第五章天然气地球化学
- 格式:pdf
- 大小:5.64 MB
- 文档页数:39
油气地球化学1、油气地球化学的定义应用化学原理,研究地质体(沉积盆地)中生成油气的有机物、石油、天然气及其次生产物的组成、结构、形成、运移、聚集和次生变化的有机地球化学机理及其在勘探中的应用。
2、地球化学的分支学科(1)元素地球化学; (2)同位素地球化学;(3)流体地球化学; (4)地球化学热力学和动力学;(5)各种地质作用地球化学; (6)有机地球化学;(7)环境地球化学; (8)气体地球化学。
(9)海洋地球化学(10)区域地球化学3、油气地球化学的研究对象沉积盆地或地壳中油气、生成油气的有机物及相关物质。
4、油气地球化学研究的主要内容Ø 与沉积作用有关的活性生物有机质及其在沉积、保存和埋藏条件下的演化;Ø 石油成因和演化;v 干酪根地球化学v 可溶有机质地球化学Ø 天然气地球化学;Ø 油气地球化学在油气勘探、开发中的应用;v 盆地的油气勘探远景和资源预测v 油气地球化学勘探v 油田水地球化学v 油田开发地球化学11、有机圈(organosphere):系指地球上古今生物及其形成的有机物,分布和演变的空间。
有机碳的循环:(1)生物化学亚循环:为较小的亚循环(碳总量约为3×1012吨) ,其循环周期不超过一百年,包括三个次一级循环:(2)地球化学亚循环:为大的亚循环(碳总量约为12×1015吨),包括沉积圈中有机质的演化途径,其循环周期以百万年计算,其中也包括三个次级循环11、旋光异构当一个碳原子同时和四个不同的原子或原子团键合时,四个基团在碳原子的周围会有两种排列方式,它们互为镜像但不能重合,这种立体异构体叫对映体,它们可使偏振光的偏振面发生反向旋转,因而被称为旋光异构。
11、沉积有机质的概念分布在沉积物或沉积岩中的分散有机质。
它们来源于生物的遗体及其分泌物和排泄物。
直接或间接进入沉积物中;或经过生物降解作用和沉积埋藏作用被掩埋在沉积物中;或经过缩聚作用演化生成新的有机化合物。
地球化学中的有机地球化学地球化学是一门研究地球化学元素的分布、运移、化学特性及其在地球圈层中的变化规律的科学。
有机地球化学则是研究有机物质在地球中的分布、特性、形成与演化的学科。
它是现代地球化学领域中的一个分支,与矿物地球化学、水文地球化学等有机结合,构成了地球化学研究的核心内容。
本文将从有机地球化学的研究对象、有机质的主要成分、有机地球化学古气候学、有机地球化学与环境科学等几个方面结合实例进行阐述。
一、有机地球化学的研究对象有机地球化学的研究对象包括石油、煤炭、天然气、沉积岩石等。
这些物质均含有不同程度的有机质,是现代人类社会生产生活的重要能源与原料资源。
石油、煤炭、天然气是含碳量极高的有机物,其成分除了含碳之外,还含有氢、氮、硫等元素。
石油和天然气是构成地球深部烃类资源的主要成分,而煤炭则是由大量的植物残骸在地质历史长期压缩和化学反应形成的,是地球上储量最丰富的燃料。
沉积岩石则是指岩石中含有可见的、经过生物化学反应后形成的化石和其他有机标志物的沉积物。
有机质最为集中的地方是深度较浅的沉积岩系。
研究沉积岩石中的有机质,有助于了解岩石的沉积环境、沉积旋回、海水温度、海平面变化等。
有机质通常包括一系列的生物标志物,如芳香烃、脂肪烃等,这些标志物具有结构独特、成分多样、稳定性高的特征,可以用来将岩石的沉积环境重建出来。
二、有机质的主要成分有机质的主成分是有机碳、有机氮、有机硫、有机氧等元素的有机物。
为了更好的理解有机质和岩石成因的关系,我们需要掌握有机质的具体特征。
(1)碳同位素组成燃料油、煤中的有机碳含量可以用碳同位素组成进行表征。
碳同位素组成是指不同样品中碳的不同原子量之间的比例,以表征碳源以及化学分馏过程。
同位素测量得到的结果是以δ13C ‰ (PDB) 的形式表示的。
