用导数求切线方程的四种类型知识讲解
- 格式:doc
- 大小:3.96 MB
- 文档页数:58
利用导数的几何意义求切线方程江南中教研组曲线y f x =()在点x 0的导数)( 0x f '就是曲线在该点的切线的斜率,我们通常用导数的这个几何意义来研究一些与曲线的切线有关的问题。
对于利用导数的几何意义求切线方程我们要把握三个等量关系:1. 曲线y f x =()在点x 0的导数)( 0x f '就是曲线在该点的切线的斜率,有)(0x f k '=;2.切点在曲线y f x =()上,有)(00x f y = 3. 切点在切线上,有切线方程)(00x x k y y -=-最基础的题型就是已知切点求斜率、切线方程。
例一:曲线221y x =+在x=1的切线方程为 ; 解析:直接利用等量关系得到切点的坐标、切线的斜率;由题意可知,切点的坐标为(1,5)又∵x y 4=',∴切线的斜率为4,∴切线的方程为y -5 = 4(x -1),即y=4x +1。
利用导数的几何意义求切线方程的关键是要理解导数的几何意义,熟悉等量关系。
另有一种题型是先知道切线的斜率,求切点坐标、切线方程。
例二:曲线2y x =的一条切线的斜率是4-,求切线方程。
解析:先设出切点的坐标,再利用等量关系由待定系数法求出切点坐标,进而求切线方程;设切点的坐标为(200,x x )∵x y 2=',∴切线的斜率为02x ,∴02x = -4,∴20-=x ∴切点的坐标为(-2,4)∴切线的方程为y =-4x -4解这种题型的关键问题就是不能忽视切点在曲线上的这个关系。
再有一种题型求过曲线外一点的切线的方程。
例三:曲线2x y -=的切线过点(0,4)求切线的方程。
解析:同样设切点坐标,充分利用等量关系,由待定系数法求出切点坐标,进而求切线方程;设切点坐标为()00y x P ,,∵x y 2-='则在点P 处的切线方程为:()0002x x x y y --=-∵过点()4,0P ,且200x y -=()002002)(4x x x --=--∴ 20=∴x 或20-=x当20=x 时,切点为)4,2(-,此时切线方程为y=-4x +4,当20-=x 时,切点为()4,2--P ,此时切线方程为y=4x +4,∴过点(0,4)的切线方程为: y=-4x +4, y=4x +4。
知识回顾:导数的几何意义:函数/■(%)在X =兀0处的导数/'(观)就是:曲线y = / (兀)在点F(兀。
J (兀。
))处的切线PT的斜率。
即£二/ (兀0),在点尸处的切线方程为y —北=广(兀0)(兀一兀0)四种常见的类型及解法.•类型一:已知切点,求曲线的切线方程•此类题较为简单,只须求出曲线的导数,并代入点斜式方程即可.例1・已经曲线C:歹=兀3—兀+ 2和点A(152)O求曲线C在点A处的切线方程?类型二已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2与直线2—y + 4 = 0 的平行的抛物线y = x2的切线方程是 --------------- 评注:此题所给的曲线是抛物线,故也可利用A法加以练习:若曲线C上一点P处的切线恰好平行于直线y=11x—1,则P点坐标为(2,8)或(一 2, -伞)切线方程为1 ix— y—14 = +18 = 0类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.•例3求过曲线yr3-2兀上的点(1, -1)的切线方程.类型四:已知过曲线外一点,求切线方程 此类题可先设切点,再求切点,即用待定切点法 来求解.练习已知函数y"—3/过点4(0,16)作曲线 『 = /(励切线,求此切线方程.例6.已知曲线C:F 二4y,直线/:兀-y-4 = 0,在曲线C 上 求一点P,使P 到直线/的距离最短,并求出最小值。
例4・求过点(2,0)且与曲线 直线方程. 1y = — 相切的Xr2 1h —罕—41 i(x-2)2 + 34 _ 4(1)解析一:设P(x,务);〃二72 近当兀=2时,即点P坐标为⑵1)时,〃斷=攀(2)解析二:设与直线/平行的直线r与曲线c相切于尸(兀°,= ^ = l,x0=2.-. P(2,l)血=12~^4'=芈巩固练习:l.y = 3x2— 4x + 2在点JT = 1 处的切线方程是:2x-y-1 = °2 •在曲— x3 + 3x2 + 6x +10的切线斜率最小的切线方程是3x-y + 9 = 03.曲线y = lnjv上的点到直线兀―y + 3 = 0 的最短距离是空迈。
利用导数求三角函数切线方程的三种问题类型导数是微积分中的重要概念,可以用来求解三角函数的切线方程。
在这份文档中,我们将介绍三种利用导数求三角函数切线方程的问题类型。
