轨道交通基础制动解析
- 格式:ppt
- 大小:9.37 MB
- 文档页数:102
城轨车辆制动基本知识城市轨道交通车辆制动系统制动的基本概念制动是指人为施加的外力,使运动的物体减速或阻止其加速,以及保持静止的物体静止不变的作用。
制动效能的大小和制动施加的时机由人为掌控。
使列车减速或阻止其加速的力称为制动力,而产生并控制这个制动力的装置叫做制动机。
也称为制动装置。
从能量变化的角度理解,制动过程就是一个能量转移过程,是将列车运行所具有的动能人为控制地转变成其他形式能量的过程,因此列车的制动过程必须具备两个基本条件:①实现能量转换;②控制能量转换。
此时,制动装置是用以实现和控制列车动能转换的一套装置。
对城市轨道交通车辆施行制动的目的在于;①使运行中的列车能迅速地减速或停车;②防止列车在下坡道时由于列车的重力作用导致列车速度增加;③列车停稳后,避免停放的列车因重力作用或风力作用而溜车,这时也被称为停放制动。
反之,对已实施了制动的列车,重新启动或再次加速,必须解除或减弱其制动,这种作用称为制动的缓解。
列车制动系统为了能施行制动或缓解制动,需要在列车上安装一整套完整可操纵并能进行控制和执行的系统总称为列车制动系统。
由于城市轨道交通车辆与铁路车辆的编组形式不同,一般由动车和拖车组成,因此也可按其编组形式的不同分为动车制动装置和拖车制动装置。
操纵全列车的制动功能的设备一般安装在列车两端带司机室的头车上。
一套列车列车制动装置至少包括两个部分:制动控制部分和制动执行部分。
制动控制部分主要包括制动信号的发生与传输装置;制动执行部分(也称为基础制动装置)包括闸瓦制动和盘式制动等不同的制动装置。
列车的制动能力是指该列车的制动系统能使其在规定的安全范围内或规定的安全制动距离内可靠停放的能力,它与列车的运行安全直接有关。
一般来说,城市轨道交通系统都有明确的制动距离(紧急制动距离)不得超过某一规定值。
而列车的最高运行速度与列车的牵引功率有关,但它更应该受到制动能力的限制。
和其他轨道车辆一样,制动装置是城市轨道交通车辆的重要组成部分之一。
地铁刹车原理地铁作为一种重要的城市交通工具,其安全性一直备受关注。
而地铁的刹车系统作为保障地铁行车安全的重要组成部分,其原理和工作机制也备受关注。
本文将就地铁刹车原理进行深入探讨,以便更好地了解地铁刹车系统的工作原理。
地铁刹车系统主要由制动装置、刹车控制系统和辅助设备组成。
制动装置包括制动盘、制动鼓、制动片等,刹车控制系统包括制动阀、制动传感器、制动控制器等,辅助设备包括压缩空气系统、制动液系统等。
这些部件共同协作,实现地铁的安全刹车。
地铁刹车系统的工作原理可以简单概括为,当列车需要刹车时,驾驶员通过控制系统发出刹车指令,制动控制器接收指令后,通过压缩空气系统或制动液系统传递给制动装置,制动装置受到指令后产生制动力,使列车减速停车。
其中,压缩空气系统和制动液系统起到传递力量的作用,制动装置则将这些力量转化为制动力,实现列车的刹车。
在具体的工作过程中,地铁刹车系统还涉及到制动力的调节、速度的监控、防滑保护等功能。
制动力的调节通过控制制动片与制动盘或制动鼓的接触力来实现,以达到适当的制动效果;速度的监控通过制动传感器和控制系统实现,以确保列车在制动过程中不会出现过速或过缓的情况;防滑保护则通过控制系统对制动力进行动态调整,避免列车在制动过程中出现打滑现象,确保乘客的安全。
除了常规的电气控制刹车系统外,一些现代地铁还采用了再生制动系统。
再生制动系统通过将制动能量转化为电能,存储在蓄电池或供电系统中,实现能量的回收和再利用。
这种系统不仅可以减少能源消耗,还可以降低对制动片和制动盘的磨损,延长设备寿命。
总的来说,地铁刹车系统是地铁安全运行的重要保障,其工作原理和机制涉及到多个方面的知识,包括机械制动、电气控制、动力学等。
了解地铁刹车系统的工作原理不仅有助于加深对地铁运行的理解,还可以为地铁安全运行提供重要的参考和支持。
希望本文能够帮助读者更好地了解地铁刹车原理,增强对地铁安全运行的信心和理解。
浅析城市轨道列车盘式制动与踏面制动的优缺点及发展趋势摘要:本论文在分析城市轨道车辆运输特点基础上,结合城市轨道车辆基础制动装置具体类型,分析了城市轨道车辆踏面制动与盘式制动的优缺点关键词:城市轨道车辆,基础制动,盘形制动。
