用导数求切线方程及应用
- 格式:ppt
- 大小:144.50 KB
- 文档页数:9
求切线方程的三种方法宝子们,今天咱们来唠唠求切线方程的那些事儿。
这切线方程啊,就像是给曲线找到一个最亲密接触的直线小伙伴,可有意思啦。
一、利用导数求切线方程。
咱先说说这个用导数的方法。
导数这玩意儿啊,其实就是曲线在某一点的斜率。
比如说有个函数y = f(x),咱们先求出它的导数f'(x)。
那在某一点x = a处的切线斜率k呢,就等于f'(a)。
这时候啊,我们已经知道了斜率,再知道这个点(a, f(a))在切线上,就可以用点斜式y - y₁ = k(x - x₁)来求出切线方程啦。
就像你知道一个朋友的走路速度(斜率),又知道他从哪个地方(点)出发,就能算出他走的路线(切线方程)啦。
二、设切点法。
再来说说设切点法。
有时候啊,题目没有直接告诉你切点是啥。
这时候咱就可以聪明点,设切点为(x₀, y₀)。
那这个点既在曲线上又在切线上哦。
如果曲线方程是y = f(x),那y₀ = f(x₀)。
然后呢,求出函数在x₀处的导数f'(x₀),这就是切线的斜率啦。
再根据点斜式写出切线方程y - y₀ = f'(x₀)(x - x₀)。
这就像是在玩一个猜谜游戏,我们先假设一个神秘的点(切点),然后通过各种线索(曲线方程和导数)来找出这个切线方程这个宝藏呢。
三、利用已知切线方程的形式来求。
还有一种方法呢,就是利用已知切线方程的形式。
比如说对于圆的方程(x - a)²+(y - b)² = r²,在点(x₁, y₁)处的切线方程是(x₁ - a)(x - a)+(y₁ - b)(y - b)= r²。
对于椭圆、双曲线等一些特殊的曲线也有类似的固定形式的切线方程哦。
这就像是有个小秘籍一样,直接套用这个形式就能求出切线方程啦。
就好比你有一把万能钥匙,遇到特定的锁(特殊曲线在某点的切线),直接一插就能打开(求出切线方程)啦。
宝子们,这三种求切线方程的方法是不是很有趣呀?只要多练练,你就能在求切线方程这个小天地里畅游无阻啦。
导数的应用曲线的切线和法线问题在微积分中,导数是一个重要的概念,它描述了函数在某一点上的变化率。
除了用来求函数的极值和变化趋势外,导数还可以应用于曲线的切线和法线问题。
本文将探讨导数在曲线切线和法线问题上的应用。
一、曲线的切线问题对于给定的曲线,我们可以通过求取该曲线上某一点的导数来确定该点处的切线。
具体的步骤如下:1. 确定曲线上的某一点P(x₀, y₀)。
2. 求取该点的导数dy/dx。
3. 使用点斜式或一般式求取与该点所在切线平行的直线方程。
4. 得到切线的方程。
举例来说,如果我们有一个曲线的方程为y = 2x² + 3x - 4,那么可以依次进行如下步骤来求取曲线在某一点上的切线:1. 确定点P(x₀, y₀)的坐标,假设为P(2, 7)。
2. 求取该点的导数dy/dx,对于曲线y = 2x² + 3x - 4,求导得到dy/dx = 4x + 3。
3. 使用点斜式求取切线的方程,将点P的坐标和导数dy/dx的值代入点斜式方程y - y₀ = m(x - x₀),得到y - 7 = (4(2) + 3)(x - 2)。
4. 化简方程,得到切线的方程y = 8x - 9。
通过这个例子可以看出,求取曲线切线的关键是求取点的导数,然后利用切线方程将导数与点的坐标结合,得到切线的方程。
二、曲线的法线问题曲线的法线是与该曲线在某一点处相切,垂直于切线的直线。
求取曲线的法线同样可以通过求取该点的导数来完成。
具体的步骤如下:1. 确定曲线上的某一点P(x₀, y₀)。
2. 求取该点的导数dy/dx,并计算其倒数k。
3. 求取法线的斜率nk = -1/k。
4. 使用点斜式求取法线方程。
5. 得到法线的方程。
和曲线的切线问题类似,求取曲线的法线也需要先求取点的导数,然后计算导数的倒数作为法线的斜率。
