验证生长素极性输
- 格式:doc
- 大小:165.50 KB
- 文档页数:5
生长素极性运输的机理高中生物学选择性必修一植物激素调节介绍,生长素是最重要的植物激素,主要合成部位是芽、幼嫩的叶和发育中的种子,通过极性运输分配到植物各处组织,调控生长发育——低浓度生长素促进生长,高浓度生长素抑制生长。
生长素的极性运输对生长素的分配至关重要。
那么,生长素极性运输是如何实现的呢?原来,生长素转运蛋白PIN介导生长素极性运输。
19世纪末,英国著名生物学家、进化论的奠基人达尔文在研究植物向性运动时,发现植物胚芽鞘的尖端受单侧光刺激后,向下面的伸长区传递了某种“影响”,造成伸长区背光面比向光面生长快,胚芽鞘出现向光性弯曲(图1)。
这就是中学生物教科书上被大家广为熟知的达尔文向光性实验。
1928年,荷兰科学家温特证实胚芽鞘弯曲生长是由一类化学物质引起的,并命名为生长素(auxin)。
1946年,科学家从高等植物中首次分离出生长素,其主要成分为吲哚乙酸IAA。
生长素不仅与植物向光性相关,还与植物向地性(向重力性)、向化性(包括向肥性)等相关。
植物受单向的环境刺激而呈现的定向反应统称为向性(tropism)。
这种向性主要是由生长素在植物体内极性分配造成的。
因此,生长素的极性运输在这一过程中就变得非常关键。
图1. 达尔文植物向光性实验示意图生长素极性运输主要依赖于三种定位于细胞膜上的转运蛋白:AUX/LAX家族蛋白、PIN家族蛋白和ABCB家族蛋白,其中生长素外排蛋白PIN起最主要作用。
pin突变体通常表现出相应组织生长素极性运输缺陷的表型,如向光性、向重力性受损等。
PIN如何识别和转运生长素?通过拟南芥PIN3(AtPIN3)在未结合配体(AtPIN3apo)和结合IAA (AtPIN3IAA)两种状态的高分辨率结构解析,发现AtPIN3以二聚体形式存在,每个亚基包含10个跨膜螺旋(TM1–10),TM1–5和TM6–10组成反向重复结构(图2a)。
AtPIN3apo与AtPIN3IAA结构类似,且均为向内开放状态。
选择性必修1P95【思维训练】“验证植物生长素的极性运输”教学设计一、教学目标1.概述生长素的产生、运输和分布。
2.用实验验证生长素的极性运输,理解极性运输方式。
3.培养学生科学探究能力、实验创新能力,体会科学理论往往在生产实践应用过程中需要探索解决的问题。
二、教学内容基于学生在学习了植物生长素的发现过程的基础上进行实验,验证生长素的极性运输方式。
三、教学策略及过程(一)基本策略验证实验的一般方法和步骤(二)过程1.实验原理:IAA在胚芽鞘内只能从形态学上端向下端运输,不能倒过来运输。
2.实验材料、用具3.实验步骤:(1)切去胚芽鞘尖端和幼苗的其他部分,留下中间一段胚芽鞘,分为A、B两组;(2)将含有生长素的琼脂块分别放在A组胚芽鞘的i形态学上端和B组胚芽鞘的i 形态学下端,将两组胚芽鞘放置在不含生长素的琼脂块上。
(3)一段时间后,将每组下部的琼脂块放在另一段切去胚芽鞘的形态学上端。
4.得出结论:经过一段时间,A组胚芽鞘生长,B组不生长。
说明IAA只能从形态学上端向下端运输。
5.表达交流,分析课本实验的可行性与严谨性。
四、“讨论问题”的参考答案1.不严密,没有考虑到将胚芽鞘倒过来放置时的情况。
2.结论2不严谨。
没有实验证明生长素不能从形态学下端运输到形态学上端。
3.用过增加一组胚芽鞘形态学上端朝下的实验,以研究生长素能不能从形态学下端运输到形态学上端。
选择性必修1P49【思维训练】“探究性激素在胚胎生殖系统发育中所起的作用”教学设计一、教学目标1.识别和分析性激素的来源及功能,探讨其在生理和临床中的应用。
二、教学内容1.性激素种类、来源及功能:性激素可根据雌雄不同,分为雌性激素和雄性激素。
睾丸是雄性生殖器官,产生雄性激素,卵巢是雌性生殖器官,产生雌性激素,雄性激素和雌性激素分别能够促进雄性生殖器官的发育和雌性生殖器官的发育,维持第二性征。