其中δ13C为样品同位素组成相对于标准物质Pee Dee Belemnite(PDB)的偏移值,计算公式如下:δ13C ‰ (PDB) = [(13C/12C)样品/(13C/12C)PDB - 1] × 1000‰(2)生物标志物分析生物标志物分析是有机地球化学中的重要研究手段之一。
油气地球化学知识框架(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--油气地球化学第一章生物有机质组成与沉积模式第一节有机质的形成与全球碳循环一、生命的起源与演化二、光合作用三、对地球上有机质有主要贡献的生物1、浮游植物(时间长、水体面积高、繁殖率高)2、细菌(时间长、分布广、适应性极强、繁殖快)3、高等植物(出现晚,分布在陆地保存难、可富集演化为煤层)4、浮游动物(食物消费者产率低、低等浮游动物数量较大)四、有机碳的循环1、有机圈2、有机碳的循环 (1)生物化学亚循环 (2)地球化学亚循环第二节生物有机质的组成和性质一、碳水化合物二、蛋白质和氨基酸(一)蛋白质(二)氨基酸(三)酶三、脂类1.脂肪酸2.腊3.萜类和甾类化合物4.甾族化合物四、木质素和丹宁五、色素第三节有机质沉积模式一、有机质沉积的控制因素1、生物控制因素:微生物降解、原始生产速率2、物理控制因素:有机质沉积速率、沉积环境、有机质的搬运作用二、缺氧环境的类型1、大型缺氧湖泊(1)深水是缺氧湖泊发育的重要条件(2)缺氧湖泊的发育与纬度有关(四季变化明显的湖泊底水含氧量大,热带湖泊含氧量少)2、海相缺氧环境(1)缺氧封闭局限海盆(2)由上升流形成的缺氧沉积第二章沉积有机质组成及成岩演化第一节腐殖质的组成、结构和性质1、腐殖质的概念:是指土壤、天然水和现代沉积物中不能水解的、不溶于有机溶剂的暗色有机质。
2、腐殖质的形成、提取及分类(1)形成有机质受细菌作用后剩余的木质素、氨基酸、脂肪酸、酚、纤维素等在微生物作用下缩合而成(在强还原环境下可以不形成腐殖质)(2)提取与分类富啡酸(FA)、胡敏酸(HA)、胡敏素(3)腐殖酸元素组成主要为C、H、O、S、N,其中C、O两项占90%以上3.腐殖酸的结构A富克斯结构模型 B费尔伯克结构模型 C特拉古诺夫结构模型 D库哈连科结构通式4.腐殖酸的物理化学性质(1)胶体性和可溶性(2)明显的酸性(3)亲水性(4)热解性质5.腐殖质的演化第二节可溶有机质一、可溶有机质的定义凡是被中性有机溶剂从沉积岩(物)中溶解(抽取)出来的有机质称为可溶有机质,或可抽提有机质,也成为沥青。
《石油及天然气地质学》复习要点#中国地质大学(武汉)考研专业课复习要点#第一章油气藏中的流体1.简述海相与陆相石油的基本区别?(1)石油类型(2)含蜡量(3)含硫量(4)钒和镍含量与比值(5)碳稳定同位素组成2.气藏气中常见的化学组成是什么?(1)主要成分:烃类,通常甲烷占优势(2)次要组成:非烃气(3)痕量到微量的惰性气体3.蒂索和怀特(1978)提出的石油分类?(1)石蜡型(2)环烷型(3)石蜡—环烷型(4)芳香—中间型(5)芳香—环烷型(6)芳香—沥青型4.石油的化合物组成?(1)正构烷烃(2)异构烷烃(3)环烷烃(4)芳烃和环烷芳烃(5)含硫、氮、氧化合物(6)生物标记化合物5.油田水的分类(Sulin,1948)?(1)硫酸钠型(2)重碳酸钠型(3)氯化镁型(4)氯化钙型6.油田水的来源?(1)沉积水(2)渗入水(3)转化水(4)深成水。
7.油田水的产状?(1)与油、气分布的相对位置,分为底水和边水(2)与油层的相对位置分为上层水、夹层水和下层水(3)按照水在储集层的存在状态可分为:气态水、吸附水、毛细管水和自由水8.油田水的化学组成?(1)无机组成:常量组分、微量组分(2)有机组分:烃类、酚和有机酸(3)溶解气:O2、H2、CO2、H2S、CH4、He等9.不同成因天然气的化学组成和碳氢稳定同位素的基本特征?(1)生物成因气:甲烷气及部分CO2和少量N2;δ13C1值一般-55‰〜-90‰之间;δD值较低。