地铁、轻轨等作为城市轨道交通的重要组成部分,在缓解交通压力、拓展城市空间等方面发挥着重要作用,其运行速度也由最初的30km/h,逐渐提高到80 km/h,甚至更高。
随着速度的提高,在运营过程中城市轨道车辆所装配的踏面制动装置已暴露出车轮踏面产生高温剥离或热裂纹、车轮和钢轨踏面异常磨耗进而恶化轮轨匹配关系、维修工作量和运营成本大大增加等问题。
迫使我们对城市轨道列车的运输特点及其基础制动装置匹配问题进行认真分析,并做出合理选择。
1 城轨运输的特点城市轨道交通运输与铁路运输有很多相似之处,但是与铁路运输相比还有许多差异,其中与制动系统有关的有以下几个方面:(1)运行速度低。
目前国内外地铁的运行速度一般都在135 km/h以下,而铁路机车车辆和动车组的发展趋势是重载和高速,我国高速动车组的持续运行速度已经达到350 km/h。
(2)减速度大、制动距离短。
地铁站间距短,只有起动加速快、制动减速度大才能提高列车的运行速度和效率,因此地铁车辆的紧急制动平均减速度一般定为1.2~1.3 m/s2,有的甚至到1.4 m/s2,而铁路机车车辆和动车组的紧急制动平均减速度一般为0.7~1.2 m/s2;大连地铁3号线要求紧急制动初速120 km/h时,制动距离≤427 m,而铁路机车车辆和动车组在同样速度时,制动距离≤800 m。
(3)制动频繁。
地铁运输有城市公交站间距短的特点,一般只有几百米,长的也只有几公里。
这就要求列车必须频繁的制动停车,以满足乘客的上下车要求。
而铁路运行的站间距一般都在几十公里,甚至一百公里以上。
(4)制动的准确性要求高。
地铁车站普遍装有屏蔽门,对定位停车的精度要求比铁路机车车辆和动车组高,停车位置精度一般在±250 mm左右。
城市轨道交通车辆(地铁)刹车调研报告一、制动系统简介地铁刹车称为制动。
列车制动分为电制动和机械制动,电制动又分为再生制动和电阻制动;机械制动又称为气制动。
1、电制动:电机正转就是消耗电能牵引列车动作,电能转化为动能。
在再生制动时,电机就作为发电机反转,把动能转化为电能再通过列车的牵引逆变系统把这些电能逆变为电网一样的电输送到电网供其他车使用;电阻制动:在电网的电压达到上限了,列车电机产生的电能就不再输送到电网,而是通过列车的制动电阻把这些电能消耗掉。
2、机械制动:当前面的电制动满足不了列车进站的制动停车时,因为速度较小的时候再生制动的制动率较低。
这时机械制动就补充进来,把列车停稳。
就是使用压缩空气使闸瓦贴在轮对踏面上(或闸片贴在制动盘上),通过摩擦来制动;停放制动:列车停稳后施加的,类似汽车的手刹,保证列车在停车过不溜车。
二、城市轨道交通常用的摩擦制动方式1、闸瓦制动(1)闸瓦制动组成:制动缸、活塞杆、基础制动装置、闸瓦和车轮。
(2)闸瓦制动中每个动车或拖车转向架上各有四个闸瓦组成,其中两个闸瓦装有附加弹簧制动器,起到停放制动的作用。
(3)闸瓦按材质可分为铸铁闸瓦和合成闸瓦两类。
铸铁闸瓦:已有100多年使用历史,早期是灰铸铁闸瓦,含磷量约0.2%左右,摩擦系数随速度的提高而迅速下降,耐磨性也很差。
改用中磷闸瓦(含磷量0.7%~1.0%)可以改善性能,但在制动时容易产生火花引起火灾。
高磷闸瓦(含磷量2.5%以上)产生的火花少,比较安全,但质脆容易断裂,浇铸时须添装钢制瓦背。
高磷铸铁闸瓦的使用,日益普遍。
合成闸瓦,又称非金属闸瓦:是用石棉及其他填料以树脂或橡胶作为粘合剂混合后热压而成。
合成闸瓦也要用钢背加强。
合成闸瓦于1907年首先在伦敦地铁车辆上使用。
50年代以来,应用日益普遍。
优点:1、摩擦性能可按需要进行调整。
2、耐磨性能好,使用寿命长。
3、对轮对踏面的磨耗小,可延长车轮使用寿命。
4、质量轻。
城市轨道交通车辆制动系统1. 背景介绍城市轨道交通作为一种重要的公共交通工具,在现代城市中扮演着至关重要的角色。
为了确保城市轨道交通的安全性和可靠性,车辆制动系统是不可或缺的重要组成部分。
本文将对城市轨道交通车辆制动系统的原理、结构和功能进行详细介绍。
2. 制动系统的原理城市轨道交通车辆制动系统的原理是通过施加力量来减速或停止车辆运动。
在制动系统中,力量通常是由制动装置产生的。
制动力可以通过以下几种方式产生:2.1 机械制动力机械制动力是通过机械装置施加力来产生的。
常见的机械制动装置有摩擦制动器和齿轮制动器。
摩擦制动器通过增加两个物体之间的摩擦力来产生制动力,而齿轮制动器则通过齿轮之间的相互作用力来产生制动力。
