(microscopic method)是将粒子放在显微镜下,根据投影像测得粒径的方法,主要测定几何粒径。
光学显微镜可以测定微米级的粒径,电子显微镜可以测定纳米级的粒径。
测定时应避免粒子间的重叠,以免产生测定的误差。
主要测定以个数、面积为基准的粒度分布。
2.库尔特计数法(coulter counter method)将粒子群混悬于电解质溶液中,隔壁上设有一个细孔,孔两侧各有电极,电极间有一定电压,当粒子通过细孔时,粒子容积排除孔内电解质而电阻发生改变。
利用电阻与粒子的体积成正比的关系将电信号换算成粒径,以测定粒径与其分布。
测得的是等体积球当量径,粒径分布以个数或体积为基准。
混悬剂、乳剂、脂质体、粉末药物等可以用本法测定。
3.沉降法(sedimentation method)是液相中混悬的粒子在重力场中恒速沉降时,根据Stocks方程求出粒径的方法。
Stocks方程适用于100μm以下的粒径的测定,常用Andreasen吸管法。
测得的粒径分布是以重量为基准的。
粉体目数检测方法
粉体目数检测难不难?其实不难!只要掌握了方法,你也能轻松搞定。
首先,准备好检测工具,比如标准筛、振筛机等。
把粉体样品放在标准筛上,然后启动振筛机,让粉体在筛网上振动。
就像淘米一样,把细的粉体筛下去,粗的留在筛网上。
不同目数的筛网可以筛出不同粒度的粉体。
这一步要注意筛网的选择一定要准确,不然结果可就不准确啦!要是选错了筛网,那可就像穿错了鞋子,走起来不舒服。
检测过程安全不?放心吧!只要按照正确的操作方法,不会有啥危险。
就像骑自行车一样,只要你掌握好平衡,就不会摔倒。
稳定性也没问题,只要设备正常,检测结果就比较可靠。
那粉体目数检测都用在啥地方呢?很多地方都能用到!比如制药行业,药品的颗粒大小可重要啦!要是颗粒太大,吃起来可不舒服。
还有化妆品行业,细腻的粉质才能让你的妆容更美丽。
这就像做饭一样,调料的颗粒大小会影响味道,粉体的目数也会影响产品的质量。
优势也不少呢!可以快速准确地了解粉体的粒度分布,为生产和研发提供重要依据。
就像有了一把尺子,可以量出物体的大小。
而且操作简单,成本也不高。
举个实际案例吧!有一家制药厂,在生产过程中发现药品的效果不太好。
经过粉体目数检测,发现是粉体的粒度不均匀。
调整了生产工艺后,药品的质量大大提高。
这就像医生找到了病因,对症下药,病就好啦!
总之,粉体目数检测是个很有用的方法。
它能让你了解粉体的粒度,为生产和研发提供帮助。
赶紧试试吧!。
粉体综合特性测试一、实验目的1、了解粉体基本特性。
2、掌握BT-1000粉体综合特性测试仪的使用方法。
二、实验仪器设备BT-1000型离心沉降式粒度分布仪三、实验原理1)振实密度:振实密度是指粉体装填在特定容器后,对容器进行振动,从而破坏粉体中的空隙,使粉体处于紧密填充状态后的密度。
通过测量振实密度可以知道粉体的流动性和空隙率等数据。
(注:金属粉等特殊粉体的振实密度按相应的标准执行)。
2)松装密度:松装密度是指粉体在特定容器中处于自然充满状态后的密度。
该指标对存储容器和包装袋的设计很重要。
(注:金属粉等特殊粉体的松装密度按相应的标准执行)。
3)休止角:粉体堆积层的自由表面在静平衡状态下,与水平面形成的最大角度叫做休止角。
它是通过特定方式使粉体自然下落到特定平台上形成的。
休止角对分体的流动性影响最大,休止角越小,粉体的流动性越好。
休止角也称休止角、自然坡度角等。
4)崩溃角:给测量休止角的堆积粉体以一定的冲击,使其表面崩溃后圆锥体的底角称为崩溃角。
5)平板角:将埋在粉体中的平板向上垂直提起,粉体在平板上的自由表面(斜面)和平板之间的夹角与受到震动后的夹角的平均值称为平板角。
在实际测量过程中,平板角是以平板提起后的角度和平板受到冲击后除掉不稳定粉体的角度的平均值来表示的。
平板角越小,粉体的流动性越强。
一般地,平板角大于休止角。
6)分散度:粉体在空气中分散的难易程度称为分散度。
测量方法是将10克试样从一定高度落下后,测量接料盘外试样占试样总量的百分数。
分散度与试样的分散性、漂浮性和飞溅性有关。
如果分散度超过50%,说明该样品具有很强的飞溅倾向。