2.实验设计:在家兔胚胎生殖系统分化之前,通过手术摘除即将发育为卵巢或睾丸的组织。
西北植物学报,2009,29(8):1714-1722Acta Bot.Boreal.-Occident.Sin.文章编号:1000-4025(2009)08-1714-09*植物生长素的极性运输载体研究进展李运合1,孙光明1,吴蓓2(1中国热带农业科学院南亚热带作物研究所,广东湛江524091;2华南理工大学生物科学与工程学院,广州510006)摘要:生长素极性运输在植物生长发育中起重要的调控作用。
植物细胞间的生长素极性运输主要通过生长素运输载体进行调控。
该文对近年来有关生长素极性运输载体,包括输入载体A U X/L A X、输出载体PIN、尤其是新近发现的兼有输入和输出载体功能的M DR/P GP等蛋白家族,以及生长素极性运输中P IN与M DR/PG P蛋白间相互作用关系进行综述。
关键词:生长素;极性运输;输入载体;输出载体中图分类号:Q945.3;Q789文献标识码:AAdvances on C arriers of Plant Polar Auxin TransportLI Yun-he1,SUN Guang-m ing1,WU Bei2(1South Sub tr opical Crop Resear ch In stitute,Chin ese Academy of T ropical Agricultural Science,Zh anjiang,Guangdong524091,C hina;2College of Bioscience and Bioengin eering,South China University of Technology,Guangzh ou510006,China)Abstract:Po lar aux in transpor t(PAT)play s a central ro le in m any plant g row th and developmental proces-ses.Cellular aux in transpo rt is prim arily mediated by PAT carriers.This r ev iew fo cus o n the advances of aux in influx carriers and efflux carriers in recent years,including AUX/LAX and PIN protein families,and especially focus o n m ult-i drug-resistant/P-g lycopr otein(MDR/PGP)protein fam ilies and the functional in-teraction betw een PIN and PGP pro teins in PAT.Beside that,this review also indicated some pr oblem s a-bout PA T resear ch and one of the im por tant study fields in the future.Key words:aux in;polar aux in tr ansport;influx car riers;efflux carriers高等植物不能逃离对其不利的环境,只有通过改变自己的生长发育进程来适应外界环境的刺激(光、重力等),以更好地获得水分、光照等来维持正常生长发育。
生长素的极性运输林科院 9310031 傅建平摘要生长素的极性运输与植物生长发育密切相关并受许多因素调控,研究植物生长素的极性运输具有十分重要的意义。
本文综述了生长素极性运输的研究进展情况。
关键词生长素极性运输抑制剂输出载体输入载体生长素是第一个被发现的植物激素。
