《电路分析》戴维南定理的解析与练习
- 格式:doc
- 大小:352.50 KB
- 文档页数:4
§2-6戴维宁定理内容: 戴维宁定理的定义戴维宁定理的证明应用戴维宁定理的步骤戴维宁定理的意义和注意事项一、戴维南定理内容i a3、数学表述:二、戴维南定理的证明i’a3、最简单等效电路三、应用戴维宁定理的步骤例:电路如图(a)所示,其中x 电流I =2A ,此时电压U 为何值?将虚线所示的两个单口网络N 1和N 2分别用戴维南等效电路代替,到图(b)电路。
V103V 202)1(+=×+×Ω=U gU U 单口N 1的开路电压U oc1可从图(c)电路中求得,列出KVL方程解:将20V电压源用短路代替,得到图(d)电路,再用外加电流源I 计算电压U 的方法求得R o1。
列出KVL方程IU I I gU U )2(322)()1(Ω+=×⎟⎞⎜⎛Ω×++×Ω=求R 01:最后从图(b)电路求得电流I 的表达式为xx x R R R R R U U I +Ω=+Ω+Ω−−−=++−=1V 821)V 5(V 3o2o1oc1oc2当只对电路中某一条支路或几条支路(记为N L )的电压电流感兴趣时,可以将电路分解为两个单口网络N L 与N 1的连接,如图(a)所示。
用戴维南等效电路代替更复杂的含源单口N 1,不会影响单口N L (不必是线性的或电阻性的)中的电压和电流。
代替后的电路[图(b)]规模减小,使电路的分析和计算变得更加简单。
四、意义和注意事项1、意义:2、注意:等效电源的电压方向与开路电压(短路电流)方向一致;当有受控源时,等效内阻可能出现“-”值;受控源支路可单独进行变换;而若控制支路进行变换时,受控源支路必须一起进行变换。
如书p57图(b)到(c)的变换。
习题:p452-3-2,2-3-3p81~832-8,2-14,2-16,。
电路中的戴维南定理解析电路中的戴维南定理是电路分析中常用的一种方法,它可以简化复杂的电路结构,使得我们能够更轻松地计算电流和电压。
本文将对戴维南定理进行解析,并探讨其在电路分析中的应用。
一、戴维南定理的基本原理戴维南定理,也叫戴维南-儒金定理,是由法国数学家戴维南和德国物理学家儒金独立提出的。
该定理提供了一种将复杂电路简化为等效电路的方法,从而更容易进行电路的分析和计算。
戴维南定理的基本原理可以总结为两点:1. 任何一个线性电路都可以用一个等效电动势和一个等效电阻来代替。
2. 这个等效电阻等于原始电路中所有电源电动势与电压源的内阻之比的总和。
二、戴维南定理的数学表达在数学上,戴维南定理可以通过以下公式来表达:I = E/R其中,I是电路中的电流,E是电路中的总电动势(电源的电动势之和),R是电路中的总电阻(包括电路中的电阻和电源的内阻之和)。
根据这个公式,我们可以计算电路中的电流,从而更好地了解电路的特性和性能。
三、戴维南定理的应用举例为了更好地理解戴维南定理在实际电路中的应用,下面将通过一个简单的电路示例进行说明。
假设有一个由三个电阻和一个电压源组成的混合电路,我们想要计算电路中的电流。
首先,我们可以根据戴维南定理将这个复杂的电路简化为一个等效电路。
根据戴维南定理,我们可以将这个复杂的电路简化为一个等效电动势和一个等效电阻。
其中,等效电动势等于电源的电动势之和,等效电阻等于电路中的电阻和电源的内阻之和。
然后,我们可以根据简化后的等效电路计算电路中的电流。
根据戴维南定理的公式,我们可以通过总电动势除以总电阻来计算电流的大小。
通过这个简单的示例,我们可以看到戴维南定理在电路分析中的应用。
它可以将复杂的电路结构简化为一个等效电路,从而方便我们进行电流和电压的计算。
四、戴维南定理的优点和局限性戴维南定理作为一种电路分析方法,具有以下优点:1. 简化电路结构:戴维南定理能够将复杂的电路结构简化为一个等效电路,从而减少计算的复杂性。
戴维宁定理例题例1 运用戴维宁定理求下图所示电路中的电压U0图1剖析:断开待求电压地址的支路(即3Ω电阻地址支路),将剩下一端口网络化为戴维宁等效电路,需恳求开路电压U oc和等效电阻R eq。
(1)求开路电压U oc,电路如下图所示由电路联接联络得到,U oc=6I+3I,求解得到,I=9/9=1A,所以U oc=9V(2)求等效电阻R eq。
上图电路中含受控源,需求用第二(外加电源法(加电压求电流或加电流求电压))或第三种(开路电压,短路电流法)办法求解,此刻独立源应置零。