BT-1000型粉体特性测试仪测试项目包括粉体的振实密度、松装密度、休止角、平板角、崩溃角、差角、分散度、凝集度、流动度等项目。
它的特点是一机多用、操作简便、重复性好、测定条件容易改变、配套完整等。
1、振实密度测试过程示意图2、松装密度测试过程示意图3、休止角测试过程示意图四、实验步骤1、测定内容1、1休止角、崩溃角的测定打开仪器门,放好减振器及专用盘,再将休止角、崩溃角式样台放到专用接料盘中,装好出料口套筒,然后将1mm的筛子固定再振动架上,打开筛盖。
GJ03-10智能粉体特性测试仪技术性能与指标
一、产品简介:
粉体物性是粉体材料的基本特性,主要指粉体的流动性、飞溅性、密实性等。
研究粉体物性对粉体生产、加工、包装、运输、储存、应用等具有重要的实际意义。
GJ03-10智能粉体物性测试仪通过自动控制技术、CCD摄像技术、触摸屏技术实现粉体物性测试进入了科学化、智能化、精确化的时代。
具体测试项目包括休止角、崩溃角、振实密度、松装密度、流动性指数、喷流性指数等。
该仪器的特点是智能化程度高、一机多用、操作简便、重复性好、测定条件灵活多样、适合多种标准等,该仪器的研制成功,为粉体物性精确测量提供了一个科学的手段。
二、主要技术指标与性能:
序号测量项目性能指标
1 休止角0-90o图像法测量
2 崩溃角0-90o图像法测量
3 差角0-90o自动计算
4 平板角0-99+o (理论值)图像法测量
5 分散度指数0-25 自动计算
6 压缩度指数0-25 自动计算
7 空隙率0-100%(理论值)自动计算
8 松装密度固定体积或固定质量法
9 振实密度固定体积或固定质量法
10 均齐度指数0-15自动计算
11 凝集度指数0-15自动计算
12 流动性指数指数0-100自动计算
13 喷流性指数指数0-100自动计算
14 筛分粒度45-3000 微米自动计算。
多功能粉体特性综合测试仪技术要求多功能粉体特性综合测试仪一.功能概述:颗粒和粉末特性分析仪为来自ROOKO公司生产,主要为粉末和颗粒物理特性综合分析提供一个测试平台和解决方案.粉体物理特性有:粒度分布、表面积、松密度、孔隙率、真密度、粒附性、表面能、表面电荷、孔径分布、湿含量、抗张强度、剪切强度等,本仪器主要通过对粉末和颗粒振实密度、松装密度、堆积密度、安息角(休止角)、抹刀角、崩溃角、差角、剪切性、分散度、凝集度、流动性和流动时间等项目测量,综合反映粉体流动性和表征特性状况,本仪器通过自动化控制技术,减少人因素对测试过程之接触带来操作和计算误差,各试验项目之测试通过光、电、测控电子来实现;测试过程和测试结果通过软件曲线图位表示,并自动生成报表;为粉末粉体颗粒表征研究提供可靠和精准数据.二.技术参数资讯FT-2000A颗粒和粉末特性分析仪1. 振实密度:通过定体积法或者定质量法测得数据后,自动计算振实密度.测定振实密度和松装密度后,直接获得Hausner Ratio豪斯纳比(振实密度/松装密度)和压缩性指数(振实密度-松装密度/松装密度x100)数据.设定振动频率和振幅以及振动次数或者时间来获得数据.2.松装(自然堆积)密度:一定质量之粉末通过孔径漏斗自然流下后,填充容器之质量;无需在配置称重天平,数据直接显示,并自动计算松装(自然堆积)密度.3.安息角(休止角):自动获得角度数据,无需人工计算和操控;配置自动搅拌装置解决流动性较差之粉体和颗粒测试,粉末通过控制阀门自动流出,并由探头实时采集堆角在不通时间堆积角度变化数据,可以获得流动时间与堆角、质量与时间、体积与时间变化之过程曲线图位.4.流动时间:一定质量通过漏斗之时间,自动获得无需人工操作,自动开始和停止计时.流速测试定体积法和定质量法获得质量与时间;体积与时间关系数据.5. 崩溃角和平板角:由直接获得数据;由休止角与崩溃角可以直接获得差角数据.6. 空隙率:空隙率是指粉体中的空隙占整个粉体体积的百分比。
第六章粉体测试技术及仪器
内容: 6.1粉体浓度测试方法; 6.2粉体粒度测试技术及其应用; 6.3比表面积测量
6.1粉体浓度测试方法
粉体浓度通常是指在流体流动过程中一定的容积下粉体的质量。