三、综合案例考虑一个具体的综合案例,假设我们有一个函数f(x) = x³ + 2x²- 3x + 1,我们希望求取该函数在 x = 2 处的切线和法线。
利用导数求三角函数切线方程的三种问题类型导数是微积分中的重要概念,可以用来求解三角函数的切线方程。
在这份文档中,我们将介绍三种利用导数求三角函数切线方程的问题类型。
问题类型一:给定函数和点,求切线方程在这种类型的问题中,我们已知一个三角函数及其定义域上一点的坐标,需要求解该函数在该点处的切线方程。
解决这类问题的关键是求解该点处的导数。
对于三角函数而言,我们可以利用基本导数公式来求解。
例如,对于sin(x)函数,其导数是cos(x);对于cos(x)函数,其导数是-sin(x)。
一旦我们求得了函数在给定点处的导数,我们可以使用切线方程的一般形式y = f'(x0)(x - x0) + f(x0)来求解。
其中,f'(x0)表示函数在x0处的导数值,f(x0)表示函数在x0处的函数值。
问题类型二:给定函数和切线斜率,求切点坐标在这种类型的问题中,我们已知一个三角函数及其切线的斜率,需要求解切线与该函数的交点坐标。
解决这类问题的关键是找到切点的x坐标。
我们可以使用导数和斜率的关系来求解。
具体而言,由于导数就是切线的斜率,我们可以将斜率与导数相等来列方程。
然后,通过求解方程,我们可以得到切点的x坐标。
一旦我们获得了切点的x坐标,我们可以将该坐标代入三角函数的方程中,得到切点的y坐标。
问题类型三:给定函数和切点,求切线斜率在这种类型的问题中,我们已知一个三角函数及其切线的切点坐标,需要求解切线的斜率。
解决这类问题的关键是求解切点的导数。
我们可以使用导数的定义来求解。
具体而言,我们可以将切点的坐标代入三角函数的导数公式中,然后求导得到切点的导数。
一旦我们求得了切点的导数,即可得到切线的斜率。
通过掌握这三种问题类型的解决方法,我们可以有效地利用导数来求解三角函数的切线方程。
这有助于我们更好地理解三角函数的性质和导数的应用。
利用导数求曲线的切线和公切线一. 求切线方程【例1】.已知曲线f(x)=x 3-2X12+1.(1) 求在点P( 1,0 )处的切线l i的方程;⑵ 求过点Q( 2,1 )与已知曲线f(x)相切的直线丨2的方程.提醒:注意是在某个点处还是过某个点!二. 有关切线的条数【解答】解:(I)由 f (x) =2x3- 3x 得f'( x) =6x2- 3,令f,( x) =0 得, x= - ■-或x= ■-,2 2•- f (-2) =- 10, f (-二)=",f ( = ) =- ", f (1) =- 1,••• f (x)在区间[-2, 1]上的最大值为二.(n)设过点P (1, t)的直线与曲线y=f (x)相切于点(X0, y°),则y o=2・” -3x。
,且切线斜率为k=6 :匚-3,•••切线方程为y-y o= (6:,二-3)(x -x o),••• t - y°= (6 :,二-3)( 1 - x o),即卩4- 6 . F +t+3=0,设g (x) =4x? - 6x?+t+3 , 则“过点P (1, t)存在3条直线与曲线y=f (x)相切”,等价于“ g (x)有3 个不同的零点”.T g'(x) =12x2- 12x=12x (x- 1),•g (0) =t+3是g (x)的极大值,g (1) =t+1是g (x)的极小值.•g (0)> 0 且g (1)v 0,即-3v t v- 1,•当过点过点P (1, t)存在3条直线与曲线y=f (x)相切时,t的取值范围是(-3,- 1).(rn)过点A (- 1, 2)存在3条直线与曲线y=f (x)相切;过点B (2, 10)存在2条直线与曲线y=f (x)相切;过点C (0, 2)存在1条直线与曲线y=f (x)相切.【作业1】.