第5讲 勾股定理及应用
- 格式:doc
- 大小:378.69 KB
- 文档页数:6
第1讲勾股定理第一部分知识梳理1.勾股定理:直角三角形的两直角边的平方和等于斜边的平方。
若直角三角形的两条直角边为a、b,斜边为c,则a²+b²=c²。
2.勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a²+b²=c²,那么这个三角形是直角三角形。
3.满足a²+b²=c²的三个正整数,称为勾股数。
若a,b,c是一组勾股数,则ak,bk,ck(k为正整数)也必然是一组勾股数。
常用的几组勾股数有3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41等。
4.勾股定理的应用:①圆柱形物体表面上的两点间的最短距离;②长方体或正方体表面上两点间的最短距离问题。
5.直角三角形的判别:①定义,判断一个三角形中有一个角是直角;②根据勾股定理的逆定理,三角形一边的平方等于另外两边的平方和,则该三角形是直角三角形。
6.勾股定理中的方程思想:勾股定理三角形有一个直角的“形”的特征,转化为三边“数”的关系,因此它是数形结合的一个典范.对于一些几何问题,往往借助于勾股定理,利用代数方法来解决.把一条边的长设为未知数,根据勾股定理列出方程,解方程求出未知数的值,即使有时出现了二次方程,大多可通过抵消而去掉二次项。
7.勾股定理中的转化思想:在利用勾股定理计算时,常先利用转化的数学思想构造出直角三角形,比如立体图形上两点之间的最短距离的求解,解答时先把立体图形转化为平面图形,在平面图形中构造直角三角形求解。
8.拓展:特殊角的直角三角形相关性质定理。
第二部分精讲点拨考点1. 勾股定理【例1】在Rt△ABC中,已知两边长为3、4,则第三边的长为变式1 等腰三角形的两边长为10和12,则周长为______,底边上的高是________,面积是_________。
变式2 等边三角形的边长为6,则它的高是________变式3 在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C所对的边,(1)已知c=4,b=3,求a;(2)若a:b=3:4,c=10cm,求a、b。
勾股定理 复习讲义【知识回顾】1.基础知识点: 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等c ba HGF EDC B Abacb ac ca bc ab ab cc baED C B A8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
勾股定理知识点学习要求:学习重点是利用计算面积和拼图的方法探索并验证勾股定理借助三角形三边关系来判断一个三角形是否是直角三角形。
难点是各种拼图的理解和勾股定理的应用。
中考热点:主要考查勾股定理及直角三角形判定条件的应用和勾股数常与三角形其他知识结合考查。
一、探索勾股定理: 1.勾股定理(重点)内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 即:直角三角形的三边关系为:两直角边的平方和等于斜边的平方注:勾股定理揭示的是直角三角形三边关系的定理,只使用与直角三角形。
使用勾股定理时首先确定最长边即斜边。
2.勾股定理的证明(难点)勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:见右图四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形(22a b +>2c )和钝角三角形(22a b +<2c 的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用(重点)①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c b ,a = ②知道直角三角形一边,可得另外两边之间的数量关系。
第03讲勾股定理的应用(3种题型)【知识梳理】一.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.二.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.【考点剖析】题型一.勾股定理的实际应用例1.如图,一棵树从3m处折断了,树顶端离树底端距离4m,那么这棵树原来的高度是() A.8m B.5m C.9m D.7m【变式】如图在实践活动课上,小华打算测量学校旗杆的高度,她发现旗杆顶端的绳子垂到地面后还多出1m,当她把绳子斜拉直,且使绳子的底端刚好接触地面时,测得绳子底端距离旗杆底部5m,由此可计算出学校旗杆的高度是()A.8m B.10m C.12m D.15m例2.如图,一个直径为20cm的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.【变式】小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.题型二.平面展开-最短路径问题例3.如图,长方体的底面边长是1cm和3cm,高是6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么用细线最短需要()A.12cm B.10cm C.13cm D.11cm例4.一个上底和下底都是等边三角形的盒子,等边三角形的高为70cm,盒子的高为240cm,M为AB的中点,在M处有一只飞蛾要飞到E处,它的最短行程多少?【变式】如图①,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点的食物,需要爬行的最短路程是多少?(π取3)题型三:勾股定理中的折叠问题例5.如图,矩形纸片ABCD中,4AB=,3AD=,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1B.43C.32D.2【变式】如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知3CE cm=,8AB cm=,求图中阴影部分的面积.【过关检测】一.选择题1.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺2.如图,已知圆柱底面的周长为12cm,圆柱高为8cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.10cm B.20cm C.cm D.100cm3.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为()A.0.8米B.2米C.2.2米D.2.7米4.如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()A.10B.50C.120D.1305.如图,圆柱的高为8cm,底面半径为2cm,在圆柱下底面的A点处有一只蚂蚁,它想吃到上底面B处的食物,已知四边形ADBC的边AD、BC恰好是上、下底面的直径,问:蚂蚁吃到食物爬行的最短距离是cm.(π取3)6.《九章算术》中的“引葭赴岸”问题:今有池方一丈,葭(一种芦苇类植物)生其中央,出水一尺.引葭赴岸,适与岸齐,水深几何?其大意是:有一个边长为10尺的正方形池塘,一棵芦苇生长在它的正中央,高出水面1尺.如果把该芦苇拉向岸边,那么芦苇的顶部恰好碰到岸边(如图所示),则水深________尺.7.《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,未折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺,问折断处离地面的距离为.8.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根四尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB =10,BC=4,求AC的长.9.如图,一架25米长的梯子AB斜靠在一竖直的墙AO上,梯子底端B离墙AO有7米.(1)求梯子靠墙的顶端A距地面有多少米?(2)小燕说“如果梯子的顶端A沿墙下滑了4米,那么梯子的底端B在水平方向就滑动了4米.”她的说法正确吗?若不正确,请说明理由.10.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?11.我国古代的数学名著《九章算术》中记载“今有竹高一丈,末折抵地,去本三尺.问:折者高几何?”译文:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部3尺远.问:尺)原处还有多高的竹子?(1丈1012.如图,一个梯子AB,顶端A靠在墙AC上,这是梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米,底端将水平滑动了8米,求滑动前梯子底端与墙的距离CB是多少?13.(2022春•蜀山区期中)在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,(1)求高台A比矮台B高多少米?(2)求旗杆的高度OM;(3)玛丽在荡绳索过程中离地面的最低点的高度MN.14.如图,四边形ABCD是舞蹈训练场地,要在场地上铺上草坪网.经过测量得知:∠B=90°,AB=24m,BC =7m,CD=15m,AD=20m.(1)判断∠D是不是直角,并说明理由;(2)求四边形ABCD需要铺的草坪网的面积.15.如图,A,B两村在河L的同侧,A,B到河L的距离分别为1.5km和2km,AB=1.3km,现要在河边建一供水厂,同时向A,B 1.8万元,问水厂与A村的水平距离为多远时,能使铺设费用最省,并求出总费用约多少万元.。