(2)油型气:石油和凝析油伴生气,重烃气含量一般大于5%,最高可达40%〜50%,甚至可超过甲烷含量。
过成熟以甲烷为主,重烃气一般小于2%;碳稳定同位素:由石油伴生气→凝析油伴生气→过成熟干气,大致分别为-55‰〜-40‰、-45‰〜-30‰、≥-35‰;δD 偏高,与δ13C值频率分布特征一样,随烷烃气中碳数增加,δD值频率区间值变重。
(3)煤型气:重烃气含量有时可达10%以上,甲烷气一般占70%-95%.非烃气中普遍含N2和Hg蒸气,也常含CO2,但贫H2S;我国煤型气的δ13C1值分布在-41.8‰至-24.9‰之间。
《地球化学》章节笔记第一章:导论一、地球化学概述1. 地球化学的定义:地球化学是应用化学原理和方法,研究地球及其组成部分的化学组成、化学性质、化学作用和化学演化规律的学科。
它是地质学的一个分支,同时与物理学、生物学、大气科学等多个学科有着密切的联系。
2. 地球化学的研究对象:- 地球的固体部分,包括岩石、矿物、土壤等;- 地球的流体部分,包括大气、水体、地下水等;- 地球生物体,包括植物、动物、微生物等;- 地球内部,包括地壳、地幔、地核等。
3. 地球化学的研究内容:- 地球物质的化学组成及其时空变化;- 地球内部和外部的化学过程;- 元素的迁移、富集和分散规律;- 地球化学循环及其与生物圈的相互作用;- 地球化学在资源、环境、生态等领域的应用。
二、地球化学的研究方法与意义1. 地球化学的研究方法:- 野外调查与采样:包括地质填图、钻孔、槽探、岩心采样等;- 实验室分析:包括光学显微镜观察、X射线衍射、电子探针、电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)等;- 地球化学数据处理:包括统计学分析、多元回归、聚类分析等;- 地球化学模型:建立地球化学过程的理论模型和数值模型;- 同位素示踪:利用稳定同位素和放射性同位素研究地球化学过程。
2. 地球化学研究的意义:- 揭示地球的形成和演化历史;- 了解地球内部结构、成分和动力学过程;- 探索矿产资源的形成机制和分布规律;- 评估和治理环境污染问题;- 理解地球生物圈的化学循环和生态平衡;- 为可持续发展提供科学依据。
三、地球化学的发展历程与现状1. 地球化学的发展历程:- 起源阶段:19世纪初,地质学家开始关注矿物的化学组成;- 形成阶段:19世纪末至20世纪初,维克托·戈尔德施密特等科学家奠定了地球化学的基础;- 发展阶段:20世纪中叶,地球化学在理论、方法、应用等方面取得显著进展;- 现代阶段:20世纪末至今,地球化学与分子生物学、环境科学等学科交叉,形成新的研究领域。
天然⽓及其组分的物理化学性质天然⽓及其组分的物理化学性质天然⽓的主要成分为甲烷,此外还含有⼄烷、丙烷、丁烷等烃类⽓体,氮、CO2、H2S及微量氢、氦、氩等⾮烃类⽓体,⼀般⽓藏天然⽓的甲烷含量在90%以上。
油⽥伴⽣⽓中甲烷含量占65%~80%,此外还含有相当数量的⼄烷、丙烷、丁烷等烃类⽓体。
⼀、天然⽓主要组分的物理化学性质天然⽓主要组分的物理化学性质见表1-3-1。
表1-3-1天然⽓主要组分在标准状态下的物理化学性质名称分⼦式相对分⼦质量摩尔体积Vm/(m3/kmol)⽓体常数R(J/kg·K)密度ρ/(kg/m3)临界温度Tc/K临界压⼒Pc/MPa⾼热值Hh/(MJ/m3)⾼热值Hh/(MJ/kg)低热值H1/(MJ/m3)甲烷CH416.04322.362518.750.7174190.584.54439.842 