问题类型一:给定函数和点,求切线方程在这种类型的问题中,我们已知一个三角函数及其定义域上一点的坐标,需要求解该函数在该点处的切线方程。
解决这类问题的关键是求解该点处的导数。
对于三角函数而言,我们可以利用基本导数公式来求解。
例如,对于sin(x)函数,其导数是cos(x);对于cos(x)函数,其导数是-sin(x)。
一旦我们求得了函数在给定点处的导数,我们可以使用切线方程的一般形式y = f'(x0)(x - x0) + f(x0)来求解。
其中,f'(x0)表示函数在x0处的导数值,f(x0)表示函数在x0处的函数值。
问题类型二:给定函数和切线斜率,求切点坐标在这种类型的问题中,我们已知一个三角函数及其切线的斜率,需要求解切线与该函数的交点坐标。
解决这类问题的关键是找到切点的x坐标。
我们可以使用导数和斜率的关系来求解。
具体而言,由于导数就是切线的斜率,我们可以将斜率与导数相等来列方程。
然后,通过求解方程,我们可以得到切点的x坐标。
一旦我们获得了切点的x坐标,我们可以将该坐标代入三角函数的方程中,得到切点的y坐标。
问题类型三:给定函数和切点,求切线斜率在这种类型的问题中,我们已知一个三角函数及其切线的切点坐标,需要求解切线的斜率。
解决这类问题的关键是求解切点的导数。
我们可以使用导数的定义来求解。
具体而言,我们可以将切点的坐标代入三角函数的导数公式中,然后求导得到切点的导数。
一旦我们求得了切点的导数,即可得到切线的斜率。
通过掌握这三种问题类型的解决方法,我们可以有效地利用导数来求解三角函数的切线方程。
这有助于我们更好地理解三角函数的性质和导数的应用。
用导数求切线方程的四种类型用导数求切线方程是导数的重要应用之一。
求曲线的切线方程的关键在于求出切点P(x,y)及斜率。
设P(x,y)是曲线y=f(x)上的一点,则以P的切点的切线方程为:y-y=f'(x)(x-x)。
若曲线y=f(x)在点P(x,f(x))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x。
下面例析四种常见的类型及解法。
类型一:已知切点,求曲线的切线方程这类题较为简单,只需求出曲线的导数f'(x),并代入点斜式方程即可。
例如,曲线y=x^3-3x^2+1在点(1,-1)处的切线方程为y-(-1)=-3(x-1),即y=-3x+2.类型二:已知斜率,求曲线的切线方程这类题可利用斜率求出切点,再用点斜式方程加以解决。
例如,与直线2x-y+4=0平行的抛物线y=x^2的切线方程为2x-y-1=0.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法。
例如,求过曲线y=x^3-2x上的点(1,-1)的切线方程。
设想P(x,y)为切点,则切线的斜率为y'|(x=x)=3x^2-2.故所求切线方程为y-(1-2)=(3-2)(x-1),或5x+4y-1=0.类型四:已知两曲线的交点,求切线方程这类题一般需先求出两曲线在交点处的导数,再代入点斜式方程加以解决。
例如,已知曲线y=x^3-x和y=2x-x^2的交点为(1,0),求它们在该点的切线方程。
两曲线在交点处的导数分别为1和-1.故所求切线方程为y-(0)=1(x-1),或y-(0)=-1(x-1),即y=x-1或y=-x+1.类型四:已知过曲线外一点,求切线方程对于这类问题,我们可以先设定切点,再求解切点,使用待定切点法来解决。
例4:求过点(2,0)且与曲线$y=x/(1+x^2)$相切的直线方程。
解:设P(x,y)为切点,则切线的斜率为$y'=\frac{1-x^2}{(1+x^2)^2}$。
利用导数求曲线的切线和公切线一. 求切线方程【例1】.已知曲线f(x)=x 3-2X12+1.(1) 求在点P( 1,0 )处的切线l i的方程;⑵ 求过点Q( 2,1 )与已知曲线f(x)相切的直线丨2的方程.提醒:注意是在某个点处还是过某个点!二. 有关切线的条数【解答】解:(I)由 f (x) =2x3- 3x 得f'( x) =6x2- 3,令f,( x) =0 得, x= - ■-或x= ■-,2 2•- f (-2) =- 10, f (-二)=",f ( = ) =- ", f (1) =- 1,••• f (x)在区间[-2, 1]上的最大值为二.(n)设过点P (1, t)的直线与曲线y=f (x)相切于点(X0, y°),则y o=2・” -3x。