专题02 勾股定理四大核心知识讲义【勾股定理证明】赵爽弦图ab c()22142c ab b a =⨯+-,化简得:222a b c +=.欧几里得证明方法证明:S 1+S 2=S 3;△ABF ≌△ADE →S △ABF =S △ADE →2 S △ADE =S 长方形AENM =S 正方形ABCD =2 S △ABF 同理,S MNPF =S 1 故S 1+S 2=S 3 方法3ABD C BD D BDDAC D S S S S '''''=++△△△梯形,即:()2211112222a b ab ab c ⨯+=++化简得:222a b c += 方法422211112222c ab ab a b ab ab ++=+++,化简得:222a b c +=.总统证明法A BD C A'D'C'a bca bcca bac bac bac bb ac()2211112222a b ab ab c ⨯+=++化简得:222a b c += 达芬奇证明法a 2+b 2+2×12ab =c 2+ ab ,a 2+b 2=c 2【勾股定理应用】【勾股数】1. 毕达哥拉斯学派提出2221,22,221a n b n n c n n =+=+=++(n 为正整数)是一组勾股数.2. 我国《九章算术》中提到:()2212a m n =-,()221,(2b mn c m n m n ==+、为正整数,m n >)时,,,a b c 构成一组勾股数; 3. a 2-b 2,2ab ,a 2+b 2(a 、b 为正整数,且a >b )4. 常见勾股数:3、4、5;5、12、13;6、8、10;7、24、25;9、40、41……5. 直角三角形三边长为a 、b 、c ,斜边c 上的高为h ,则:以111,,a b h为边的三角形是直角三角形.6. 若a 、b 、c 是一组勾股数,则ka 、kb 、kc (k 为正整数)是一组勾股数.【在做某些题时较为简便】 【几个经典图形】结论:S 阴影=S △结论:23c a b a ===、、结论: c a ==、 ∠A =∠B =30°结论:2c a S ==△、、结论:2h S =△、 【勾股定理逆定理证明】命题:由题设和结论组成.将原命题的题设与结论互换即为其逆命题.如:“对顶角相等”的逆命题为:“相等的角是对顶角”.勾股定理逆定理证法:(构造全等三角形)【典例解析】【题型一】勾股定理及其应用 赵爽弦图【例1】(2020·河南南阳市月考)下图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边()x y >,下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( ).A .①③B .①②③C .②④D .①②③④【答案】B .【解析】解:如图所示,∵△ABC 是直角三角形, ∴x 2+y 2=49,故①正确; 由图可知x -y =CE =2,故②正确;四个直角三角形的面积与小正方形的面积之和为大正方形的面积, 即:2xy +4=49,故③正确; 2xy =45, ∵x 2+y 2=49,∴(x +y )2=45+49=94,故④错误; 故答案为:B .【例2】(2021·沙坪坝区期末)我国古代著名的“赵爽弦图”的示意图如图所示,它是由四个全等的直角三角形围成的.若AC =2,BC =3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图所示“数学风车”,则这个风车的外围周长是()A.B.C.12D.12【答案】D.【解析】解:如图,CB=BD,∵AC=2,CD=2BC=6由勾股定理得:AD==AD+BD=3,+=.∴风车的外围周长是:4×()312故答案为:D.【变式1】(2021·四川资阳市期末)中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°.AC=b,BC=a,AB=c,请你利用这个图形解决下列问题:(1)试说明:a2+b2=c2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a+b)2的值.【答案】(1)见解析;(2)23.【解析】解:(1)大正方形面积为c2,直角三角形面积为12ab,小正方形面积为(b﹣a)2,∴c2=4×12ab+(a﹣b)2=2ab+a2﹣2ab+b2,即c2=a2+b2;(2)由图可知:(b﹣a)2=3,4×12ab=13﹣3=10,∴2ab=10,∴(a+b)2=(b﹣a)2+4ab=3+2×10=23.【变式2】(2021·浙江湖州市期末)在每个小正方形的边长为1的网格图形中.每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向外作四个全等的直角三角形,使四个直角顶点,,,E F G H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在图中所示的格点弦图中,正方形ABCD,此时正方形EFGH的面积为52.问:当格点弦图中的正方形ABCD时,正方形EFGH的面积的所有可能值是________(不包括52).【答案】36或50.【解析】解:设四个全等的直角三角形的直角边边长分别为a,b.则正方形EFGH的边长为a+b,即S EFGH=(a+b)2.①当a=5,b=1或a=1,b=5时,此时S EFGH=36.②当a =b , 此时S EFGH =52.③当a =b =S EFGH =50 故答案为:36或50.【变式3】(2020·山东威海市期末)“赵爽弦图”巧妙的利用面积证明了勾股定理.如图所示的“赵爽弦图”是用四个全等的直角三角形和一个小正方形拼成一个大正方形.若直角三角形两直角边分别为a ,()b a b >,且3ab =,大正方形的面积为8,则a b -=____.【解析】解:小正方形的边长为a -b ,ab =3, (a -b )2=8-2ab =2,∴a -b ;【变式4】(2020·河南南阳市期末)勾股定理是人类最伟大的十个科学发现之一,在《周髀算经》中就有“若勾三,股四,则弦五”的记载,汉代数学家赵爽为证明勾股定理创制的“赵爽弦图”也流传至今.迄今为止已有400多种证明勾股定理的方法.下面是数学课上创新小组验证过程的一部分.请认真阅读并根据他们的思路将后续的过程补充完整:将两张全等的直角三角形纸片按图1所示摆放,其中b a >,点E 在线段AC 上,点B 、D 在边AC 两侧,试证明:222+=a b c .【答案】见解析.【解析】证明:如图2,连接BD 、CD ,过点D 作DF ⊥BC 于F ,则DF =CE =b -a . ∵△ABC ≌△DAE ∴∠ABC =∠DAE ,∵△ABC 是直角三角形,∠ACB =90°, ∴∠ABC +∠BAC =90°, ∴∠DAB =∠DAE +∠BAC =90°.∵S 四边形ADCB =S △ADB +S △DCB =212c +1()2a b a -. S 四边形ADCB =S △ADC +S △ACB =21122b ab +,∴212c +1()2a b a -=21122b ab +, ∴a 2+b 2=c 2. 勾股定理与面积【例1】(2021·陕西西安市期末)如图是一棵勾股树,它是由正方形和直角三角形排成的,若正方形A ,B ,C ,D 的边长分别是4,5,3,4,则最大正方形E 的面积是___.【答案】66.【解析】解: A 、B 的面积和为S 1,C 、D 的面积和为S 2, S 1=42+52,S 2=32+42,则S 3=S 1+S 2,S 3=16+25+9+16=66. 故答案为:66.【例2】(2020·浙江杭州市)勾股定理相传在商代由商高发现,故又称“商高定理”.