35.906⼄烷C2H630.0722.187276.641.3553305.424.81670.35155.36764.397丙烷C3H844.09721.936188.652.0102369.824.194101.26651.90893.240正丁烷n-C4H1058.12421.504143.1302.703425.183.747133.88650.376123.649异丁烷i-C4H1058.12421.598143.132.6912408.143.600133.04849.532122.853正戊烷C15H1272.15120.891115.273.453746.9653.325169.37749.438156.733氢H22.01622.427412.67O.089833.251.28012.74549.04210.786氧O231.99922.392259.971.4289154.334.971—141.926—氮N223.01322.403296.951.2507125.973.349——氦He3.01622.42281.170.13453.350.118——⼆氧化磺CO244.01022.26189.041.9768304.257.290———硫化氢H2S34.07622.18244.171.5392373.558.89025.364 23.383空⽓28.06622.40287.241.2931132.43.725—16.488—⽔蒸⽓H2O18.01521.629461.760.8330647.0021.830—名称低热值H1/(MJ/kg)爆炸极限(体积分数)/%动⼒黏度µ×106/(Pa·s)运动黏度υ×106/(m2/s)沸点/℃定压⽐热容Cp/(kJ/m3·K)绝热指数K导热系数λ/[W/(m·K)]偏⼼因⼦上限下限甲烷 5.015.010.6014.50-161.491.5451.3090.030240.0104⼄烷50.052.913.08.776.41-88.002.2441.1980.018610.0986丙烷47.5152.19.57.653.81-42.052.9601.1610.015120.1524正丁烷46.3831.58.56.972.53-0.053.7101.1440.013490.2010异丁烷45.7451.88.5 -11.72—1.144—0.1848正戊烷45.651.48.36.481.8536.06—1.121—0.2539氢45.3814.075.98.5293.00-252.751.2981.4070.21630氧120.111——19.8613.60-182.981.3151.4000.02500.0213氮——17.0013.30-195.781.3021.4020.024890.04氦————-269.95—1.640——⼆氧化碳———14.307.09-78.200.6201.3040.013720.225硫化氢 4.345.511.907.63-60.201.5571.3200.013140.100空⽓15.192——17.5013.40-192.501.3061.4010.02489—⽔蒸⽓——8.6010.12—1.4911.3350.016170.3480⼆、天然⽓中有机硫化合物的主要性质天然⽓中除含有H2S外,还含有数量不等的硫醇、硫醚以及微量的⼆硫化碳、硫化羰。
天然气水合物矿产姓名:张航飞学号:20081004218指导老师:张成、庄新国目录第一章天然气水合物的基本性质第二章天然气水合物的成因类型及主控因素第三章天然气水合物成藏系统第四章天然气水合物的形成机理第五章天然气水合物的识别标志附录参考文献第一章天然气水合物的基本性质一、天然气水合物的基本性质天然气水合物是一种由水分子和气体分子组成的似冰状笼形化合物, 其外形如冰晶状, 通常呈白色,它广泛分布于大陆边缘海底沉积物和永久冻土层中.它的分子式可以用M·nH2O 来表示, 式中M表示“客体”分子, n 表示水合系数. 在这种冰状的结晶体中, 甲烷( CH4) 、乙烷( C2H6) 、丙烷( C3H8) 、异丁烷、常态丁烷、氮( N2) 、二氧化碳( CO2) 和硫化氢( H2S) 等“客体”分子充填于水分子结晶骨架结构的孔穴中, 它们在低温高压( 0℃<T<10℃, P >10 MPa) 条件下通过范德华力稳定地相互结合在一起. 