2.2 液压制动力液压制动力是通过液压装置施加压力来产生的。
液压制动系统由液压液、液压泵、液压缸和制动器组成。
当驾驶员踩下制动踏板时,液压泵将液压液送入液压缸中,产生压力,将制动器施加在车轮上,实现制动功能。
2.3 电子制动力电子制动力是通过电子装置生成电信号来产生的。
电子制动系统使用信号传感器来检测车辆的速度和制动需求,并将信号传输给电子控制单元。
电子控制单元根据接收到的信号来控制电动机或电磁阀产生制动力。
3. 制动系统的结构城市轨道交通车辆制动系统通常包括以下几个组件:3.1 制动器制动器是车辆制动系统的核心部件,用于产生制动力并将其传递到车轮上。
常见的制动器包括摩擦制动器、齿轮制动器和电子制动器。
3.2 控制系统控制系统用于监测车辆的制动需求,并控制制动器的工作。
控制系统可以是机械、液压或电子控制系统,具体取决于车辆制动系统的类型和设计。
3.3 辅助系统辅助系统包括供电系统、供油系统和供气系统等。
供电系统为制动器和控制系统提供所需的电力,供油系统为液压制动系统提供液压液,供气系统为空气制动系统提供压力。
3.4 监测系统监测系统用于检测车辆的制动状态和性能。
通常包括制动压力传感器、车速传感器和制动温度传感器等。
地铁刹车原理
地铁刹车的原理是通过制动系统实现的。
当驾驶员操作制动控制台上的刹车手柄时,信号会发送给车辆的电控制动器。
电控制动器会根据接收到的信号,发出相应的指令给制动系统。
制动系统主要由电磁阀、制动缸、制动鞋和刹车盘等组成。
当接收到刹车指令后,电磁阀会打开,将压缩空气送入制动缸。
制动缸内产生的压力会使制动鞋与刹车盘产生摩擦力,从而减速或停止地铁列车的运动。
制动鞋与刹车盘之间的摩擦力越大,地铁列车的刹车效果越好。
因此,在制动系统中,压力越大,制动鞋与刹车盘之间的接触面积越大,摩擦力也就越大。
除了直接通过制动系统实现刹车外,地铁列车还采用了动态制动系统来辅助刹车。
动态制动系统利用电阻器将列车的动能转化为电能,通过电阻器产生的阻力来减慢列车的速度。
这种制动方式比较节能,在车辆停站中也能起到较好的刹车效果。
总体而言,地铁刹车原理就是通过制动系统和动态制动系统来实现列车的减速和停止运动。
通过合理的调节和控制,能够确保地铁列车的行驶安全和乘客的舒适感。
浅谈地铁车辆基础制动装置一、概述随着我国城市化进程的发展,城市吸引力不断扩大,人口集聚力不断增强,大、中城市人口数量屡创新高。
为了更好的缓解城市交通拥堵的问题,许多城市选择了建设轨道交通来改善交通状况。
地铁车辆的运行速度也由最初的60km/h,逐渐提高到80 km/h、100 km/h,甚至更高。
车辆在高速运行中必须依赖制动系统调节列车运行速度和及时准确地在预定地在预定地点停车,保证列车安全正点地运行。
制动系统是地铁车辆安全可靠运行的基本保障,通常包括空气制动机、基础制动装置、手制动机。
基础制动装置是确保地铁车辆行车安全的最重要的措施之一,它最基本的功能是吸收制动动能并将之转化为热能散发到空气中。
基础制动装置分为两类,一类是由踏面和闸瓦组成摩擦副的踏面制动,一类是由制动盘和闸片组成摩擦副的盘形制动。
二、地铁车辆制动的特点地铁与铁路虽都属于轨道交通,但地铁车辆主要在城市内运营与铁路运输还是存在一些区别,在车辆制动方面主要有以下特点:1、制动频繁地铁车站之间距离较近,平均在1公里左右,这必然带来车辆须频繁启动、制动,以满足乘客上、下车的需要。
而铁路运输两个车站之间的距离通长在几十公里以上。
2、制动减速度大地铁站间距短,要提高乘客旅行速度只有增加启动加速度和制动减速度。
因此地铁车辆紧急制动平均减速度一般要求大于等于1.2m/s2, 而铁路机车车辆和动车组的紧急制动平均减速度一般为0.7-1.2 m/s2。
3、制动精度高地铁车站站台上均安装有屏蔽门系统,因此车辆定点停车的精度要求比铁路机车车辆和动车组高,一般在±300mm左右。
这些特点要求地铁车辆制动系统须有稳定的摩擦副和良好的控制精度能力以及承受频繁制动热负荷的性能。
三、盘形制动与踏面制动比较1、制动对车轮的影响(1)踏面制动的热负荷从热应力角度考虑:评价赫兹接触应力和热应力共同作用引起的车轮损伤, 如图1 所示, 图中横坐标为车轮踏面最大热应力,纵坐标为轮轨接触最大赫兹接触压力, 区域A 是常用制动区, 区域B 是少量制动区, 区域C 是危险区。