气体含尘量的基本测量就是在悬浮气流中取得颗粒物试样进行称量。
“等速取样”就是满足在等速条件下气流没有扰动而且所有颗粒并且只有这些颗粒进入取样嘴的准则。
取样点应选在节流部位的下游6倍直径以上的地方或上游3倍直径以上的地方。
取样点应选择在沉降室、收尘器以及可能沉集大颗粒的长水平管道的出口端,否则应测定这些收尘装置中收到的粉尘并从测定值中扣除。
一、等速取样
二、滤纸光散射法
通过抽滤烟气中飘尘,测量清洁滤纸变脏或变黑引起的透光度改变,求得粉体浓度。
三、粉体浓度测量的其他方法
1.电容探头浓度测量技术
2.光纤探头浓度测量技术
3.光透射法浓度测量
6.2粉体粒度测试技术及其应用
1.显微镜法(microscopic method)
是将粒子放在显微镜下,根据投影像测得粒径的方法,主要测定几何粒径。
光学显微镜可以测定微米级的粒径,电子显微镜可以测定纳米级的粒径。
测定时应避免粒子间的重叠,以免产生测定的误差。
主要测定以个数、面积为基准的粒度分布。
2.库尔特计数法(coulter counter method)
将粒子群混悬于电解质溶液中,隔壁上设有一个细孔,孔两侧各有电极,电极间有一定电压,当粒子通过细孔时,粒子容积排除孔内电解质而电阻发生改变。
利用电阻与粒子的体积成正比的关系将电信号换算成粒径,以测定粒径与其分布。
测得的是等体积球当量径,粒径分布以个数或体积为基准。
混悬剂、乳剂、脂质体、粉末药物等可以用本法测定。
3.沉降法(sedimentation method)
是液相中混悬的粒子在重力场中恒速沉降时,根据Stocks方程求出粒径的方法。
Stocks方程适用于100μm以下的粒径的测定,常用Andreasen吸管法。
测得的粒径分布是以重量为基准的。
Stocks径的测定方法还有离心法、比浊法、沉淀天平法、光扫描快速粒度测定法等。
4.比表面积法(specific surface area method)
是利用粉体的比表面积随粒径的减少而迅速增加的原理,通过粉体层中比表面积的信息与粒径的关系求得平均粒径的方法。
可测定100μm的粒子,但不能测定粒度分布。
5.筛分法(sieving method)
应用最广的测量方法。
常用的测定范围在45μm以上。
方法:将筛子由粗到细按筛号顺序上下排列,将一定量粉体样品置于最上层中,振动一定时间,称量各个筛号上的粉体重量,求得各筛号上的不同粒径重量百分数,获得以重量为基准的筛分粒径分布及平均粒径。
筛号与筛号尺寸:筛号常用“目”表示。
“目”系指在筛面的25.4mm(1英寸)长度上开有的孔数。
如开有30个孔,称30目筛,孔径大小是24.5mm/30再减去筛绳的直径。
所用筛绳的直径不同,筛孔大小也不同。
因此必须注明筛孔尺寸。
各国的标准筛号及筛孔尺寸有所不同,中国药典在R40/3系列规定了药筛的九个筛号。
一、筛分粒度测试
套筛
目:是孔距直径及数目的意思,是指每平方英吋筛网上的空眼数目颗粒形状很复杂,通常有筛分粒度、沉降粒度、等效体积粒度、等效表面积粒度等表示方法。
筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸(25.4mm)宽度的筛网内的筛孔数表示,因而称之为“目数”。
目前国际上用等效体积颗粒的计算直径来表示粒径。
以μm或mm表示。
二、沉降粒度测试
基本沉降分析依据斯托克斯沉降定律进行定量测量,所测颗粒粒径为与颗粒具有相同沉降速度,同种材质球形颗粒的直径,又称为斯托克斯直径或等效阻力直径。
重力沉降分析
离心沉降分析
2.光透法
6.3比表面积测量
一、比表面积
所有颗粒的总表面积与其质量或体积之比,称为颗粒的
比表面积S。
可以根据S值的大小来比较同一种颗粒或粉料的大小程度。
颗粒比表面积测定方法的原理是基于以下关系:
S与近于常压下的空气或高真空的负压空气通过粉料层时空气渗透量的关系;S与粉料粒子表面吸附气体单分子层的关系;S与粉料粒度的换算关系。
二、气体透过法测量比表面积
用流体透过粉体层的流通速度或压差来测量定量粉体的表面积,根据理论模型计算出颗粒的比表面积。
Blaine(勃氏)定容透气测定