如图1,以直角三角形ABC 的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大的正方形内,三块阴影区域面积分别记为123,,S S S ,两个较小正方形纸片的重叠部分(六边形PQMNHG )的面积记为4S ,则1234,,,S S S S 的关系为( )A .1234S S S S +=+B .1324S S S S +=+C .1234S S S S ++=D .1234S S S S ++<【答案】C .【解析】解:设图1最大正方形的面积为S 5,较小正方形面积为S 6,最小正方形面积为S 7, 则S 5= S 6+ S 7,图2中空白部分面积为:S 6+ S 7-S 4, 而S 1+S 2+S 3+S 空白=S 5= S 6+ S 7, 即S 1+S 2+S 3+ S 6+ S 7-S 4 = S 6+ S 7 S 1+S 2+S 3= S 4 故答案为:C .【例3】(2020·扬州市期中)如图1,有一个面积为2的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,如图2,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长后,变成图3:“生长”10次后,如果继续“生长”下去,它将变得更加“枝繁叶茂”.随着不断地“生长”,形成的图形中所有正方形的面积和也随之变化.若生长n 次后,变成的图中所有正方形的面积用n S 表示,则n S =______.【答案】2n+2.【解析】解:经过n次生长后,所有正方形的面积和等于第一个正方形的面积的(n+1)倍,∴生长n次后,变成的图中所有正方形的面积S n=2n+2,故答案为:2n+2.【变式1】(2019·北京昌平区期中)有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出了2个小正方形(如图①),其中,3个正方形围成的三角形是直角三角形.再经过一次“生长”后,又生出了4个小正方形(如图②),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”,在“生长”了2019次后形成的图形中所有正方形的面积和是()A.2018 B.2019 C.2020 D.2021【答案】C.【解析】解:设直角三角形的是三条边分别是a,b,c.根据勾股定理,得a2+b2=c2,即正方形A的面积+正方形B的面积=正方形C的面积=1,生长1次后,所有的正方形的面积和是2,同理可得,生长2次后,所有的正方形的面积和是3,生长3次后,所有的正方形的面积和是4,⋯⋯所以,“生长”了2019次后形成的图形中所有的正方形的面积和是2020×1=2020.故答案为:C.【变式2】(2020·浙江期末)在ABC中,已知::5:12:13AC BC AB=,AD是ABC 的角平分线,DE AB⊥于点E.若ABC的面积为S,则ACD△的面积为()A.14S B.518S C.625S D.725S【答案】B.【解析】设AC=5k,BC=12k,AB=13k,∴AC2+BC2=AB2∴△ABC为直角三角形,∠C=90°,∵AD是△ABC的角平分线,DE⊥AB,∴∠CAD=∠BAD,∠C=∠AED =90°,∵AD=AD,∴△ACD≌△AED,∴S△ACD=S△AED,AE=AC=5k,∴BE=13k-5k=8k,S△BED:S△AED=8:5∴S△ACD=518S.故答案为:B.勾股定理及勾股数应用【例1】(2020·长汀县月考)如图,某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于Q、R处,且相距30海里.如果知道“远航”号沿北偏东50°方向航行,则“海天”号沿哪个方向航行?【答案】沿北偏西40°方向航行.【解析】解:PQ =16×1.5=24(海里), PR =12×1.5=18(海里),∵QR =30,242+182=302,即PQ 2+PR 2=QR 2,∴∠QPR =90°.由“远航”号沿北偏东50°方向航行可知,∠QPS =50°.则∠RPS =∠QPR -∠QPS =90°-50°=40°,即“海天”号沿北偏西40°方向航行.【例2】阅读:能够成为直角三角形三条边长的三个正整数a ,b ,c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:22221()21()2a m n b mnc m n ⎧=-⎪⎪=⎨⎪⎪=+⎩其中m >n >0,m ,n 是互质的奇数. 应用:当n =1时,求有一边长为5的直角三角形的另外两条边长.【答案】12,13或3,4.【解析】解:当n =1,a =12(m 2﹣1),b =m ,c =12(m 2+1), ∵直角三角形有一边长为5,∴当a =5时,12(m 2﹣1)=5,解得:m, 当b =5时,即m =5,得,a =12,c =13,当c =5时,12(m 2+1)=5,解得:m =±3, ∵m >0,∴m =3,得,a =4,b =3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.【例3】(2021·河南洛阳市期末)在Rt ABC △中,90ACB ∠=︒,5cm =BC ,12cm AC =,三个内角的平分线交于点P ,则点P 到AB 的距离PH 为( )A .1cmB .2cmC .3013cmD .6013cm 【答案】B . 【解析】解:在Rt △ABC 中,由勾股定理得:AB =13∵三个内角的平分线交于点P∴P 到三角形ABC 三边的距离相等,均为PH 的长S △ABC =S △APC +S △APB +S △BCP =12(AC +BC +AB )·PH S △ABC =12·BC ·AC ∴12×5×12=12×(5+12+13)·PH ∴PH =2故答案为:B .【变式1】(2020·浙江嘉兴市期末)如图,在ABC 中,13,17,AB AC AD BC ==⊥,垂足为D ,M 为AD 上任一点,则22MC MB -等于( )A .93B .30C .120D .无法确定【答案】C .【解析】解:由题意知∠ADB =∠ADC =90°∴由勾股定理得:AB 2=AD 2+BD 2,AC 2=AD 2+CD 2,∴AC 2-AB 2=CD 2-BD 2,即172-132= CD 2-BD 2同理,CM 2-MB 2=CD 2-BD 2=172-132=120故答案为:C .【变式2】阅读:所谓勾股数就是满足方程222x y z +=的正整数解,即满足勾股定理的三个正整数构成的一组数.我国古代数学专著《九章算术》一书,在世界上第一次给出该方程的解为:2212x m n ()=-,y mn =,2212z m n =+(),其中0m n >>,m ,n 是互质的奇数.应用:当3n =时,求一边长为8的直角三角形另两边的长.【答案】15,17.【解析】解:当x =8 时,()221382m -=, 解得m =5或m =-5(舍),∴y =mn =15,z =17.当y =8时,3m =8,m =83(舍)当z =8时,()221382m +=,解得m =(舍) 综上所述,当n =3时,一边长为8的直角三角形另两边的长分别为15,17.特殊三角形中的应用【例1】(2020·山东威海市期末)七巧板是大家熟悉的一种益智类玩具.用七巧板能拼出许多有趣的图案.小明将一个直角边长为20cm 的等腰直角三角形纸板,切割七块.正好制成一副七巧板,则图中阴影部分的面积为( )A .210cmB .225cm 2C 2D .225cm【答案】B .【解析】解:如图,BC =20,CD =BD =EM ,∴EG =GM ,∴EF =FG =5,∴S =12EF 2=252, 故答案为:B .【例2】(2021·北京房山区期末)如图甲,直角三角形ABC 的三边a ,b ,c ,满足222+=a b c 的关系.利用这个关系,探究下面的问题:如图乙,OAB 是腰长为1的等腰直角三角形,90OAB ∠=︒,延长OA 至1B ,使1AB OA =,以1OB 为底,在OAB 外侧作等腰直角三角形11OA B ,再延长1OA 至2B ,使121A B OA =,以2OB 为底,在11OA B 外侧作等腰直角三角形22OA B ,……,按此规律作等腰直角三角形n n OA B (1n ≥,n 为正整数),则22A B 的长及20212021OA B 的面积分别是( )A .2,20202B .4,20212C .20202D .2,20192【答案】A . 【解析】解:由题意可得:OA =AB =AB 1=1,OB 1=2,∵△OA 1B 1为等腰直角三角形,∴OA 1=A 1B 1,∴OB 2=2OA 1=OA 2=A 2B 2=2,……∴OA n=n, ∵S △OAB =12,S △OA 1B 1=1,S △OA 2B 2=2,…… ∴S △OAnBn =12n -,∴S △OA 2021B 2021=20202,故答案为:A .