(2017?莆田一模)已知函数 f (x) =2x3- 3x+1, g (x) =kx+1 - Inx .(fM y<1(1)设函数hW二’、,当k v 0时,讨论h (x)零点的个数;g lx)』x^l(2)若过点P (a,- 4)恰有三条直线与曲线y=f (x)相切,求a的取值范围.三. 切线与切线之间的关系【例4】.(2018?绵阳模拟)已知a, b, c€ R,且满足b2+c2=1,如果存在两条互相垂直的直线与函数f (x) =ax+bcosx+csinx的图象都相切,则a+/HW:c 的取值范围是.解:f '(x) = a + b cos x—c sin x = a +c' cos(x + ^?) = a +cos(x + p)令H + e = 则码 + 0 =环巧+e = g. f\x) ~+dtj题意’存在x r x2E R使得厂(xj厂(兀)= T* 0p(a+cos^X fl + cos^)=_l»即关于。
求曲线在某点的切线方程方法引言在数学和物理学中,研究曲线的切线是很常见的问题。
切线可以帮助我们了解曲线的局部特征和性质,它在微积分、力学和工程学等领域中都有广泛的应用。
本文将介绍一些常见的方法来求解曲线在某点的切线方程。
切线的定义在数学中,曲线上某点的切线可以被定义为通过该点并且与曲线在该点附近重合的直线。
切线的斜率即为曲线在该点的导数。
方法一:求导法一种常见的方法是使用导数来求解曲线在某点的切线方程。
设曲线的方程为y=f(x),我们要求解曲线在点(x0,y0)处的切线方程。
1.首先求曲线的导数f'(x)。
2.将点(x0,y0)带入导数函数,求出导数的值f'(x0)。
3.使用切线方程的一般形式y-y0=f'(x0)(x-x0),将(x0,y0)和f'(x0)代入,得到切线方程。
方法二:斜率和点法另一种常用的方法是使用斜率和已知点来求解切线方程。
同样假设曲线的方程为y=f(x),我们要求解曲线在点(x0,y0)处的切线方程。
1.计算曲线在点(x0,y0)处的斜率,即f'(x0)。
2.使用点斜式切线方程y-y0=f'(x0)(x-x0),将(x0,y0)和f'(x0)代入,得到切线方程。
方法三:曲线近似法第三种方法是使用曲线的近似来求解切线方程。
此方法适用于那些难以计算导数的曲线。
1.在点(x0,y0)处取曲线的一个非常小的线段,该线段基本上与切线重合。
2.使用线性函数来拟合这个线段,得到近似切线方程。
方法四:参数法对于参数方程表示的曲线,我们可以使用参数法来求解切线方程。
假设曲线的参数方程为x=f(t),y=g(t),我们要求解曲线在参数值t0处的切线方程。
1.计算参数值t0对应的点的坐标(x0,y0)。
2.求解参数方程的导数dx/d t和dy/dt。
3.使用点斜式切线方程y-y0=(dy/d t)/(dx/d t)(x-x0),将(x0,y0)、dx/d t和d y/dt代入,得到切线方程。
二次函数导数求切线方程【二次函数导数求切线方程】导数是微积分中的重要概念,它描述了函数在某一点上的变化率。
对于二次函数,导数的求解可以帮助我们找到切线的方程,从而更加深入地理解函数在给定点的性质。
本文将从简单到复杂,由浅入深地讨论二次函数导数求切线方程的方法,并分享个人见解和理解。
一、二次函数简介1.概念与特点二次函数是一种形如y=ax^2+bx+c的函数,其中a、b、c为常数,且a≠0。
二次函数的图像是抛物线,通常开口方向由系数a的正负决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2.求解切线方程的重要性求解二次函数的切线方程有助于我们分析函数图像的曲率、变化趋势等性质。
切线方程提供了通过给定点的切线,可以帮助我们在特定点上确定及评估函数的变化率。
二、求二次函数导数1.导数的定义导数表示函数在某一点上的变化率,可以视为该点切线的斜率。