生长素在植物叶原基、幼叶以及发育的种子等部位合成,沿茎或根进行传输。
生长素在茎切段试验和胚芽鞘试验中表现刺激细胞伸长生长,它的主要生理作用还包括诱导不定根发生促进维管束分化、控制向性生长和顶端优势,以及调节植物开花坐果等生理过程。
在植物茎尖合成的生长素需要通过极性运输到达靶细胞才能调节植物的生长和发育, 因此生长素极性运输广泛参与植物的叶片发育、花的分化、维管的分化、胚胎发育、光形态建成以及侧根的发育等。
早期对生长素极性运输的研究主要采取施加极性运输抑制剂如NPA、HFCA、TIBA、CA的方法。
后来通过对生长素极性运输突变体的研究, 从分子水平上为生长素极性运输的化学渗透偶联学说提供了新的证据, 进一步发现了极性运输与植物的生长发育现象之间的联系。
1生长素的极性运输特点生长素的极性运输是指生长素在植物体内由形态学的上端向形态学的下端单向运输的现象。
在高等植物茎中, 生长素由茎尖合成位点极性运输到茎基部的作用位点。
生长素极性运输具有依赖于能量、需要O2、对温度敏感、随年龄增加而减弱等生理特点,是一种需要消耗代谢提供能量的主动运输。
其运输的速度比维管系统中的运输速度慢得多。
极性运输需要消耗能量, 可逆浓度梯度运输。
一些化合物如TIBA和NPA等能抑制生长素极性运输, 缺氧会严重地阻碍生长素的运输。
此外, 生长素又有自动抑制现象, 即先发育的器官通过其合成并向外输出的生长素抑制后发育期器官生长素的输出。
2 极性运输处于主导地位从整体组织看, 生长素的移动方向是向基性的。
极性运输与能量消耗有关, 它包括生长素从上部细胞的透出和向下部细胞的透入, 透入时几乎不受代谢抑制剂或缺氧等因素的影响, 而透出却明显地受这些因素阻碍。
笔记5.植物生命活动的调节笔记22:植物激素调节1.生长素的发现(1)植物的向光性(2)植物向光性的原因(现代解释):单光照射后,胚芽鞘背光一侧的生长素含量多于向光一侧,生长素多生长的快,生长素少生长的慢,因而引起两侧的生长不均匀,从而造成向光弯曲。
①植物具有向光性的原因分析。
►原因:►总结:外因:单侧光照射。
内因:生长素分布不均匀。
学生批注:C.纵向运输(极性运输)是由植物遗传决定的,不受重力的影响D.失重条件下,生长素不会横向运输,生长素分布均匀,植物各部分怎么放怎么长。
E.极性运输是主动运输的例证:a.可以逆浓度梯度运输(低浓度的顶芽→高浓度的侧芽);b.缺氧时,生长素的运输受到影响。
科学家实验结论达尔文_胚芽鞘的尖端_产生某种影响,该影响传递到下部伸长区时,由于_单侧光_的作用造成_背光_面比_向光_面生长快。
【感受光刺激的部位在胚芽鞘尖端;向光弯曲的部位在胚芽鞘尖端下部(伸长区);产生生长素的部位在胚芽鞘尖端(有光无光都产生生长素);能够横向运输的也是胚芽鞘尖端】鲍森·詹森胚芽鞘尖端产生的影响可以透过_琼脂块_传递给下部拜尔胚芽鞘的弯曲生长是因为尖端产生的影响在其下部_分布不均匀_造成的温特造成胚芽鞘弯曲的是一种_化学物质_,后来被命名为_生长素_(生长素的化学本质:吲哚乙酸)提示:①生长素的合成与光无关(即有光无光均能合成)②生长素不能透过云母片。
③生长素是植物激素,成分是吲哚乙酸;生长激素是动物激素,成分是蛋白质。
(注意区分)②茎的负向重力性、根的向重力性原因分析:原因:地心引力→生长素分布不均匀→近地侧浓度高→茎对生长素敏感性差→茎背地生长(负向重力性)根对生长素敏感性强→根向地生长(向重力性)2.生长素的产生、运输和分布(1)产生部位:主要在幼嫩的芽、叶和_发育中的种子_。
(2)运输(2)分布部位:相对集中地分布在_生长旺盛_的部分。
极性运输也就是主动运输。
总结:(1)影响生长素运输的条件分析①横向运输只发生在产生部位受外界因素的影响时,如单侧光和重力、离心力等。
“生长素的极性运输”开放性实验探究和改进作者:梁玮来源:《中学生物学》2018年第01期1问题的提出生长素是一类重要的植物激素,能从产生部位运送到作用部位而发挥作用。