【例3】(2021·福建厦门期末)如图,△ABC 与△BED 全等,点A ,C 分别与点B ,D 对应,点C 在BD 上,AC 与BE 交于点F .若∠ABC =90°,∠D =60°,则AF :BD 的值为_____.【答案】3:4.【解析】解:根据题意知,△ABC ≌△BED ,则∠ACB =∠D =60°,∠ABC =∠BED =90°,AC =BD ,∴AC //ED .∴∠AFB =∠E =90°∴∠DBE =∠A =30°设AF =x ,BF =a ,在Rt △ABF 中,AB =2BF =2a ,由勾股定理得:(2a )2=a 2+x 2,即a=3x ,BF=3x ,AB=3x 同理,在Rt △ABC 中,CF =13x ,AC =AF +CF =43x , ∴3443AF x AC x == 故答案为:3:4.【变式1】(2021·安徽安庆市期末)如图,在平面直角坐标系中,12OA =,130AOx ∠=︒,以1OA 为直角边作12Rt OA A △,并使1260AOA ∠=︒,再以12A A 为直角边作123Rt A A A △,并使21360A A A ∠=︒,再以23A A 为直角边作234Rt A A A △,并使32460A A A ∠=︒,…,按此规律进行下去,则2020A 的坐标是_______.【答案】(0,1-31010).【解析】解:∵∠A 1Ox =30°,∠A 1OA 2=60°,∴∠A 2Ox =90°,A 2在y 轴上,在Rt △A 1A 2O 中,OA 1=2,∴OA 2=2OA 1=4,A 1A 2∴A 2的纵坐标为:4,∴A 2(0,4),同理,A 3(-1),A 4(0,-8),A 1在第一象限,A 2在y 轴正半轴上,A 3在第二象限,A 2在y 轴负半轴上,由此发现:点A 1,A 2,A 3,A 4,…,A n ,每四次一循环,2020÷4=505,∴点A 2020在y 轴的负半轴上,纵坐标是:20201010131⎡⎤--=-+⎢⎥⎣⎦, 故答案为:(0,1-31010).影响时间【例1】如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点160m处有一所医院A,当卡车P沿道路ON方向行驶时,在以P为圆心,100米为半径的圆形区域内都会受到噪声的影响.若已知卡车的速度为250米/分钟,则卡车P沿道路ON方向行驶一次时,给医院A带来噪声影响的持续时间是分钟.【答案】0.48.【解析】解:过点A作AD⊥ON于D,∵∠MON=30°,AO=160m,∴AD=12OA=80m,以A为圆心100m为半径画圆,交ON于B、C两点,∵AD⊥BC,∴BD=CD=12 BC,在Rt△ABD中,BD60m==,∴BC=120m,∵卡车的速度为250米/分钟,∴卡车经过BC的时间=120÷250=0.48分钟,故答案为:0.48.【例2】(2021·四川资阳期末)拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?【答案】(1)会受噪声影响,见解析;(2)2分钟.【解析】解:(1)学校C会受噪声影响.理由:过点C作CD⊥AB于D,∵AC=150m,BC=200m,AB=250m,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB,∴150×200=250×CD,∴CD=150200250⨯=120(m),∵拖拉机周围130m以内为受噪声影响区域,∴学校C会受噪声影响.(2)当EC=130m,FC=130m时,正好影响C学校,∵ED=(m),∴EF=50×2=100(m),∵拖拉机的行驶速度为每分钟50米,∴100÷50=2(分钟),即拖拉机噪声影响该学校持续的时间有2分钟.【例3】(2021·重庆万州期末)“某市道路交通管理条例”规定:小汽车在城市街路上行驶速度不得超过40千米/时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方18米的C 处,过了2秒后到达B 处(BC ⊥AC ),测得小汽车与车速检测仪间的距离AB 为30米,请问这辆小汽车是否超速?若超速,则超速了多少?【答案】超速,每小时超速3.2千米.【解析】解:根据题意,得AC =18,AB =30,∠C =90°,在Rt △ACB 中,由勾股定理可得:BC =24即小汽车2秒行驶24米,即小汽车行驶速度为:43.2千米/时,43.2>40,所以小汽车超速行驶,超速3.2(千米/时).【变式1】(2021·重庆期末)如图,公路MN 和公路PQ 在点P 处交汇,且30QPN ∠=︒,在A 处有一所中学,120AP =米,此时有一辆消防车在公路MN 上沿PN 方向以每秒5米的速度行驶,假设消防车行驶时周围100米以内有噪音影响.(1)学校是否会受到影响?请说明理由.(2)如果受到影响,则影响时间是多长?【答案】(1)学校受到噪音影响,见解析;(2)32秒.【解析】解:(1)学校受到噪音影响.理由如下:过A 作AB ⊥MN 于B ,∵PA =120,∠QPN =30°∴AB =12PA =60 而60<100,故消防车在公路MN 上沿PN 方向行驶时,学校受到噪音影响;(2)以点A 为圆心,100m 为半径作圆交MN 于C 、D ,在Rt △ABC 中,AC =100,AB =60,由勾股定理得:BC =80同理,BD =80∴CD =160,拖拉机在线段CD 上行驶所需要的时间为:160÷5=32(秒),∴学校受影响的时间为32秒.【变式2】(2020·吉林长春市期末)《城市交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70千米/时.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到车速检测仪正前方30米的处,过了2秒后,小汽车行驶至处,若小汽车与观测点间的距离为50米,请通过计算说明:这辆小汽车是否超速?【答案】超速.【解析】解:根据题意,得AC =30m ,AB =50m ,∠C =90°,在Rt △ACB 中,BC =40m∴小汽车的速度为40÷2=20 m /s =72 km /h >70 km /h ;A C BAB∴这辆小汽车超速.最值问题【例1】(2021·江苏泰州市期末)已知△ABC 中,AB =AC =5,BC =6,动点P 在线段BC 上从B 点向C 点运动,连接AP ,则AP 的最小值为等于________.【答案】4.【解析】解:过A 作AP ⊥BC 于P ,∵AB =AC =5,∴BP =12BC =3, 在Rt △ABP 中,由勾股定理得,AP =4由垂线段最短知,AP 的最小值为4故答案为:4.【例2】(2021·重庆渝北区期末)如图,在等腰ABC 中,13AB AC ==,AD 是ABC 的高,12AD =,10BC =,E 、F 分别是AC 、AD 上一动点,则CF EF +的最小值为______.【答案】12013. 【解析】解:作E 关于AD 的对称点M ,连接CM 交AD 于F ,连接EF ,过C 作CN ⊥AB 于N ,∵AB =AC =13,BC =10,AD 是BC 边上的高,∴BD =DC =5,AD ⊥BC ,AD 平分∠BAC ,在Rt △ABD 中,AD =12,∴S △ABC =12×BC ×AD =12×AB ×CN , ∴CN =BC ×AD ÷AB =12013, ∵E 关于AD 的对称点M ,∴EF =FM ,∴CF +EF =CF +FM =CM ,根据垂线段最短得出:CM ≥CN ,即CF +EF ≥12013, 即CF +EF 的最小值是12013, 故答案为:12013. 【例3】(2021·江苏连云港市期末)如图,90MON ∠=︒,已知ABC ∆中,10AC BC ==,12AB =,ABC ∆的顶点A 、B 分别在边OM 、ON 上,当点B 在边ON 上运动时,点A 随之在边OM 上运动,ABC ∆的形状保持不变,在运动过程中,点C 到点O 的最大距离为( )A .12.5B .13C .14D .15【答案】C .【解析】解:取AB的中点D,连接CD∵AC=BC=10,AB=12,∵点D是AB边中点,∴BD=12AB=6,CD⊥AB,∴CD=8,连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值=OD+CD,∵△AOB为直角三角形,D为斜边AB的中点,∴OD=12AB=6∴OD+CD=6+8=14,即OC的最大值=14,故答案为:C.新定义问题【例1】(2020·渠县月考)阅读下面的情景对话,然后解答问题:老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.小华:等边三角形一定是奇异三角形!小明:那直角三角形是否存在奇异三角形呢?