对于二次函数y=ax^2+bx+c,我们可以通过求解导数来确定函数在给定点的切线方程。
2.二次函数的导数对于二次函数y=ax^2+bx+c,首先我们需要求出它的导数。
利用导数的定义,我们可以得到二次函数的导数公式为y'=2ax+b。
三、求二次函数的切线方程1.确定给定点要求解二次函数在给定点上的切线方程,首先需要确定给定点的横坐标和纵坐标。
设给定点为P(x0,y0),其中x0为横坐标,y0为纵坐标。
2.求解切线方程根据导数的定义,我们知道切线的斜率等于函数在给定点上的导数值。
切线方程的斜率k等于导数值,即k=y'(x0)=2ax0+b。
根据切线的一般方程y-y0=k(x-x0),代入斜率和给定点的坐标,我们得到该二次函数在给定点上的切线方程为y-y0=2ax0+b(x-x0)。
四、个人观点与理解二次函数导数求切线方程是求解函数在给定点上的变化率的一种方法,通过求导可以得到切线的斜率,进而确定切线方程。
这种方法不仅适用于二次函数,还可以推广到其他类型的函数中。
利用导数求圆切线方程的三种问题类型概述在解决数学问题时,利用导数求圆的切线方程是一种常见的方法。
本文将介绍三种常见的问题类型,并详细解释如何使用导数来求解。
问题类型一:求圆上某点处的切线方程对于给定的圆,我们需要求解圆上某点处的切线方程。
解决这类问题的关键是确定点的坐标和圆的方程。
假设圆的方程为x²+y²=r²,其中r为半径。
设切线与圆的交点为(x₁, y₁),则切线的斜率可由导数求得。
假设切线的斜率为k,则切线方程可表示为y-y₁=k(x-x₁)。
通过将圆方程和切线方程联立,可以求解出点(x₁, y₁),进而获得切线方程的具体表达式。
问题类型二:确定圆和直线的切点坐标在此问题类型中,已知一条直线与圆相切,需要确定切点的坐标。
首先,需要确定直线的方程和圆的方程。
假设直线的方程为y=mx+b,其中m为斜率,b为截距。
圆的方程仍为x²+y²=r²。
确定直线与圆相切的条件为直线方程和圆方程联立,得到二次方程形式的解。
求解该二次方程可得到切点的横坐标x₁,代入直线方程中即可求得切点的纵坐标y₁。
问题类型三:求圆的切线方程和切点坐标此问题类型中,需同时求解切线方程和切点坐标。
解决方法是通过已知条件,构建适当的方程组,然后求解其中的未知变量。
例如,已知圆心坐标和切点在圆上的坐标,可以利用圆方程和切线方程联立求解。
总结利用导数求圆切线方程的三种问题类型包括求圆上某点处的切线方程、确定圆和直线的切点坐标,以及求圆的切线方程和切点坐标。
对于每种问题类型,我们需要确定已知条件,建立适当的方程,然后通过导数运算和联立方程求解未知变量。
这些问题可以通过简单的策略和避免法律复杂性来解决,以确保准确性和可靠性。
备注:本文仅提供数学问题解决方法的讨论,不涉及确切的案例或法律内容。
在实际应用中,请确保依据具体情况做出独立决策并遵循法律法规。
1、函数()y f x =在0x 处的导数0'()f x 的几何意义:0'()f x 是曲线()y f x =在点00(,())x f x 处的切线斜率。
相应的切线方程:000()'()()y f x f x x x -=-(点斜式)注意:(1)切点在曲线上,也在切线上(2)0'()0f x >,则切线的倾斜角为锐角,曲线在改点处上升;0'()0f x <,则切线的倾斜角为钝角,曲线在改点处下降;0'()0f x =,则切线与x 轴平行或重合。
0|'()|f x2、应用导数的几何意义求曲线的切线方程的注意:(1)点00(,())P x f x 在曲线上①先求0'()f x (即斜率);②点斜式求直线方程000()'()()y f x f x x x -=-(2)点00(,())P x f x 不在曲线上 ①先求切点Q ;②点斜式求直线方程。