法一:加压求流,电路如下图所示,依据电路联接联络,得到U=6I+3I=9I(KVL),I=I0´6/(6+3)=(2/3)I0(并联分流),所以U=9´(2/3)I0=6I0,R eq=U/I0=6Ω法二:开路电压、短路电流。
开路电压前面已求出,U oc=9V,下面需恳求短路电流I sc。
在求解短路电流的进程中,独立源要保存。
电路如下图所示。
依据电路联接联络,得到6I1+3I=9(KVL),6I+3I=0(KVL),故I=0,得到I sc=I1=9/6=1.5A(KCL),所以R eq=U oc/I sc=6Ω终究,等效电路如下图所示依据电路联接,得到留心:核算含受控源电路的等效电阻是用外加电源法仍是开路、短路法,要详细疑问详细剖析,以核算简练为好。
戴维南定理典型例子戴维南定理指出,等效二端网络的电动势E等于二端网络开路时的电压,它的串联内阻抗等于网络内部各独立源和电容电压、电感电流都为零时,从这二端看向网络的阻抗Zi。
设二端网络N中含有独立电源和线性时不变二端元件(电阻器、电感器、电容器),这些元件之间可以有耦合,即可以有受控源及互感耦合;网络N的两端ɑ、b接有负载阻抗Z(s),但负载与网络N内部诸元件之间没有耦合,U(s)=I(s)/Z(s)。
当网络N中所有独立电源都不工作(例如将独立电压源用短路代替,独立电流源用开路代替),所有电容电压和电感电流的初始值都为零的时候,可把这二端网络记作N0。
答案第一章电路模型和电路定律【题1】。
【题2】:D。
【题3】:300;-100。
【题4】:D。
【题5】【题6】:3;-5;-8。
【题7】:D。
【题8【题9】:C。
【题10】:3;-3。
【题11】:-5;-13。
【题12】:4(吸收);25。
【题13】:0.4。
【题14】【题15】。
;X。
【题16】【题17】;由回路ADEBCA列KVL得D列KCL CDEC列KVL式,得UAC=-7V。
【题18】:PPII12122222==;故I I1222=;I I12=;⑴KCL:43211-=I I;I185=A;U I IS=-⨯=218511V或16.V;或I I12=-。
⑵KCL:43211-=-I I;I18=-A;U S=-24V。
第二章电阻电路的等效变换【题1】:[解答]I=-+9473A=0.5 A;U Iab.=+=9485V;IU162125=-=ab.A;P=⨯6125. W=7.5 W;吸收功率7.5W。
【题2】:[解答]【题3】:[解答] C。
【题4】:[解答] 等效电路如图所示,I05=.A。
【题5】:[解答] 等效电路如图所示,I L=0.5A。
【题6】:[解答]【题7】:[解答]I=0.6A;U1=-2A=-12V;U2=2I+2=32V【题8】:[解答]由图可得U=4I-4。
【题9】:[解答]⑴U=-3 V 4⑵1 V电压源的功率为P=2 W (吸收功率)7⑶1 A 电流源的功率为P =-5 W (供出功率) 10【题10】:[解答]A第三章 电阻电路的一般分析方法【题1】:【题2】:I I 1330+-=;I I 1220++=;I I 2430--=;331301243I I I I -+--+=;解得:I 1=-1.5 A, I 2=-0.5 A, I 3=1.5 A, I 4=-3.5 A 。
【题3】:[解答]()()()11233241233418611218241231213+++--=+-++=+-+++=--⎧⎨⎪⎩⎪I I I I I I I ;I 1655=.A 【题4】:[解答]()()22224122321261212++-+=-++++=-⎧⎨⎩I I I I ;I 21=- A ;P =1 W 【题5】:[解答]答案不唯一,有多解。
戴维南定理测试题
例题1.电路如图所示,(1)用戴维南定理求I;(2)求3A电流源的功率。
例题2.电路和各元件参数如图所示,试求
(1)当RL=3时,电流I为1A,求此时的US的值;
(2)当RL为何值时可获得最大功率,此时获得的最大功率Pmax为多少;
(3)当电压源US调至何值时,RL两端的电压始终为零且与RL的值无关。
例题3.如图所示电路中,当开关打在2位置时,电流表读数为2A,当开关打在1位置时,电流表读数为1A,试求:
(1)ab虚线左侧部分电路的等效电源参数;
(2)电流源IS2的电流为多少?