(1)根据“奇异三角形”的定义,请你判断小华的说法:“等边三角形一定是奇异三角形”______正确(填“是”或“不是”)(2)在Rt ABC中,两边长分别是a=10c=,这个三角形是否是奇异三角形?请说明理由.【答案】(1)是;(2)①当c为斜边时,Rt△ABC不是奇异三角形;②当b为斜边时,Rt△ABC 是奇异三角形.【解析】解:(1)设等边三角形的边长为a,∵a2+a2=2a2,∴等边三角形一定是奇异三角形,∴“等边三角形一定是奇异三角形”是正确的,故答案为:是;(2)①当c为斜边时,Rt△ABC不是奇异三角形;②当b为斜边时,Rt△ABC是奇异三角形;理由如下,分两种情况:①当c为斜边时,b=∴a=b,∴a2+c2≠2b2(或b2+c2≠2a2),∴Rt△ABC不是奇异三角形;②当b为斜边时,b ,∵a2+b2=200,∴2c2=200,∴a2+b2=2c2,∴Rt△ABC是奇异三角形.【例2】(2021·北京昌平区)定义:点P是ABC内部的一点,若经过点P和ABC中的一个顶点的直线把ABC平分成两个面积相等的图形,则称点P是ABC关于这个顶点的均分点.例如图中,点P是ABC关于顶点A的均分点.(1)下列图形中,点D一定是ABC关于顶点B的均分点的是________;(填序号)(2)如图,在ABC 中,9,010BAC BC ︒∠==,点P 是ABC 关于顶点A 的均分点,直线AP 与BC 交于点D ,当BP AD ⊥时,4BP =,求CP 的长.【答案】(1)④;(2)【解析】解:(1)①D 点在直线AE 上,故D 点不是△ABC 关于顶点B 的均分点. ②D 点在直线AE 上,故D 点不是△ABC 关于顶点B 的均分点.③不能推出AE =EC ,即不能说明△ABE 和△BCE 面积相等,故不能证明D 点是△ABC 关于顶点B 的均分点.④由AE =EC ,可知△ABE 和△BCE 面积相等,所以D 点是△ABC 关于顶点B 的均分点. 故答案为:④.(2)过点C 点作CE ⊥AP 于E ,∵点P是△ABC关于顶点A的均分点,BC=10,∴BD=CD=5,在Rt△BPD中,由勾股定理得:PD=3,易证:△BPD≌△CDE,∴PD=DE=3,PB=CE=4,∴PE=2PD=6在Rt△PEC中,由勾股定理得:PC【例3】(2020·浙江嘉兴市期末)我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,这两边交点为勾股顶点.(1)特例感知①等腰直角三角形_________勾股高三角形(请填写“是”或者“不是”);②如图1,已知ABC为勾股高三角形,其中C为勾股顶点,CD是AB边上的高.若AD=,试求线段CD的长度.BD=1(2)深入探究>,CD是AB边上试如图2,已知ABC为勾股高三角形,其中C为勾股顶点且CA CB探究线段AD与CB的数量关系,并给予证明;【答案】(1)①是;②2;(2)见解析.【解析】解:(1)是;②由题意知,CD⊥AB,BD AD=1,由勾股定理可得:BC2=DC2+BD2=DC2+5,AC2=CD2+1,∵△ABC为勾股高三角形,C为勾股顶点,CD是AB边上的高,∴CD2=BC2-AC2,∴CD2=4,解得:CD=2(-2舍去);(2)AD=CB,∵△ABC为勾股高三角形,C为勾股顶点且CA>CB,CD是AB边上的高,∴CD2=AC2-BC2,∵CD⊥AB∴AC2-CD2=AD2∴BC2=AD2∴BC=AD【变式1】我们知道,到线段两端距离相等的点在线段的垂直平分线上.由此,我们可以引入如下新定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.(1)如图1,点P在线段BC上,∠ABP=∠APD=∠PCD=90°,BP=CD.求证:点P 是△APD的准外心;(2)如图2,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,△ABC的准外心P在△ABC 的直角边上,试求AP的长.【答案】(1)见解析;(2)AP的长为32或2或78.【解析】解:(1)证明:∵∠ABP=∠APD=∠PCD=90°,∴∠APB+∠P AB=90°,∠APB+∠DPC=90°,∴∠P AB=∠DPC,∴△ABP≌△PCD,∴AP=PD,∴点P是△APD的准外心;(2)解:∵∠BAC=90°,BC=5,AB=3,∴AC=4,当P点在AB上,P A=PB,则AP12=AB32=;当P点在AC上,P A=PC,则AP12=AC=2,当P 点在AC 上,PB =PC ,如图,设AP =t ,则PC =PB =4﹣x ,在Rt △ABP 中,32+t 2=(4﹣t )2,解得t 78=, 即此时AP 78=, 综上所述,AP 的长为32或2或78. 【变式2】(2021·浙江宁波市)定义:如果一个三角形中有两个内角α,β满足290αβ+=︒,那我们称这个三角形为“近直角三角形”.(1)若ABC 是“近直角三角形”,90B ∠>︒,50C ∠=︒,则A ∠=_____度;(2)如图,在Rt ABC △中,90BAC ∠=︒,3AB =,4AC =.若CD 是ACB ∠的平分线,①求证:BDC 是“近直角三角形”;②求BD 的长.(3)在(2)的基础上,边AC 上是否存在点E ,使得BCE 也是“近直角三角形”?若存在,直接写出....CE 的长;若不存在,请说明理由.【答案】(1)20,(2)①见解析;②53;(3)52或74. 【解析】解:(1)∠B 不可能是α或β,当∠A =α时,∠C =β=50°,此时,α+2β=90°,不成立当∠A =β,∠C =α=50°时,β=20°(2)①∵CD 平分∠ACB ,∴∠ACB=2∠BCD又∠BAC=90°∴∠ACB+∠B=90°即2∠BCD+∠B=90°∴△BCD是“近直角三角形”.②过点D作DH⊥BC于H在Rt△BAC中,由勾股定理得:AC=5 可得:△ACD≌△HCD∴DH=AD,AC=CH=4,∴BH=1设BD=x,则DH=3-x,在Rt△BDH中,x2=(3-x)2+1,解得:x=53,即BD=5 3 .(3)①过点E作EF⊥BC于F,设CE=x,则AE=4-x,EF=4-x由AB=BF=3得:CF=2,在Rt△CEF中,x2=22+(4-x)2,解得:x=5 2②当∠ABE =∠C 时,延长EA 至G ,使得AE =AG ,根据条件可得:△ABG ≌△ABE ,∴∠GBA =∠C =∠EBA由∠GBA +∠G =90°,知∠C +∠G =90°,故∠GBC =90°设CE =x ,则AE =AG =4-x ,∴(4-x )2+32=(8-x )2-52,解得:x =74综上所述,满足题的CE 值为52或74. 【变式3】(2021·浙江宁波期末)定义:若一个三角形存在两边平方和等于第三边平方的3倍,则称此三角形为“平方倍三角形”.(12,次三角形是否为平方倍三角形?请你作出判断并说明理由;(2)若一个直角三角形是平方倍三角形,求该直角三角形的三边之比(结果按从小到大的顺序排列);(3)如图,Rt ABC 中,90ACB ∠=︒,5BC =,CD 为ABC 的中线,若BCD △是平方倍三角形,求ABC 的面积.【答案】(1)是;(2)1:1;(3252. 【解析】解:(1)此三角形是平方倍三角形,理由如下:∵22223+=⨯,满足是平方倍三角形的定义,2的三角形是平方倍三角形;(2)在Rt ∆ABC 中,则a 2+b 2=c 2,∵Rt ∆ABC 是平方倍三角形,∴c 2+b 2=3a 2,∴a 2+b 2=3a 2-b 2∴a =b ,c a故该直角三角形的三边之比为1:1;(3)∵Rt △ABC 中,CD 为△ABC 的中线,∴CD =12AB =AD =BD , 设CD =12AB =AD =BD =x ,则AB =2x , ∵AB >BC ,∴2x >5,即:x >52, ∵△BCD 是平方倍三角形,①当BD 2+CD 2=3BC 2,即x 2+x 2=3×52,解得:x (舍负),∴AB =2x =AC =∴△ABC 的面积=152⨯= ②当BC 2+BD 2=3DC 2,则52+x 2=3x 2,解得:x =2(舍负),∴AB =2x =AC =5,∴△ABC的面积=2555122⨯⨯=,综上所述,△ABC 25 2.【题型二】勾股定理逆定理及其应用判断三角形形状【例1】(2021·江苏苏州市期末)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5 D.a:b:c=3:4:5【答案】C.【例2】(2021·山西长治市期末)如图,每个小正方形的边长都相等,A,B,C是小正方形的顶点,则ABC∠的度数为()A.45︒B.50︒C.55︒D.60︒【答案】A.【解析】解:如图,连接AC,由题意可得:22221310,125=AB AC BC=+==+=∴AC=BC,AB2=AC2+BC2,∴△ABC是等腰直角三角形,∴∠ABC=∠BAC=45°,故答案为:A.