研究表明,在胚芽鞘、芽、幼叶和幼根中,生长素只能从形态学上端运输到形态学下端,而不能反过来运输,也就是只能单方向地运输,称为极性运输。
如何证明生长素的极性运输呢?人教版教材必修三第三章第一节的技能训练侧重于训练学生依据科学实验的要素分析其实验设计的严密性,提出改进意见。
同时,它也有助于学生理解生长素的极性运输。
[例]取一段玉米胚芽鞘,切去顶端2mm,使胚芽鞘不再产生生长素。
在上端放一块有生长素的琼脂,下端放一块不含有生长素的琼脂(图1A,胚芽鞘形态学上端朝上)。
过一段时间检测,发现下端的琼脂块逐渐有了生长素(图1B)。
结论:①下端琼脂块上的生长素来自上端的琼脂块。
②生长素在胚芽鞘内只能从形态学的上端运输到形态学的下端。
讨论:①这个实验的设计是否严密?②从实验结果到结论之间的逻辑推理是否严谨?③如果要验证上述结论是否正确,应该对实验方案如何进行改进?2探究讨论,得出结论在“植物生长素的发现”这一节的内容中,除了要求学生概述植物生长素的发现过程,体验发现生长素的过程和方法之外,另一个重要的教学目标就是评价实验设计和结论,训练逻辑思维的严密性。
在课堂教学过程中,采用的教学方式是先组织学生思考、讨论,找出实验设计中的问题和不足,然后由其他学生和教师共同评价、修正并完善。
大多数学生可以从实验结果推出结论①下端琼脂块上的生长素来自上端的琼脂块,而结论②的逻辑推理不严谨,即不能够证明生长素在胚芽鞘内“只能”由形态学的上端运输到形态学的下端。
学生能够提出实验的改进意见:增加一组胚芽鞘形态学上端朝下的实验,来研究生长素能否从形态学下端运输到形态学上端,如果位于形态学上端的空白琼脂块中没有收集到生长素,即可证明生长素的极性运输是单方向的。
上述实验方案的改进似乎非常合理,并且教师教学用书上也是这个改进方案。
生长素的运输方式解读1、极性运输:生长素是唯一具有极性运输性质的植物激素。
在胚芽鞘或植物茎节中,生长素主要是向基性运输。
不同植物或组织中参与生长素运输的细胞可能不同,例如在燕麦胚芽鞘中主要是在非维管束组织的细胞,而在双子叶植物茎中,主要是维管束薄壁细胞。
生长素的极性运输是采取“细胞—细胞壁空间—细胞”的形式,即一个细胞中的生长素透过质膜流出到细胞壁,然后再通过质膜流入下一个细胞内。
这个过程是一个需能的过程。
生长素的极性运输对分子结构具有选择性,即只有活性内源或合成生长素具有极性运输性质,而一些无活性的生长素类似物或生长素的代谢物不表现极性运输性质,这表明生长素的极性运输可能有存在于质膜上的一些载体蛋白参与,它们可以特异地识别活性和非活性的生长素及其类似物。
植物根中的生长素也表现极性运输性质,不过是由根基部向根尖方向的运输,即向顶性运输。
生长素的极性运输模型:生长素极性运输的化学渗透模型有两个重要的步骤:首先,生长素在质子势和化学势的推动下从细胞壁通过质膜流入细胞;其次,细胞内生长素在化学势的推动下借助于细胞基端的载体蛋白流出细胞。
2、生长素在韧皮部的非极性运输:在成熟叶片中合成的生长素大部分是通过韧皮部进行非极性运输的,和其他韧皮部运输的物质一样,可以沿着植物茎干向上或向下运输,大部分生长素结合物的运输也是通过韧皮部进行的,例如萌发的玉米种子中生长素结合物就是通过韧皮部从胚乳运输到胚芽鞘顶端的,生长素的沿韧皮部的长距离运输可能对形成层活动以及侧根发生具有调控意义。
3、横向运输:向光性产生的原因:推测向光性反应是一种蓝光反应,其光受体应是蓝光受体。
目前认为黄素蛋白更可能是向光性反应中接受蓝关的受体,接受蓝光受体的色素也被称为隐花色素。
目前对蓝光引起向光性反应的分子机制仍不清楚,近年来发现,在依赖蓝光的向光性反应中,可能有蛋白质磷酸化作用介入。