通过测定一定容积的气体通过粉末层的时间来测定颗粒的比表面积。
三、氮吸附法测量比表面积
低温氮吸附法是比表面积测量的标准方法
气体分子进入固体表面力场,由于相互作用而被吸附。
吸附量与压强间关系称为吸附等温线,有五种类型(Ⅰ)在2.5nm以下微孔吸附剂上的吸附等温线属于这种类型。
例如78K时N2在活性炭上的吸附及水和苯蒸汽在分子筛上的吸附。
(Ⅱ)常称为S型等温线。
吸附剂孔径大小不一,发生多分子层吸附。
在比压接近1时,发生毛细管和孔凝现象。
(Ⅲ)这种类型较少见。
当吸附剂和吸附质相互作用很弱时会出现这种等温线
(Ⅳ)多孔吸附剂发生多分子层吸附时会有这种等温线。
在比压较高时,有毛细凝聚现象。
(Ⅴ)发生多分子层吸附,有毛细凝聚现象。
1.吸附函数BET(Brunauer,Emmett,Teller)公式任何气体与固体间都能发生物理吸附范德华引力
越易液化的气体越容易被吸附
固体表面吸附了一个分子后,由于表面引力场的影响以及被吸附分子与气体分子间也有引力,其上面仍可再吸附一个吸附质分子---多分子层吸附
从测量的角度看,测量表面积需要测量出颗粒表面吸附的单层吸附剂的数量即可。
最常用的是BET公式,它描述了一定状态下吸附总量与单层吸附量的关系。
Basic assumption
Adsorption is multilayer.
Surface is uniform and there is not interacting force am ong the molecules adsorbed.adsorption heat above the f irst layer are the same and equal to the condensed heat o f gas.
BET吸附二常数公式
式中两个常数为c和Vm,c是与吸附热有关的常数,Vm 为铺满单分子层所需气体的体积。
p和V分别为吸附时的压力和体积,ps是实验温度下吸附质的饱和蒸汽压。
为了使用方便,将二常数公式改写为:
测出多个吸附点V-p,用实验数据
得一条直线
从直线的斜率和截距可计算两个常数值c和Vm,从Vm 可以计算吸附剂的比表面
Am是吸附质分子的截面积L--阿伏伽得罗常数
比压一般控制在0.05-0.35之间比压太低,建立不起多分子层物理吸附比压过高,容易发生毛细凝聚,使结果偏高如果吸附层不是无限的,而是有一定的限制,例如在吸附剂孔道内,至多只能吸附n层,则BET公式修正为三常数公式:
比压在0.35-0.60
若n=1,为单分子层吸附,上式可以简化为Langmuir公式若n=∞,(p/ps)∞→0,上式可转化为二常数公式。
凡孔截面尺寸约大于50nm的称为大孔(macropore);约在9~50nm范围的称为中孔(mesopore);约小于2nm的称为微孔(mlcropore)。
2.吸附法比表面积测量
测量比表面的气体吸附法绝大多数是测量吸附等温线
对通常在液氮浴沸点温度即77.K进行的氮气吸附,Am 取16.2×10-20m2。
当
Vm取cm3时,上式写为S=4.35Vm(m2)
比表面积测量中最常用的方法为单点BET静态容量法和流动色谱法。
使用BET公式测量表面积,测出多个吸附点V~p,
其直线区就是符合BET公式的范围。
由斜率a与截距b 可算出b
(1)BET单点法
BET图的直线截距很小,可忽略不计 b
只需测量一个吸附点V和p
(1)单点及多点BET比表面积测定,并可测定吸附常数C值
(2)直接对比法比表面积快速测定
(3)Langmuir比表面积测定
α实际上是氮在室温、压力为p2条件下的压缩因子与其在低温浴温度、同样压力下的压缩因子之比。
(2)动态色谱法
吸附平衡时相对压强p/p0,数值可由混合气流速u1与吸附气流速Un的流速比确定:
由相对压强各点得到的V和p/p0
作BET图,即可求出样品的比表面积。
常用脱附峰和标定降的面积比较,以计算吸附量
与静态气体吸附法比较,热解析色谱法的优点是明显的:
①比表面积测量范围宽。
②测量快速,如单点测量仅需半小时。
③系统不再需要高真空;不再使用易碎和复杂的玻璃管系统;不再接触有毒物质汞。
④参数自动记录,操作简单。