,且切线斜率为k=6 :匚-3,•••切线方程为y-y o= (6:,二-3)(x -x o),••• t - y°= (6 :,二-3)( 1 - x o),即卩4- 6 . F +t+3=0,设g (x) =4x? - 6x?+t+3 , 则“过点P (1, t)存在3条直线与曲线y=f (x)相切”,等价于“ g (x)有3 个不同的零点”.T g'(x) =12x2- 12x=12x (x- 1),•g (0) =t+3是g (x)的极大值,g (1) =t+1是g (x)的极小值.•g (0)> 0 且g (1)v 0,即-3v t v- 1,•当过点过点P (1, t)存在3条直线与曲线y=f (x)相切时,t的取值范围是(-3,- 1).(rn)过点A (- 1, 2)存在3条直线与曲线y=f (x)相切;过点B (2, 10)存在2条直线与曲线y=f (x)相切;过点C (0, 2)存在1条直线与曲线y=f (x)相切.【作业1】.(2017?莆田一模)已知函数 f (x) =2x3- 3x+1, g (x) =kx+1 - Inx .(fM y<1(1)设函数hW二’、,当k v 0时,讨论h (x)零点的个数;g lx)』x^l(2)若过点P (a,- 4)恰有三条直线与曲线y=f (x)相切,求a的取值范围.三. 切线与切线之间的关系【例4】.(2018?绵阳模拟)已知a, b, c€ R,且满足b2+c2=1,如果存在两条互相垂直的直线与函数f (x) =ax+bcosx+csinx的图象都相切,则a+/HW:c 的取值范围是.解:f '(x) = a + b cos x—c sin x = a +c' cos(x + ^?) = a +cos(x + p)令H + e = 则码 + 0 =环巧+e = g. f\x) ~+dtj题意’存在x r x2E R使得厂(xj厂(兀)= T* 0p(a+cos^X fl + cos^)=_l»即关于。
求曲线在某点的切线方程方法引言在数学和物理学中,研究曲线的切线是很常见的问题。
切线可以帮助我们了解曲线的局部特征和性质,它在微积分、力学和工程学等领域中都有广泛的应用。
本文将介绍一些常见的方法来求解曲线在某点的切线方程。
切线的定义在数学中,曲线上某点的切线可以被定义为通过该点并且与曲线在该点附近重合的直线。
切线的斜率即为曲线在该点的导数。
方法一:求导法一种常见的方法是使用导数来求解曲线在某点的切线方程。
设曲线的方程为y=f(x),我们要求解曲线在点(x0,y0)处的切线方程。
1.首先求曲线的导数f'(x)。
2.将点(x0,y0)带入导数函数,求出导数的值f'(x0)。
3.使用切线方程的一般形式y-y0=f'(x0)(x-x0),将(x0,y0)和f'(x0)代入,得到切线方程。
方法二:斜率和点法另一种常用的方法是使用斜率和已知点来求解切线方程。
同样假设曲线的方程为y=f(x),我们要求解曲线在点(x0,y0)处的切线方程。
1.计算曲线在点(x0,y0)处的斜率,即f'(x0)。
2.使用点斜式切线方程y-y0=f'(x0)(x-x0),将(x0,y0)和f'(x0)代入,得到切线方程。
方法三:曲线近似法第三种方法是使用曲线的近似来求解切线方程。
此方法适用于那些难以计算导数的曲线。
1.在点(x0,y0)处取曲线的一个非常小的线段,该线段基本上与切线重合。
2.使用线性函数来拟合这个线段,得到近似切线方程。
方法四:参数法对于参数方程表示的曲线,我们可以使用参数法来求解切线方程。
假设曲线的参数方程为x=f(t),y=g(t),我们要求解曲线在参数值t0处的切线方程。
1.计算参数值t0对应的点的坐标(x0,y0)。
2.求解参数方程的导数dx/d t和dy/dt。
3.使用点斜式切线方程y-y0=(dy/d t)/(dx/d t)(x-x0),将(x0,y0)、dx/d t和d y/dt代入,得到切线方程。
导数应用(一)——导数求切线的四种类型授课教师:王岩宇考考你:1.已知f(x)=x2,求曲线在x=2处的切线的斜率2.函数3f x x x=-,[0,1]()34x∈的最大值是…………………………………………【】C.0D.-1A.1B.123.曲线y=x3在点P处切线斜率为k,当k=3时,P点的坐标为_________4. 已知函数2)(23-=+++=x c bx ax x x f 在处取得极值,并且它的图象与直线33+-=x y 在点(1,0)处相切,则函数)(x f 的表达式为 __ __新课(一)用导数求切线方程的四种类型求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=- .若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法.类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.(常见于选择、填空)例1 曲线3231y x x =-+在点(11)-,处的切线方程为( )A.34y x =-B.32y x =-+ C.43y x =-+D.45y x =-变式训练:曲线y =x 3在点(1,1)处的切线与x 轴、直线x =2所围成的三角形的面积为__________.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.(以选择填空为主要出题类型)例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A.230x y -+=B.230x y --= C.210x y -+=D.210x y --=变式训练:过曲线13-+=x x y 上一点P 的切线与直线74-=x y 平行,则P 点的坐标为 .类型三:已知过曲线上一点,求切线方程。