(3)要使开光打在1位置时,电流表读数为0,电流源IS2的电流为多少?
例题4.电路如图所示,(1)用戴维南定理求电流I1;(2)计算电阻R4消耗的功率;(3)求恒流源IS的功率。
例题5.开关S置位置1时电压表读数为4V,求开关S置位置2时电压表的读数。
例题6.将图(a)所示电路等效成图(b)所示的电压源。
要求
(1)计算等效电压源的Uou,Rab;
(2)若在ab之间接入一个电流表,计算电流表读数(不考虑电流表内阻对电路的影响);
(3)若在ab之间接入一个电阻R,当R获得最大功率时,计算R的值和最大功率Pmax。
例题7.电路如图(a)所示。
已知图(b)所示电路中,电流表的读数是2A;图(c)(d)所示电路中的电流I1、I2分别是0.5A和1A。
求
(1)A部分电路的等效电源参数Uso、Ro的值;
(2)R和Is的值;
(3)图(a)电路中5欧姆电阻的功率。
电路分析戴维南定理与电流计算电路分析是电子工程中非常重要的一部分,它涉及到电路中各个元件的性质和相互关系。
在进行电路分析的过程中,戴维南定理和电流计算是两个基本而关键的概念。
本文将对这两个概念进行详细的介绍和解析。
一、戴维南定理戴维南定理是电路分析中一个非常有用的工具,它可以帮助我们简化复杂的电路,并找到我们所关心的电流或电压数值。
戴维南定理的核心思想是将被测电阻或电源通过一个等效电阻或等效电源替代,从而简化电路的分析过程。
为了更好地理解戴维南定理,我们先来看一个具体的例子。
假设我们有一个包含多个电阻的电路,我们想要计算某一点的电流。
按照戴维南定理,我们可以先将该点与电路中其他分支断开,并用一个电压源来保持该点电势恒定。
接下来,我们需要计算在这个条件下,通过该点的电流。
这个电流即为我们所求的结果。
除了计算电流,戴维南定理也可以用于计算电压。
当我们想要计算电路中某一分支的电压时,可以使用戴维南定理化简电路,并计算在等效电路中的电压值。
二、电流计算电流是电子电路中最基本的物理量之一,它描述了电荷在电路中的流动情况。
在电路分析中,我们常常需要计算电流来确定电路的工作状态和性能。
通常情况下,计算电路中的电流有两种方法:理论计算和实验测量。
理论计算是通过应用基本电路定律和电路分析技巧,结合元件的参数和拓扑结构,来推导出电流的数学表达式。
实验测量则是通过使用电流计或多用表等测量设备,直接测量电路中各个分支的电流值。
在实际应用中,为了确保电流计算的准确性,我们需要注意以下几点:1. 元件参数的准确性:电流计算所依赖的电阻、电容、电感等元件参数应尽可能精确,以避免计算结果的误差。
2. 电路拓扑结构的分析:在进行电流计算之前,需要先了解电路的布置和拓扑结构,分析电路中的节点、支路和回路,以确保计算的有效性。
3. 使用正确的电路定律:在进行电流计算时,需要正确地应用欧姆定律、基尔霍夫定律等电路定律,以确保计算过程的准确性和一致性。
《戴维南定理》习题练习、知识点1、二端(一端口)网络的概念:二端网络:具有向外引出一对端子的电路或网络。
无源二端网络:二端网络中没有独立电源。
有源二端网络:二端网络中含有独立电源。
2、戴维宁(戴维南)定理等效电路的电压 U OC 是有源二端网络的开路电压,即将负载 R L 断开后a 、b 两端之间的电压。
等效电路的电阻 R o 是有源二端网络中所有独立电源均置零(理想电压源用短路代替, 理想电流源用开路代替)后 ,所得到的无源二端网络 a 、b 两端之间的等效电阻。
源端络无二网无源二端网络可 化简为一个电阻匸戴维宁廣匸> |诺顿定理任何一个线性有源二端网络都可以用一个电压为 U oc 的理想电压源和一个电阻 R0串联的等效电路来代替。
如图所示:二、例题:应用戴维南定理解题戴维南定理的解题步骤:1•把电路划分为待求支路和有源二端网络两部分,如图1中的虚线。