由于天然气水合物中通常含有大量的甲烷或其他碳氢气体分子, 因此极易燃烧, 所以有人称之为“可燃冰”. 它在燃烧后几乎不产生任何残渣和废弃物, 是一种非常洁净的能源.自然界的天然气水合物并非都是白色的, 它还有许多其他的颜色. 如从墨西哥湾海底获取的天然气水合物, 它们呈现绚丽的橙色、黄色, 甚至红色等多种很鲜艳的颜色; 而从大西洋海底Blake Ridge 取得的天然气水合物则呈灰色或蓝色. 赋存于天然气水合物中的一些其他物质( 如油类、细菌和矿物等) 都可能对这些色彩的产生起关键作用 .天然气水合物按产出环境可以分为海底天然气水合物和极地天然气水合物; 按结构类型可分为4类( 表1, 图1) , 即I 型、Ⅱ型、H 型和一种新型的水合物( 它是由生物分子和水分子生成的) . I 型结构的水合物为立方晶体结构, 其笼状格架中只能容纳一些较小分子的碳氢化合物, 如甲烷( C1) 和乙烷( C2) , 以及一些非碳氢气体, 如N2、CO2 和H2S. I 型结构的水合物是由46 个水分子构成2 个小的十二面体“笼子”以容纳气体分子[ 11] , I 型水合物中的甲烷主要是生物成因气. Ⅱ型结构的水合物为菱形晶体结构, 其笼状格架较大, 不但可以容纳甲烷( C1) 和乙烷( C2) , 而且可以容纳较大的丙烷( C3) 和异丁烷( iC4) 分子. H 型结构的水合物, 为六方晶体结构, 具有最大的笼状格架, 可以容纳分子直径大于iC4 的有机气体分子. Ⅱ型水合物和H 型水合物中的烃类主要来源于热成因, 常与油气藏的渗漏有关. Ⅱ型和H 型结构的天然气水合物比I 型的要稳定得多, 它们可以在较高温度和较低压力下保持稳定, 但自然界天然气水合物以I 型为主.图1 天然气水合物晶体结构类型第二章天然气水合物的成因类型及主控因素一、天然气水合物的成因类型依据气体水合物的物理化学特征,充足的水和气体供应是形成自然界天然气水合物的两个基本因素。
地球化学绪论1、地球化学的定义:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学2、地球化学的基本问题:【填空】(1)质:地球系统中元素的组成(2)量:元素的共生组合和赋存形式(3)动:元素的迁移和循环(4)史:地球的历史和演化3、地球化学研究思路:【简答】在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。
即“见微而知著”。
第一章地球和太阳系的化学组成第一节地球的结构和组成1、地球的圈层结构、主要界面名称:(1)地震波(P波和S波)在地球内部传播速度的变化,反映出地球内部物质的密度和弹性是不均一的。
这种不均一性在地球的一定深度表现为突变性质。
由此得出,地球内部具有壳层结构的概念,即认为地球由表及里分为地壳、地幔和地核三个部分。
界面分别为:莫霍面和古登堡面。
(2)上地壳和下地壳分界面为康拉德面。
上地壳又叫做硅铝层,下地壳又叫做硅镁层。
大陆地壳由上、下地壳,而大洋地壳只有下地壳。
【填空】2、固体地球各圈层的化学成分特点:(分布顺序)地壳:O、Si、Al、Fe、Ca地幔:O、Mg、Si、Fe、Ca地核:Fe-Ni地球:Fe、O、Mg、Si、Ni第二节元素和核素的地壳丰度1、基本概念:【名词解释】(1)地球化学体系:我们把所要研究的对象看作是一个地球化学体系,有一定的空间,处于特定的物理-化学状态,并且有一定时间的连续(2)丰度:研究体系中被研究元素的相对含量(3)克拉克值:地壳中元素的平均含量(4)质量克拉克值:以质量计算表示的克拉克值(5)原子克拉克值:以原子数之比表示的元素相对含量。
它是指某元素在某地质体全部元素的原子总数中所占原子个数的百分数。
(6)浓度克拉克值:某一元素在地质体中的平均含量与克拉克值的比值2、克拉克值的变化规律:(1)递减:元素的克拉克值大体上随原子序数的增大而减小。