用导数求切线方程的四种类型在微积分中,切线是曲线上某一点的切线。
通过使用导数,我们可以求解给定曲线上某一点的切线方程。
在本文中,我们将探讨四种使用导数求解切线方程的常见类型。
1. 曲线方程已知的情况首先,我们考虑的是当曲线方程已知时求解切线方程的情况。
假设我们有一个曲线y=f(x),其中f(x)是一个可导函数。
要求解曲线上某一点(x1,y1)处的切线方程,我们可以执行以下步骤:1.计算函数f(x)在点(x1,y1)处的导数f′(x1)。
2.使用点斜式或一般式等方程形式得到切线方程。
点斜式切线方程的一般形式为y−y1=m(x−x1),其中m是斜率。
一般式切线方程的一般形式为ax+by=c,其中a,b,c是常数。
2. 给定两个点的情况其次,我们考虑的是当曲线上两个点已知时求解切线方程的情况。
与上一种情况不同,我们不知道曲线的具体方程,但我们已知曲线上的两个点(x1,y1)和(x2,y2)。
为了求解这种情况下的切线方程,我们可以按照以下步骤进行:1.使用点斜式求解斜率。
2.写出点斜式的一般方程形式y−y1=m(x−x1)。
3.将另一个点(x2,y2)替代初始点(x1,y1)。
4.解方程得出切线方程。
3. 已知切线方程的情况接下来,我们讨论已知切线方程的情况。
假设我们已经知道了曲线上某一点处的切线方程,我们的目标是求解曲线方程。
我们可以按照以下步骤进行操作:1.确定切线方程的斜率m。
2.使用导数的定义f′(x)=m来设置方程。
3.解方程以获得曲线方程。
4. 求解切线与坐标轴的交点最后,我们研究切线与坐标轴相交的情况。
为了求解切线与x轴和y轴的交点,我们可以按照以下步骤进行:1.求解切线与x轴的交点:将y值设为0,然后解方程得到x坐标的值。
2.求解切线与y轴的交点:将x值设为0,然后解方程得到y坐标的值。
通过上述四种类型的方法,我们可以使用导数来求解切线方程。
这些方法在解决微积分问题以及实际问题中的应用非常广泛。
用导数求切线方程的四种类型用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+=B.230x y --=C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--. 解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),且与曲线1y x=相切的直线方程. 解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|. ∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。
例如,圆的切线定义为与圆只有一个交点的直线,但把这一定义用到其他曲线上就不行了。
如直线0=y 与抛物线2x y =只有一个交点,0=y 是2x y =的切线,但0=x 与抛物线2x y =也只有一个交点,但0=x 却不是2x y =的切线,由此可见,用“一个交点”来定义切线并不能用于所有曲线。
而学了微积分的知识后,就可以给出曲线切线的一般定义了。
切线的定义:设0m 是曲线)(x f y =上一定点,m 是该曲线上的一动点,从而有割线m m 0,令m 沿着曲线无限趋近于0m ,则割线m m 0的极限位置就是曲线)(x f y =在0m 的切线(如果极限存在的话)。
这一定义与初等数学中圆的切线定义是一致的(用于讨论圆的切线时),用这一定义也容易证明0=y 是2x y =的切线,而0=x 不是2x y =的切线,这一切线定义可用于任何曲线)(x f y =。
导数的几何意义就是曲线)(x f y =在点x 的切线斜率。
故运用上述切线的一般定义和结论,可以处理与切线有关的许多问题。
例6求曲线nx y 1=在2=x 时的切线方程。
解:xy 1='∴当2=x 时,21=y 又 当2=x 时,21n y =∴当2=x 时,所求的切线方程为:即022122=+--n y x反思:由此可见,用微积分法解此类问题是多么的简单容易,可是在初等数学中,曲线)(x f y =的切线定义都难得给出,更别说讨论与)(x f y =的切线有关的问题了。