【变式1】(2021·浙江绍兴市期末)如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC.设AB=x,若ABC为直角三角形,则x=__.【答案】43或53.【解析】解:∵在△ABC中,AC=1,AB=x,BC=3-x ∴1+x>3-x,1+3-x>x解得:1<x<2.①∵1<x,∴AC不能为斜边,②若AB为斜边,则x2=(3-x)2+1,解得x=53,满足1<x<2,③若BC为斜边,则(3-x)2=1+x2,解得x=43,满足1<x<2,故答案为:43或53.【变式2】(2021·江西吉安市期末)如图,在四边形ABCD中,CD=AD=,∠D=90°,AB=5.BC=3.(1)求∠C的度数;(2)求四边形ABCD的面积.【答案】(1)135°;(2)10.【解析】解:连接AC,如图,∵∠D=90°,∴AD2+CD2=AC2∵CD=AD=∴AC=4∵AB=5.BC=3∴AC2+BC2=AB2∴∠ACB=90°∵CD=AD∴∠ACD=45°∴∠BCD=∠ACB+∠ACD=135°. (2)S四边形ABCD=S△ABC+S△ACD=1122AC BC AD CD ⨯+⨯=114322⨯⨯+⨯=10.【变式3】(2021·广东佛山市期末)在△ABC中,(1)如图1,AC=15,AD=9,CD=12,BC=20,求△ABC的面积;(2)如图2,AC=13,BC=20,AB=11,求△ABC的面积.【答案】(1)150;(2)66.【解析】解:(1)∵AC=15,AD=9,CD=12 ∴CD2+AD2=AC2,∴∠ADC=90°,∠BDC=90°在Rt△BCD中,由勾股定理得:BD=16∴AB=AD+BD=25∴S△ABC=112512150 22AB CD⋅=⨯⨯=.(2)过点C作CD⊥AB于点D,则∠ADC=∠BDC=90°设AD=x,则BD=x+11由勾股定理得:CD2=132-x2=202-(x+11)2,解得:x=5∴CD2=144,即CD=12,∴S△ABC=11111222AB CD⋅=⨯⨯=66.三角形存在性问题【例1】(2021·福建泉州市期末)Rt△ABC中,∠ACB=90°,AC=3,AB=5.图1 图2(1)如图1,点E在边BC上,且∠AEC=2∠B.①在图1中用尺规作图作出点E,并连结AE(保留作图痕迹,不写作法与证明过程);②求CE的长.(2)如图2,点D为斜边上的动点,连接CD,当△ACD是以AC为底的等腰三角形时,求AD的长.【答案】(1)①见解析;②78;(2)2.5.【解析】解:(1)①作∠BAE=∠B②由勾股定理,得BC=4∵∠AEC=∠B+∠BAE,又∵∠AEC=2∠B,∴∠BAE=∠B ,∴BE=AE,.设CE=x,则BE=AE=4-x,在Rt△AEC中,x2+32=(4-x)2,∴x=7 8 .(2)AC为底时,AD=CD,∴∠A=∠DCA∵∠A+∠B=90°,∠DCA+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,即AD =BD =2.5.【例2】(2021·广东佛山市期末)如图,在Rt ABC 中,90ACB ∠=︒,20AB cm =,16AC cm =,点P 从点A 出发,以每秒1cm 的速度向点C 运动,连接PB ,设运动时间为t 秒(0t >)(1)求BC 的长.(2)当PA PB =时,求t 的值.【答案】(1)12;(2)252. 【解析】解:(1)由勾股定理可得:BC 2+AC 2=AB 2,BC ;(2)由题意知P A =PB =t ,PC =16-t ,在Rt △PCB 中,(16-t )2=t 2-122,解得:t =252, ∴当点P 运动到P A =PB 时,t 的值为252. 【变式1】(2020·南阳市月考)如图,在Rt ABC △中,90ABC ∠=︒,20AB =,15BC =,点D 为AC 边上的动点,点D 从点C 出发,沿边CA 往A 运动,当运动到点A 时停止,若设点D 运动的时间为t 秒,点D 运动的速度为每秒2个单位长度.(1)当2t =时,CD =______,AD =______;(请直接写出答案)(2)当t 为何值时,CBD 是直角三角形;(写出解答过程)(3)求当t 为何值时,CBD 是等腰三角形?并说明理由.【答案】(1)4,21;(2)92或252;(3)254或152或9.【解析】解:(1)t=2时,CD=2×2=4,∵∠ABC=90°,AB=20,BC=15,∴AC=,AD=AC-CD=25-4=21;故答案为:4,21;(2)①∠CDB=90°时,S△ABC=12AC•BD=12AB•BC,∴BD=12,CD=,∴2t=9,解得:t=92(秒);②∠CBD=90°时,点D和点A重合,∴2t=25,解得:t=252(秒);综上所述,当t=92或252秒时,△CBD是直角三角形;(3)①CD=BD时,过点D作DE⊥BC于E,则CE=BE,DE∥AB,∴CD=AD=12AC=252,∴2t=25 2,解得:t=254(秒);②CD=BC时,CD=15,∴2t=15,解得:t=152(秒);③BD=BC时,过点B作BF⊥AC于F,同理可得:CF=9,则CD=2CF=18,∴2t=18,t=9(秒);综上所述,当t=254或152或9秒时,△CBD是等腰三角形.41。
第九讲勾股定理知识概要1、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么222a b c+=.(注:应用勾股定理的关键在于构造直角三角形)2、勾股定理逆定理:如果三角形的三边长a,b,c满足222+=,那么这个三角形是直角三角形,其a b c中c为斜边。
3、勾股定理的作用|(1)已知直角三角形的两边求第三边.(2)已知在特殊直角三角形中,直角三角形的一边,求另两边的关系.(3)用于证明平方关系的问题.4、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如c).(2)验证2c与2a+2b是否具有相等关系.若2c=2a+2b,则△ABC是以∠C=90°的直角三角形;:若2c≠2a+2b,则△ABC不是直角三角形.【注意】当2c≠2a+2b时有两种情况.(1)当2a+2b<2c时,此三角形为钝角三角形;(2)当2a+2b>2c时,此三角形为锐角三角形,其中c为三角形的最大边.5、常用勾股数组:(3, 4 ,5); (5, 12 ,13); (6, 8, 10); (7, 24, 25); (8, 15, 17) ; (9, 40 ,41);(20,21,29)……6、一组勾股数中各数的相同的正整数倍得到的一组新数还是勾股数。
7、一组勾股数中各数的相同的正数倍得到的一组新数为边,仍构成直角三角形。
8、(9、直角三角形的性质:(1)直角三角形中斜边最大;(2)直角三角形中有勾股定理;(3)直角三角形中,30度角所对应直角边等于斜边的一半;(4)直角三角形中,斜边上的中线等于斜边的一半;(5)等积原理(ab=ch )10、双垂图中的射影定理例题精讲~【例1】如图,证明勾股定理.【例2】填空题:》在△ABC 中,∠C 为直角.(1)若BC =2, AC=3则AB = ; 若BC =5, AB=13.则AC = ;若AB=61, AC=11.则BC = .(2)若BC ∶AB =3∶5且AB =20则AC= .(3)若∠A=60°且AC=2cm 则AB= cm ,BC= cm.【巩固练习】1、2、Rt △ABC 中,C ∠是直角,3、(1)已知6BC =,8AC =,求AB 之长;4、(2)已知25AB =,14BC =,求AC 之长;(3)板块一 勾股定理aaa ab b] b@(3)已知13AC =,19AB =,求BC 之长.2、已知等边三角形的边长为a ,求等边三角形一边上的高和这等边三角形的面积.¥【例 3】已知60A ∠=︒,90B D ∠=∠=︒,2AB =,1CD =,求BC 和AD 的长.>【巩固练习】已知:如图所示,在四边形ABCD 中,AB=AD=8,∠A=60°,∠D=150°,四边形ABCD 的周长为32,求BC 和CD 的长.《【例 4】如图,已知AB =13,BC =14,AC =15,BC AD ⊥于D ,求AD 的长.'ABCD【 BA DCB AD【例 5】如图,已知:︒=∠90C ,CM AM =,AB MP ⊥于P .求证:222BC AP BP += ."【例 6】如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .$【巩固练习】 1、如图,已知:在ABC ∆中,︒=∠90ACB ,分别以此直角三角形的三边为直径画半圆,试说明图中阴影部分的面积与直角三角形的面积相等.