(二)例题解析与巩固练习:例1:(已知切点求切线)已知函数3()21f x x x =-+ ,求这个函数的图像在点(1,0)的切线方程解: 2'()32f x x =-,('1)1,1f k ==即,由点斜式得直线方程:01y x -=- 化简得:10x y --=巩固练习:求曲线()ln f x x x =在1x =处的切线方程。
例2:(已知切线斜率求切点坐标)已知曲线2y x =的一条切线的斜率为2,求该切线与曲线的切点坐标。
巩固练习:(1)曲线313y x =在点P 处的切线与123150x y --=平行,求点P 的坐标。
(2)若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则a = ,b = 。
例3:(点在曲线外地切线方程)求曲线2()2f x x x =-过点(3,2)的切线方程。
巩固练习:(1)求过点(3,8)P 且与抛物线2yx =相切的直线方程。
特色专题一:导数求切线(讲义+典型例题+小练)函数()f x 在0x 处导数的几何意义,曲线()y f x =在点()()00,P x f x 处切线的斜率是()0k f x '=。
于是相应的切线方程是:()()000y y f x x x '-=-。
用导数求曲线的切线 注意两种情况: (1)曲线()y f x =在点()()00,P x f x 处切线:性质:()0k f x '=切线。
相应的切线方程是:()()000y y f x x x '-=-(2)曲线()y f x =过点()00,P x y 处切线:先设切点,切点为(,)Q a b ,则斜率k='()f a ,切点(,)Q a b 在曲线()y f x =上,切点(,)Q a b 在切线()()00y y f a x x '-=-上,切点(,)Q a b 坐标代入方程得关于a,b 的方程组,解方程组来确定切点,最后求斜率k='()f a ,确定切线方程。
题型一:在点处的切线方程例1:1.曲线6y x x =-在点()1,0处的切线方程为( ) A .44y x =-B .55y x =-C .66y x =-D .77y x =-2.设曲线y=ax -ln(x+1)在点(0,0)处的切线方程为y=2x ,则a= ( ) A .0B .1C .2D .33.已知P (﹣1,1),Q (2,4)是曲线y=x 2上的两点,求与直线PQ 平行且与曲线相切的切线方程.举一反三:1.已知函数2ln ()f x x x =-+,则函数()f x 在点(1,(1))f 处的切线方程为( ) A .10x y +-= B .30x y --= C .10x y ++=D .0x y +=2.若函数()ln f x x =和()()2R g x x ax a =+∈的图象有且仅有一个公共点P ,则g (x )在P 处的切线方程是_________.3.已知函数()3223125f x x x x =+-+,求曲线()y f x =在点()0,5处的切线方程; 题型二:过点处的切线方程例2:1.若存在过点(0,2)-的直线与曲线3y x =和曲线2y x x a =-+都相切,则实数a 的值是( ) A .2-B .0C .1D .22.求曲线y =x 3过点(-1,-1)的切线方程. 举一反三:1.判断曲线1y x x=+在点()1,2P 处是否有切线,如果有,求出切线的斜率. 2.(1)求曲线e x y =在0x =处切线的方程; (2)过原点作曲线e x y =的切线,求切点的坐标. 3.已知函数()1(0)f x x x=>,过点(),P a b 可作两条直线与函数()y f x =相切,则下列结论正确的是( ) A .0ab <B .01ab <<C .22a b +的最大值为2D .e a b >题型三:切线求参数例3:1.