例7已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值,过点)16,0(A 作曲线)(x f y =的切线,求此切线方程。
解:由例4,曲线方程为x x x f 3)(3-=,点)16,0(A 不在曲线上。
设切点为),,(00y x M 则点M 的坐标满足03003x x y -=,由于)1(3)(200-='x x f ,故切线的方程为))(1(3020x x x y y --=-.注意到点)16,0(A 在切线上,有)0)(1(3)3(16020030x x x x --=--化简得820-=x ,解得20-=x .因此,切点为)2,2(--M ,切线方程为0169=+-y x.22002200x x 02020y x P(x ,y )1P b ay y P(x ,y ) y y y x x b x x x a y ''∴=00例10:设是双曲线-=上一点,求过点的切线方程。
解;考虑上半支双曲线的方程为则处的切线斜率为切线方程为--)=(-)即0022y y x x 1b aP -=当在下半支时,也可得到同样的方程。
要点:1.导数是如何定义2.如何求曲线)(x f y =在点),(o o y x 处的切线方程与法线方程。
第三章导数与微分§3.1导数的概念由于机器制造,远洋航海,天象观测等大量实际问题给数学家提出了许多课题。
其中求曲边梯形面积的研究导致了积分学的产生,而求变速运动的瞬时速度,求曲线上一点的切线,求函数的极大值和极小值等问题的研究导致了微分学的产生。
历史上,Newton 从瞬时速度出发,Leibniz 从曲线的切线出发,分别给出导数的概念,并明确给出计算导数的步骤,而且建立了有关积分与微分是互为逆运算的完整理论。
一.导数的概念1.平均变化率设在点a x =处自变量改变)0(≠∆∆x x ,函数()x f y =相应地改变()()a f x a f y -∆+=∆,则平均变化率是x y ∆∆()()xa f x a f ∆-∆+=. 图3.1不难看出,平均变化率的几何解释是连续曲线上两点的割线的斜率(0→∆x 如何?) 2.瞬时变化率当物体做变速直线运动时,它的速度随时间而确定,此时平均变化率ts∆∆表示时刻从0t 到t t ∆+0这一段时间内的平均速度v ,若设路程s 是时间t 的函数)(t f s =,则()()tt f t t f t s v ∆-∆+=∆∆=00,当t ∆很小时,可以用-v 近似地表示物体在时刻0t 的速度,t ∆愈小,近似的程度就愈好。
当0→∆t 时,如果极限()()tt f t t f ts ot t ∆-∆+=∆∆→∆→∆000lim lim 存在,则称此极限为物体在时刻0t 的瞬时速度,即()()tt f t t f t sv o t ot t t ∆-∆+=∆∆=→∆→∆=00lim lim|. 例1.已知自由落体的运动方程为221gt s =.求(1):落体从0t 到t t ∆+0这段时间内的平均速度v .(2):落体在0t t =时的瞬时速度。
解(1) 221gt s =,∴(),21200gt t s =()200)(21t t g t t s ∆+=∆+. 20)(21t g t gt s ∆+∆=∆∴.平均速度t g gt t s v ∆+=∆∆=210.(2):落体在0t t =时的瞬时速度。
瞬时速度000021lim lim |0gt t g gt t s v t t tt =⎪⎭⎫⎝⎛∆+=∆∆=→∆→∆=. 3.切线的斜率设有一连续函数()x f y =,则平均变化率xy∆∆是指曲线()x f y =上的两点的割线的斜率。
即割线PQ 的斜率是()xa f x a f x y ∆-∆+=∆∆)(. 当0→∆x 时,显然,割线PQ 越来越趋于曲线()x f y =在点()()a f a P ,处的切线PT .即切线PT 是割线PQ 的极限位置,平均变化率的极限值(如果存在)x yx ∆∆→∆0lim则是曲线()x f y =在点()()a f a P ,的切线PT 的斜率。
图3.2例2.求曲线3x y =在点()1,1P 处的切线斜率和切线方程. 解:先计算从点()1,1P 到邻近任意点))1(,1(x f x Q ∆+∆+的平均变化率()()()x x x f x f x y ∆-∆+=∆-∆+=∆∆331111()()()2323333x x xx x x ∆+∆+=∆∆+∆+∆=. 故曲线3x y =在点(1,1P 处的切线斜率m 应为=∆∆=→∆x y m x 0limlim →∆x [()233x x ∆+∆+]=3. 而过点()1,1P 的切线方程为()131-=-x y .即23-=x y .思考题如果上题中改为求过点)2,0(P 的切线,此时要验证点是否在曲线上。