`P M B C A ; A B S 12、图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是A.13 B.26 C.47 D.94^3、在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是1S、2S、3S、4S,则1S+2S+3S+4S=____$"1S2S3S4231【例7】在△ABC 中,如果a ∶b ∶c =1∶3∶2, 那么∠A= °,∠B= °∠C= °如果a ∶b ∶c =1∶1∶2, 那么∠A= °,∠B= °∠C= °`【例 8】判断由线段a ,b ,c 组成的三角形是不是直角三角形:(1)15a =,8b =,17c =;(2)13a =,14b =,15c =;(3)7a =,24b =,25c =.【例 9】已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c , 《试判断△ABC 的形状《【例 10】如图,在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD ⊥BD .,板块二 勾股定理逆定理A【例 11】已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点即3CE =EB求证:AF ⊥FE .(》【例 12】如图,已知四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.|【巩固练习】1.若一个三角形的周长为123cm,一边长为33cm,其他两边之差为3cm,则这个三角形是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形2.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°>3.有一块土地形状如图所示,∠B=∠D=90°,AB=20米,BC=15米,CD=7米,请计算这块地的面积.~ 4.如图,在四边形ABCD 中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,试求∠A 的度数。
勾股定理期末复习讲义提要:本节内容的重点是勾股定理及其应用.勾股定理是解几何中有关线段计算问题的重要依据,也是以后学习解直角三角形的主要依据之一,在生产生活实际中用途很大,它不仅在数学中,而且在其他自然科学中也被广泛地应用.本节内容的难点是勾股定理的证明.勾股定理的证明方法有多种,课本是通过构造图形,利用面积相等来证明的这里还涉及到了解决几何问题的方法之一:面积法。
割补(……陌生的名词么,但是我们用过)的思想也要值得我们去注意.【知识结构】1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 2.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.3.勾股数能够成为直角三角形三条边长的三个正整数,称为勾股数.你记得几组勾股数?显然,若(a,b,c)为一组基本勾股数,则(ka,kb,kc)也为勾股数,其中k为正整数.4.利用尺规画出长度是无理数的线段.了,知道画吧5.勾股定理及其逆定理的应用.蚂蚁怎样走最近【注意】1.勾股定理的证明,是利用图形的割补变化,通过有关面积的数量关系进行证明的方法.2.在应用勾股定理时,要注意在直角三角形的前提条件,分清直角三角形的直角边和斜边.3. 在应用勾股定理逆定理时,先要确定最长边,再计算两条较短边的平方和是否等于最长边的平方,最后确定三角形是不是直角三角形.4. 本章关联的知识点:实数的运算,三角形,四边形,图形变换,解方程等【基础训练A】1.三角形三边之比分别为①1:2:3,②3:4:5;③1.5:2:2.5,④4:5:6,其中可以构成直角三角形的有()A.1个 B.2个 C.3个 D.4个2.若线段a、b、c能构成直角三角形,则它们的比为()A.2:3:4 B.3:4:6 C.5:12:13 D.4:6:73.下面四组数中是勾股数的有()(1)1.5,2.5,2 (2,2(3)12,16,20 (4)0.5,1.2,1.3A.1组B.2组C.3组D.4组4. △ABC中,∠C=90°,c=10,a:b=3:4,则a=______,b=_______.5. 在△ABC中∠C=90°,AB=10,AC=6,则另一边BC=________,面积为______,• AB边上的高为________;6.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.B C A D B C A D7. 如图,已知CD=3m ,AD=4m , ∠ADC=90°, AB=13m ,BC=12m ,(1)求AC 边的长。
3 勾股定理的应用1.长方体(或正方体)面上的两点间的最短距离长方体(或正方体)是立体图形,但它的每个面都是平面.若计算同一个面上的两点之间的距离比较容易,若计算不同面上的两点之间的距离,就必须把它们转化到同一个平面内,即把长方体(或正方体)设法展开成为一个平面,使计算距离的两个点处在同一个平面中,这样就可以利用勾股定理加以解决了.所以立体图形中求两点之间的最短距离,一定要审清题意,弄清楚到底是同一平面中两点间的距离问题还是异面上两点间的距离问题.谈重点 长方体表面上两点间最短距离因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况——前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【例1-1】 如图①是一个棱长为3 cm 的正方体,它的6个表面都分别被分成了3×3的小正方形,其边长为1 cm.现在有一只爬行速度为2 cm/s 的蚂蚁,从下底面的A 点沿着正方体的表面爬行到右侧表面上的B 点,小明把蚂蚁爬行的时间记录了下来,是2.5 s .经过简短的思考,小明先是脸上露出了惊讶的表情,然后又露出了欣赏的目光.你知道小明为什么会佩服这只蚂蚁的举动吗?解:如图②,在Rt △ABD 中,AD =4 cm ,BD =3 cm.由勾股定理,AB 2=BD 2+AD 2=32+42=25,AB =5 cm ,∴蚂蚁的爬行距离为5 cm.又知道蚂蚁的爬行速度为2 cm/s ,∴它从点A 沿着正方体的表面爬行到点B 处,需要时间为52=2.5 s.小明通过思考、判断,发现蚂蚁爬行的时间恰恰就是选择了这种最优的方式,所以他感到惊讶和佩服.【例1-2】如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?解:蚂蚁由A点沿长方体的表面爬行到C1点,有三种方式,分别展成平面图形如下:如图①,在Rt△ABC1中,AC21=AB2+BC21=42+32=52=25.故AC1=5.如图②,在Rt△ACC1中,AC21=AC2+CC21=62+12=37.如图③,在Rt△AB1C1中,AC21=AB21+B1C21=52+22=29.∵25<29<37,∴沿图①的方式爬行路线最短,最短的路线是5.点技巧巧展长方体求解此类问题时只需对长方体进行部分展开,画出局部的展开图,若将长方体全部展开,不仅没有必要反而会扰乱视线.2.圆柱体(或圆锥体)面上的两点间的最短距离圆柱体(或圆锥体)是立体图形,从其表面看两点之间的连线绝大部分是曲线,那么怎样确定哪一条是最短的呢?解决问题的方法是将圆柱(或圆锥)的侧面展开,转化为平面图形,应用勾股定理解决,而不能盲目地凭感觉来确定.【例2】如图①所示,一只蚂蚁在底面半径为20 cm,高为30π cm的圆柱下底的点A处,发现自己正上方圆柱上边缘的B处有一只小昆虫,便决定捕捉这只小昆虫,为了不引起这只小昆虫的注意,它故意不走直线,而绕着圆柱,沿一条螺旋路线,从背后对小昆虫进行突然袭击,结果蚂蚁偷袭成功,得到了一顿美餐.根据上述信息,请问蚂蚁至少爬行多少路程才能捕捉到小昆虫?分析:解此题的关键是把圆柱的侧面展开,利用两点之间线段最短和勾股定理作答.解:假设将圆柱体的侧面沿AB剪开铺平如图②,则对角线AB即为蚂蚁爬行的最短路线.在Rt△ACB中,AC=40π cm,BC=30π cm.由勾股定理,得AB2=AC2+BC2=(40π)2+(30π)2=(50π)2,∴AB=50π cm.∴蚂蚁至少爬行50π cm才能捕捉到小昆虫.谈重点圆柱体两点间的最短距离本题文字叙述较多,要求在阅读的基础上提炼有用的信息,具体解题时先将圆柱沿AB剪开,将侧面展开成一矩形,会发现对角线AB即为蚂蚁爬行的最短路线,再运用勾股定理即可求得.3.生活中两点间的最短距离用勾股定理解决实际问题的关键是从实际问题中构建数学模型——直角三角形,再正确利用两点之间线段最短解答.【例3】如图①是一个三级台阶,它的每一级的长、宽和高分别为5 dm,3 dm 和1 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点的最短路程是多少?