向重力性产生的原因分析:根直立生长时,茎尖运向根尖的IAA在根中均匀分布;当根从垂直方向转到水平方向时,根冠柱细胞中淀粉体向重力方向沉降,对细胞两侧内质网产生不同的压力,刺激Ca2+从内质网释放到细胞质中,和CaM结合,激活质膜ATPase,使Ca2+和生长素分布不均匀,下侧积累超最适浓度的生长素抑制根下侧的生长,引起根的向下弯曲。
植物生长素极性运输的机理植物生长素是植物对外界环境变化的有效应答和调节的重要物质,它分子上的极性运输已经被证实是植物的生长和发育环境的重要因素之一。
研究人员表明,植物极性运输机制在植物的发育调控中发挥了重要的作用。
极性运输是指植物细胞中水分子的极性性质决定了它们的运输途径。
它对于植物发育带来一系列重要影响,包括控制生长素分子度,改变植物形态和结构。
植物生长素极性运输通常伴随着多种介子的参与,包括小分子物质和蛋白质,以及植物发育的更高级表达产物。
植物极性运输的机制可以归结为三个主要步骤,包括:水分子的极性结构对于植物生长素运输的影响;外部介子与植物生长素穿越膜的作用;植物蛋白质参与极性运输的结构形态。
首先,水分子的极性结构影响植物生长素运输。
植物细胞中分子膜由两层脂质多层组成,表面正负电电位形成了极性结构。
因此,内部水分子的极性可以对植物生长素的活性物质的转运起决定性的调节作用。
其次,外部介子与植物生长素穿越膜的作用也是重要的。
介子可以充当植物生长素的“穿墙螳螂”,它们可以激活生长素的转运蛋白,促进生长素运输。
研究表明,外部介子参与植物极性运输可以促进生长素穿越膜,并有助于调节细胞内和细胞外信号。
最后,植物蛋白质参与极性运输的结构形态也是重要的。
研究表明,植物蛋白质转运蛋白可以通过两个膜相互穿插形成微观框架,向生长素运输路径提供支撑。
蛋白质转运蛋白可以改变植物生长素的运输方向,对植物的发育和生长起到调控作用。
总的来说,植物极性运输的机制可以实现植物细胞环境的有效平衡。
水分子的极性结构决定了植物生长素运输的方向,外部介子和蛋白质参与极性运输则可以促进植物生长素的穿越膜和调节细胞内外信号,为植物发育调控提供重要的支撑。
新人教版生物学选择性必修1《稳态与调节》知识梳理第五章 植物生命活动的调节第一节 植物生长素一、生长素的发现过程 1.生长素的发现过程 (1)达尔文的实验①发现问题:植物具有向光性,即在单侧光的照射下,植物朝向光源方向生长的现象。
②实验设计(材料:金丝雀虉草的胚芽鞘)第一组 第二组图示条件 相同的单侧光照射处理a 组:不作处理,保留胚芽鞘尖端 c 组:用锡箔帽子把尖端罩上b 组:去掉胚芽鞘尖端 d 组:用锡箔罩住尖端下面一段自变量 0尖端的有无00尖端是否接受光照0 现象a 组:向光弯曲生长c 组:直立生长b 组:不生长、不弯曲d 组:向光弯曲生长结论向光性产生的有关部位是胚芽鞘的尖端 感受光刺激的部位在胚芽鞘的尖端胚芽鞘生长与否取决于尖端的有无;胚芽鞘弯曲生长部位在尖端以下部分胚芽鞘尖端受单侧光刺激后,就向下面的伸长区传递某种“影响”造成伸长区背光面比向光面生长快,因而使胚芽鞘出现向光性弯曲。
第一组 第二组 第一组 第二组图示图示条件相同的单侧光照射条件0黑暗中0处理切去胚芽鞘尖端在胚芽鞘尖端和伸长区之间插入琼脂片处理切取胚芽鞘尖端移至左侧切取胚芽鞘尖端移至右侧现象不生长、不弯曲向光弯曲生长现象向右弯曲生长向左弯曲生长结论胚芽鞘尖端产生的“影响”可以透过琼脂片传递给下部的伸长区结论胚芽鞘的弯曲生长,是因为尖端产生的“影响”在其下部分布不均匀造成的(4)温特的实验实验组对照组图示处理把接触过胚芽鞘尖端的琼脂块切成小块,放于切去尖端的燕麦胚芽鞘一侧把未接触过胚芽鞘尖端的琼脂块切成小块,放于切去尖端的燕麦胚芽鞘一侧现象胚芽鞘会朝琼脂块对侧弯曲生长0胚芽鞘不生长、不弯曲0结胚芽鞘的弯曲生长确实是一种化学物质引起的,温特把这种物种命名为论生长素注:琼脂块的作用是收集尖端产生的化学物质;对照组的目的是排除琼脂块自身成分对实验的干。
(5)其他科学家的研究:确认生长素的化学本质是吲哚乙酸(IAA)。