2•断开待求支路,形成有源二端网络(要画图),求有源二端网络的开路电压UOC。
3•将有源二端网络内的电源置零,保留其内阻(要画图),求网络的入端等效电阻Rab。
4•画出有源二端网络的等效电压源,其电压源电压US=UOC (此时要注意电源的极性),内阻R0=Rab。
5•将待求支路接到等效电压源上,利用欧姆定律求电流。
【例1】电路如图,已知U仁40V , U2=20V,R仁R2=4」R3=13 ■'?,试用戴维宁定理求电流13。
⑵求等效电阻R0将所有独立电源置零(理想电压源用短路代替,理想电流源用开路代替)例L團解:(1)断开待求支路求开路电压UOC5 -u2R1 R240-204 4-2.5AUOC = U2 + I R2 = 20 +2.5 4 =30V或:UOC = U1 T R1 = 40 T2.5 4UOC也可用叠加原理等其它方法求。
=30V⑶画出等效电路求电流I3U OC _ 30R。
R3 _ 2 13=2AlA R)【例2】用戴维南定理计算图中的支路电流13。
《戴维南定理》习题练习
一、知识点
1、二端(一端口) 网络的概念:
二端网络:具有向外引出一对端子的电路或网络。
无源二端网络:二端网络中没有独立电源。
有源二端网络:二端网络中含有独立电源。
2、戴维宁(戴维南)定理
任何一个线性有源二端网络都可以用一个电压为U OC的理想电压源和一个电阻R0串联的等效电路来代替。
如图所示:
等效电路的电压U OC是有源二端网络的开路电压,即将负载R L断开后 a 、b两端之间的电压。
等效电路的电阻R0是有源二端网络中所有独立电源均置零(理想电压源用短路代替,理想电流源用开路代替)后, 所得到的无源二端网络 a 、b两端之间的等效电阻。
二、例题:应用戴维南定理解题
戴维南定理的解题步骤:
1.把电路划分为待求支路和有源二端网络两部分,如图1中的虚线。
2.断开待求支路,形成有源二端网络(要画图),求有源二端网络的开路电压UOC。
3.将有源二端网络内的电源置零,保留其内阻(要画图),求网络的入端等效电阻Rab。
4.画出有源二端网络的等效电压源,其电压源电压US=UOC(此时要注意电源的极性),内阻R0=Rab。
5.将待求支路接到等效电压源上,利用欧姆定律求电流。
【例1】电路如图,已知U1=40V,U2=20V,R1=R2=4,R3=13 ,试用戴维宁定理求电流I3。
解:(1) 断开待求支路求开路电压
U OC
U OC = U2+ I R2 = 20 + 4 = 30V
或:U OC = U1– I R1 = 40 –
4 = 30V
U OC也可用叠加原理等其它方法求。
(2) 求等效电阻R0
将所有独立电源置零(理想电压源
用短路代替,理想电流源用开路代替)
(3) 画出等效电路求电流I3
A
5.2
4
4
20
40
2
1
2
1=
+
-
=
+
-
=
R
R
U
U
I
Ω
=
+
⨯
=2
2
1
2
1
0R
R
R
R
R
A
2
13
2
30
3
OC
3
=
+
=
+
=
R
R
U
I
【例2】用戴维南定理计算图中的支路电流I3。
解:① 等效电源的电动势E 可由图1-58(b)求得
于是
或
② 等效电源的内阻R O可由图1-58(c)求得
因此
③ 对a和b两端讲,R 1和R2是并联的,由图1-58(a)可等效于图1-58(d)。
所以
【例3】用戴维南定理求图中5Ω电阻中的电流
I,并画出戴维南等效电路
【例4】试用戴维南定理计算图示电路中6欧电阻中的电流I。
()
6
3Ω
3Ω
5A
2A
- 20V +
题3图
【例5】计算图示电路中的电流I。
(用戴维南定理求解)(2A)
【例6】计算图示电路中的电流I。
(用戴维南定理求解)()
【例7】用戴维南定理求下图所示电路中的电流I(2A)
【例8】电路如图所示,R=Ω,试用戴维南定理求电阻R中的电流I。
()。