分析:由于蚂蚁是沿台阶的表面由A爬行到B,故需把三个台阶展开成平面图形(如图②).解:将台阶展开成平面图形后,可知AC=5 dm,BC=3×(3+1)=12 dm,∠C =90°.在Rt△ABC中,∵AB2=AC2+BC2,∴AB2=52+122=132,∴AB=13 dm.故蚂蚁爬到B点的最短路程是13 dm.4.如何正确利用勾股定理及其逆定理解决生活中的问题利用勾股定理及其逆定理解决生活中的实际问题,重要的是将实际问题转化成数学模型(直角三角形模型),将实际问题中的“数”转化为定理中的“形”,再转化为“数”.解题的关键是深刻理解题意,并画出符合条件的图形.解决几何体表面上两点之间的最短距离问题的关键是要设法把立体图形转化为平面图形,具体步骤是:(1)把立体图形展成平面图形;(2)确定点的位置;(3)确定直角三角形;(4)分析直角三角形的边长,用勾股定理求解.【例4】如图①,圆柱形玻璃容器的高为18 cm,底面周长为60 cm,在外侧距下底1 cm的点S处有一只蜘蛛,在与蜘蛛相对的圆柱形容器的上口外侧距上口1 cm的点F处有一只苍蝇,急于捕获苍蝇充饥的蜘蛛需要爬行的最短距离是__________cm.解析:将圆柱的侧面展开得到它的侧面展开图(如图②),CD ∥AB ,且AD =BC =12底面周长,BS =DF =1 cm.则蜘蛛所走的最短路线的长度即为线段SF 的长度.过S 点作SM ⊥CD ,垂足为M ,由条件知,SM =AD =12×60=30 cm ,MC=SB =DF =1 cm ,所以MF =18-1-1=16 cm ,在Rt △MFS 中,由勾股定理得SF 2=162+302=342,所以SF =34 cm.故蜘蛛需要爬行的最短距离是34 cm.答案:345.勾股定理与方程相结合的应用方程思想是一种重要的数学思想.所谓方程思想是指从分析问题的数量关系入手,将问题中的已知量和未知量之间的数量关系通过适当设元建立起方程(组),然后通过解方程(组)使问题得到解决的思维方式.而勾股定理反映的直角三角形三边的关系正是构建方程的基础.故勾股定理的许多问题的解决都要跟方程相结合.方程思想是勾股定理中的重要思想.【例5】 如图,有一张直角三角形状纸片ABC ,两直角边AC =6 cm ,BC =8 cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?解:设CD =x cm ,由题意知DE =x cm ,BD =(8-x ) cm ,AE =AC =6 cm ,在Rt △ABC 中,由勾股定理得AB =AC 2+BC 2=10 cm.于是BE =10-6=4 cm.在Rt △BDE 中,由勾股定理得42+x 2=(8-x )2,解得x =3.故CD 的长为3 cm.。
E
C
D
B
A 勾股定理及应用
知识要点:
勾股定理:如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么
222c b a =+
引例:如图所示,可以利用两个全等的直角三角形拼出一个梯形.借助这个图形,你能通过计算面积得到一个结论吗?
例1.如图,一个梯子AB 长2.5 米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,求梯子顶端A 下落了多少米?
例2.如图,Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,AD =20,求BC 的长.
例3.如图,△ABC中,∠C=90°.
(1)以直角三角形的三边为边向外作等边三角形(如图①),探究S1+S2与S3的关系;
图①
(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S1+S2与S3的关系;
图②
(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S1+S2与S3的关系.
基础训练:
1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.
(1)若a=5,b=12,则c=______;
(2)若c=41,a=40,则b=______;
(3)若∠A=30°,a=1,则c=______,b=______;
(4)若∠A=45°,a=1,则b=______,c=______.
3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______.
4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.
5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.
6.Rt △ABC 中,斜边BC =2,则AB 2+AC 2+BC 2的值为( ). (A)8
(B)4
(C)6
(D)无法计算
7.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BC 等于( ).
(A)4
(B)6
(C)8
(D)102
8.如图,Rt △ABC 中,∠C =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积和为( ). (A)150cm 2 (B)200cm 2 (C)225cm 2 (D)无法计算
9.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________.
10.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a (1)若a ∶b =3∶4,c =75cm ,求a 、b ; (2)若a ∶c =15∶17,b =24,求△ABC 的面积;
(3)若c -a =4,b =16,求a 、c ; (4)若∠A =30°,c =24,求c 边上的高h c ;
(5)若a 、b 、c 为连续整数,求a +b +c .
第9题图
S 1
S 2
S 3
能力提高
1.若直角三角形的三边长分别为2,4,x ,则x 的值可能有( ).
(A)1个 (B)2个 (C)3个
(D)4个
2.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形的边长是______.
3.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的
4个正方形的面积是S 1,S 2,S 3,S 4,则S 1+S 4=______.
4.如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上铺地毯,已知地毯每平方米18元,
请你帮助计算一下,铺完这个楼道至少需要多少元钱?
5.有一只小鸟在一棵高4m 的小树梢上捉虫子,它的伙伴在离该树12m ,高20m 的一棵大树的树梢上发
出友好的叫声,它立刻以4m/s 的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?
6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km /h .如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?
5m
13m
小汽车 小汽车
B
C
观测点
A B
C
D 7cm
A
B C
7.利用带刻度的直尺和圆规做一条长为13cm的线段
课后巩固
1. 如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是
()
A. 0B. 1C. 2D. 3
2. 如图所示,在△ABC中,三边a,b,c的大小关系是()
A.a<b<c
B. c<a<b
C. c<b<a
D. b<a<c
3.等边△ABC的高为3cm,以AB为边的正方形面积为 .
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为_______cm2.
5.在△ABC中,∠C=900,,BC=60cm,CA=80cm,一只蜗牛从C点出发,以每分20cm的速度沿CA-AB-BC 的路径再回到C点,需要分的时间.
6.第七届国际数学教育大会的会徽主题图案是由一连串如图所示的直角三角形演化而成的. 设其中的第一个直角三角形OA1A2是等腰三角形,且OA1=A1A2=A2A3=A3A4=……=A8A9=1,请你把图中其它8条线段的长计算出来,填在下面的表格中:
OA2OA3OA4OA5OA6OA7OA8
第1题图第2题图第4题图
第6题图
拓展题.已知长方体的长为2cm、宽为1cm、高为4cm,一只蚂蚁如果沿长方体的表面从A点爬到
B点,
那么沿哪条路最近,最短的路程是多少?
.。