注:植物体内具有生长素效应的物质,除了IAA外,还有苯乙酸(PAA)、吲哚丁酸(IBA)等。
植物生长素的极性运输摘要研究植物生长素的极性运输对植物发育的影响,就国内外生长素极性运输的发展进行综述,以期为植物生长素的极性运输的研究提供理论依据。
关键词植物生长素;极性分布;极性发育;极性运输中图分类号S482.8 文献标识码A文章编号1007-5739(2009)03-0011-04极性是普遍存在于生物体中的一种现象,是指个体的组织器官在生长轴向上的不对称性,而这种不对称性从受精卵开始就已经具备。
德国植物学家Bünning 在1973年曾说过“没有极性就没有分化”[1],可见极性对植物发育的重要性。
大量事实证明,生长素在体内的不均匀分布,控制着植物的极性发育。
随着科学研究的逐步深入与迅速发展,人们从各个层次上越来越深入地认识到植物的极性发育,下面将近年来植物生长素极性运输的研究进展总结如下,以供参考。
1激素的极性分布对植物发育的影响与动物不同,植物的形态建成并不能在胚胎期就能全部完成,而是随个体发育而不断形成新的组织和器官,这一过程贯穿于植物体的整个生命周期。
研究发现,植物激素在这一过程中发挥着极为重要的作用,调控着诸如顶端优势、器官与维管束分化等许多发育过程,其调控机制与动物有所不同,植物激素是由其所产生的部位移向其作用部位,移动速度的大小和方向随激素的种类而不同。
植物激素有生长素、赤霉素、细胞分裂素、脱落酸和乙烯5类,它们都是些简单的小分子有机化合物,通过生长物质之间的相互作用,共同调控着植物的生长发育;而动物激素则是由身体的某些部分(一些特殊的细胞、组织)专门制造并直接分泌到组织间隙液和血液中去的一些特殊的化学物质,是体内起信息传递作用的化学物质之一,它们可以经血液循环或局部扩散达到另一类细胞,调节后者的生理功能(代谢、生长、发育及繁殖)或维持内环境的相对恒定。
植物激素是一种存在于植株体内的痕量物质,控制着植株的形态建成。
早在18世纪,法国科学家C. Bonnet和Duhamel du Monceau首先提出植物的生长发育受体内某种汁液控制;1880年,德国科学家J. von. Sachs指出“控制植物根系和其他器官形成的物质,在植物体中具有极性运输的特性,并能控制植物生长”;1983年荷兰科学家F. Kogl等从一些植物中分离出高活性的生长素(auxins)——吲哚乙酸(indole-3-acetic acid,IAA)[2],从此,植物学界展开了对激素的研究热潮,并用生长素的分布和运输成功地解释了植物体的顶端优势现象。
一、实验目的1. 了解植物生长素的极性运输特点;2. 掌握植物生长素极性运输的实验方法;3. 分析实验结果,得出结论。
二、实验原理植物生长素是一种植物激素,对植物的生长发育具有重要作用。
生长素的极性运输是指生长素只能从形态学上端(高的一端)运输到形态学下端(低的一端),而不能反向运输。
本实验通过观察洋葱胚芽鞘在不同处理条件下的生长情况,验证生长素的极性运输现象。
三、实验材料与仪器1. 实验材料:洋葱头、刀片、镊子、滴管、酒精、清水、琼脂小块;2. 实验仪器:培养皿、显微镜、载玻片、盖玻片、酒精灯、酒精灯架、加热器、计时器。
四、实验步骤1. 将洋葱头去皮,切成厚约2mm的薄片;2. 将琼脂小块放入酒精中浸泡,使其软化;3. 用滴管将软化后的琼脂滴在洋葱薄片上,形成均匀的琼脂层;4. 将含琼脂的洋葱薄片放置在培养皿中,用显微镜观察其生长情况;5. 将琼脂小块放入清水中,使其重新变硬;6. 用刀片将琼脂小块切割成不同长度,分别插入洋葱薄片的形态学上端和下端;7. 观察洋葱薄片的生长情况,记录生长长度;8. 重复实验,分析实验结果。
五、实验结果与分析1. 观察洋葱薄片在未处理条件下的生长情况,发现其形态学上端生长速度较快,下端生长速度较慢;2. 将琼脂小块插入洋葱薄片的形态学上端,发现洋葱薄片形态学上端生长速度变慢,下端生长速度加快;3. 将琼脂小块插入洋葱薄片的形态学下端,发现洋葱薄片形态学上端生长速度加快,下端生长速度变慢;4. 通过对比实验结果,得出结论:植物生长素具有极性运输特点,只能从形态学上端运输到形态学下端。