若曲线()2ln f x ax x x =-+存在垂直于y 轴的切线,则a 的取值范围是( )A .1,8∞⎡⎫+⎪⎢⎣⎭B .10,8⎛⎤⎥⎝⎦C .1,8∞⎛⎤- ⎥⎝⎦D .1,8∞⎛⎫- ⎪⎝⎭2.已知曲线e ln xy a x x =+在点()1,ae 处的切线方程为2y x b =+,则( ) A .,1a e b ==- B .,1a e b ==C .1,1a e b -==D .1,1a e b -==-举一反三:1.曲线()1e xy ax =+在点()01,处的切线的斜率为2-,则a =________. 2.如果函数()363f x x bx b =-+在区间()0,1内存在与x 轴平行的切线,则实数b 的取值范围是___________.3.若曲线()2(3)(2)(1)(1)(2)4ln 31ln 3x x x x x x y x x x ---++=+++-在点()1,8ln 2处的切线与直线22x ay =-平行,则=a __________.举一反三: 一、单选题1.曲线()33f x x x =-在点()()2,2f --处的切线方程为y kx b =+,则实数b =( )A .-16B .16C .-20D .202.设函数()f x 在R 上存在导函数()'f x ,()f x 的图象在点()()1,1M f 处的切线方程为122y x =+,那么()'1f ( )A .2B .1C .12D .133.曲线2()ln f x x x =-在点(1,(1))f 处的切线方程为( ) A .y x =-B .23y x =-C .32y x =-+D .21y x =-+4.函数()f x 的图象如图所示,则下列关系正确的是( )A .()()()()02332f f f f '<<'<-B .()()()()03322f f f f ''<<-<C .()()()()02323f f f f ''<<-<D .()()()()03223f f f f ''<-<<5.曲线e 1x y =+上的点到直线20x y --=的距离的最小值是( ) A .3B .2C .2D .226.已知曲线()23e x y x x =+在点()0,0处的切线为l ,数列{}n a 的首项为1,点()()1,n n a a n N*+∈为切线l 上一点,则数列6n n a ⎧⎫-⎨⎬⎩⎭中的最小项为( )A .623-B .523-C .613-D .613 二、多选题7.(多选)曲线y =f (x )=x 3在点P 处的切线斜率k =3,则点P 的坐标是( ) A .(1,1) B .(-1,-1) C .(-2,-8) D .(2,8)8.(多选)定义在区间[],a b 上的函数()f x ,其图象是连续不断的,若[],a b ξ∃∈,使得()()()()f b f a f b a ξ'-=-,则称ξ为函数()f x 在区间[],a b 上的“中值点”,则下列函数在区间[]0,1上“中值点”多于一个的函数是( ) A .()f x x = B .()2f x x =C .()()ln 1f x x =+D .()312f x x ⎛⎫=- ⎪⎝⎭三、填空题9.若直线2y x a =+是函数()ln f x x x =+的图象在某点处的切线,则实数a =____________. 10.已知函数()f x 是奇函数,当0x <时,()2cos 1f x x =-,则曲线()f x 在点()(),f ππ处的切线方程为______. 四、解答题11.已知函数()()21e x f x k x x =-+.(1)求导函数()f x ';(2)当1ek =时,求函数()f x 的图像在点()1,1处的切线方程.12.已知曲线3S 2y x x =-:(1)求曲线S 在点A (2,4)处的切线方程; (2)求过点B (1,—1)并与曲线S 相切的直线方程.。