六、实验结论本实验通过观察洋葱胚芽鞘在不同处理条件下的生长情况,验证了植物生长素具有极性运输特点。
实验结果表明,生长素只能从形态学上端运输到形态学下端,而不能反向运输。
这一发现有助于我们更好地了解植物生长发育的调控机制,为植物育种和生产提供理论依据。
七、实验讨论1. 实验过程中,洋葱薄片的生长情况受多种因素影响,如温度、光照等,因此实验结果可能存在一定的误差;2. 实验过程中,琼脂小块的插入位置和深度可能对实验结果产生影响,因此在实验过程中应尽量保证操作的一致性;3. 本实验验证了植物生长素的极性运输特点,但生长素在植物体内的具体运输机制还需进一步研究。
验证生长素极性输
————————————————————————————————作者:————————————————————————————————日期:
验证生长素的极性运输
一、教学设计思想
通过前面的学习,学生已知道植物生长素的发现过程,因而这次实验,是让学生体验发现生长素的过程和方法。
本实验研究最好以小组为单位进行,学生可自愿结合组成若干小组,要求选出小组长负责本组的研究工作。
二、教学目标
1、知识目标:概述植物生长素的发现过程,理解生长素的极性运输方式。
2、能力目标:
(1)学习用实验验证的方法来验证生长素的极性运输
(2)学会验证实验的一般方法和步骤。
3、情感态度和价值观目标:
(1)培养学生科学探究能力,实验创新能力。
(2)通过实验过程中小组之间的合作,培养协作精神。
(3)体会科学理论往往在生产实践应用过程中需要探索解决的问题。
三、教学重点:概述植物生长素的发现过程,理解生长素的极性运输方式。
四、教学难点:掌握验证实验的一般方法和步骤。
五、学情分析
本实验是基于学生在学习了解植物生长素的发现过程的基础上进行实验的。
学生往往比较有积极性,将课本上的科学知识融入具体的生活生产中这就是实验的出发点,即全面展示这节课的知识点,又要学生保持强烈的好奇心和求知欲,还原于生活,创设模拟科学家解决问题的方法。
六、课前准备:
加拿大飞蓬幼苗,琼脂块,生长素
七、教学过程:
(一)、目的要求:
1、学会验证性实验的一般方法和步骤,培养科学探究能力,提高创新思维能力。
2、学会用验证的实验方法来验证生长素的极性运输。
3、理解生长素的极性运输,体会科学理论在应用到生产实践的过程中,往往也有许多要探
索的问题。
(二)、实验原理:生长素(IAA)在胚芽鞘内只能从形态学上端(顶端)向下端(基端)运输,而不能倒转过来运输
(三)、实验材料:加拿大飞蓬幼苗
(四)、实验用具:琼脂块,生长素
(五)、方法步骤:
(l)准备加拿大飞蓬幼苗,切去胚芽鞘尖端和幼苗的其他部分,留下中间一段胚芽鞘,分为A、B两组。
(2)将含有生长素的琼脂块分别放在A组胚芽鞘的形态学上端和B组胚芽鞘的形态学下端,将两组胚
芽鞘放置在不含生长素的琼脂块上。
(放置如图)
(3)-段时间后,将每组下部的琼脂块放在另外一段切去尖端的加拿大飞蓬胚芽鞘的形态学上端。
(六)得出实验结论
经过一段时间,A组胚芽鞘弯曲生长,B组胚芽鞘既不弯曲也不生长。
生长素(IAA)在胚芽鞘内只能从形态学上端(顶端)向下端(基端)运输,而不能倒转过来运输。
(七)、表达与交流
实验小组每一个成员写出自己的实验报告,并汇报探究实验过程和结果、经验、教训、体会以及在科学态度、方法、精神上的收获。
(八)、进一步探究
鼓励学生进行扩展性试验和探究,在课外完成,学生互相讨论合作确定进一步探究的内容,教师给予指导,给学生更大自主性。
如:处理的时间不同,生长素浓度的不同,环境温度的不同等时加拿大飞蓬幼苗的胚芽鞘弯曲程度。
(九)、实验注意事项:
注意多次观察植株的变化,生长素的浓度应保持一致。