概述生长素的极性运输
- 格式:ppt
- 大小:918.50 KB
- 文档页数:17
生长素极性运输的机理高中生物学选择性必修一植物激素调节介绍,生长素是最重要的植物激素,主要合成部位是芽、幼嫩的叶和发育中的种子,通过极性运输分配到植物各处组织,调控生长发育——低浓度生长素促进生长,高浓度生长素抑制生长。
生长素的极性运输对生长素的分配至关重要。
那么,生长素极性运输是如何实现的呢?原来,生长素转运蛋白PIN介导生长素极性运输。
19世纪末,英国著名生物学家、进化论的奠基人达尔文在研究植物向性运动时,发现植物胚芽鞘的尖端受单侧光刺激后,向下面的伸长区传递了某种“影响”,造成伸长区背光面比向光面生长快,胚芽鞘出现向光性弯曲(图1)。
这就是中学生物教科书上被大家广为熟知的达尔文向光性实验。
1928年,荷兰科学家温特证实胚芽鞘弯曲生长是由一类化学物质引起的,并命名为生长素(auxin)。
1946年,科学家从高等植物中首次分离出生长素,其主要成分为吲哚乙酸IAA。
生长素不仅与植物向光性相关,还与植物向地性(向重力性)、向化性(包括向肥性)等相关。
植物受单向的环境刺激而呈现的定向反应统称为向性(tropism)。
这种向性主要是由生长素在植物体内极性分配造成的。
因此,生长素的极性运输在这一过程中就变得非常关键。
图1. 达尔文植物向光性实验示意图生长素极性运输主要依赖于三种定位于细胞膜上的转运蛋白:AUX/LAX家族蛋白、PIN家族蛋白和ABCB家族蛋白,其中生长素外排蛋白PIN起最主要作用。
pin突变体通常表现出相应组织生长素极性运输缺陷的表型,如向光性、向重力性受损等。
PIN如何识别和转运生长素?通过拟南芥PIN3(AtPIN3)在未结合配体(AtPIN3apo)和结合IAA (AtPIN3IAA)两种状态的高分辨率结构解析,发现AtPIN3以二聚体形式存在,每个亚基包含10个跨膜螺旋(TM1–10),TM1–5和TM6–10组成反向重复结构(图2a)。
AtPIN3apo与AtPIN3IAA结构类似,且均为向内开放状态。
选择性必修1P95【思维训练】“验证植物生长素的极性运输”教学设计一、教学目标1.概述生长素的产生、运输和分布。
2.用实验验证生长素的极性运输,理解极性运输方式。
3.培养学生科学探究能力、实验创新能力,体会科学理论往往在生产实践应用过程中需要探索解决的问题。
二、教学内容基于学生在学习了植物生长素的发现过程的基础上进行实验,验证生长素的极性运输方式。
三、教学策略及过程(一)基本策略验证实验的一般方法和步骤(二)过程1.实验原理:IAA在胚芽鞘内只能从形态学上端向下端运输,不能倒过来运输。
2.实验材料、用具3.实验步骤:(1)切去胚芽鞘尖端和幼苗的其他部分,留下中间一段胚芽鞘,分为A、B两组;(2)将含有生长素的琼脂块分别放在A组胚芽鞘的i形态学上端和B组胚芽鞘的i 形态学下端,将两组胚芽鞘放置在不含生长素的琼脂块上。
(3)一段时间后,将每组下部的琼脂块放在另一段切去胚芽鞘的形态学上端。
4.得出结论:经过一段时间,A组胚芽鞘生长,B组不生长。
说明IAA只能从形态学上端向下端运输。
5.表达交流,分析课本实验的可行性与严谨性。
四、“讨论问题”的参考答案1.不严密,没有考虑到将胚芽鞘倒过来放置时的情况。
2.结论2不严谨。
没有实验证明生长素不能从形态学下端运输到形态学上端。
3.用过增加一组胚芽鞘形态学上端朝下的实验,以研究生长素能不能从形态学下端运输到形态学上端。
选择性必修1P49【思维训练】“探究性激素在胚胎生殖系统发育中所起的作用”教学设计一、教学目标1.识别和分析性激素的来源及功能,探讨其在生理和临床中的应用。
二、教学内容1.性激素种类、来源及功能:性激素可根据雌雄不同,分为雌性激素和雄性激素。
睾丸是雄性生殖器官,产生雄性激素,卵巢是雌性生殖器官,产生雌性激素,雄性激素和雌性激素分别能够促进雄性生殖器官的发育和雌性生殖器官的发育,维持第二性征。
2.实验设计:在家兔胚胎生殖系统分化之前,通过手术摘除即将发育为卵巢或睾丸的组织。
生长素的极性运输林科院 9310031 傅建平摘要生长素的极性运输与植物生长发育密切相关并受许多因素调控,研究植物生长素的极性运输具有十分重要的意义。
本文综述了生长素极性运输的研究进展情况。
关键词生长素极性运输抑制剂输出载体输入载体生长素是第一个被发现的植物激素。
生长素在植物叶原基、幼叶以及发育的种子等部位合成,沿茎或根进行传输。
生长素在茎切段试验和胚芽鞘试验中表现刺激细胞伸长生长,它的主要生理作用还包括诱导不定根发生促进维管束分化、控制向性生长和顶端优势,以及调节植物开花坐果等生理过程。
在植物茎尖合成的生长素需要通过极性运输到达靶细胞才能调节植物的生长和发育, 因此生长素极性运输广泛参与植物的叶片发育、花的分化、维管的分化、胚胎发育、光形态建成以及侧根的发育等。
早期对生长素极性运输的研究主要采取施加极性运输抑制剂如NPA、HFCA、TIBA、CA的方法。
后来通过对生长素极性运输突变体的研究, 从分子水平上为生长素极性运输的化学渗透偶联学说提供了新的证据, 进一步发现了极性运输与植物的生长发育现象之间的联系。
1生长素的极性运输特点生长素的极性运输是指生长素在植物体内由形态学的上端向形态学的下端单向运输的现象。
在高等植物茎中, 生长素由茎尖合成位点极性运输到茎基部的作用位点。
生长素极性运输具有依赖于能量、需要O2、对温度敏感、随年龄增加而减弱等生理特点,是一种需要消耗代谢提供能量的主动运输。
其运输的速度比维管系统中的运输速度慢得多。
极性运输需要消耗能量, 可逆浓度梯度运输。
一些化合物如TIBA和NPA等能抑制生长素极性运输, 缺氧会严重地阻碍生长素的运输。
此外, 生长素又有自动抑制现象, 即先发育的器官通过其合成并向外输出的生长素抑制后发育期器官生长素的输出。
2 极性运输处于主导地位从整体组织看, 生长素的移动方向是向基性的。
极性运输与能量消耗有关, 它包括生长素从上部细胞的透出和向下部细胞的透入, 透入时几乎不受代谢抑制剂或缺氧等因素的影响, 而透出却明显地受这些因素阻碍。
1. 理解植物生长素在植物体内的极性运输现象;2. 掌握观察植物生长素极性运输的方法;3. 了解生长素极性运输在植物生长发育中的作用。
二、实验原理生长素是植物体内的一种重要激素,它对植物的生长发育具有调控作用。
生长素在植物体内的运输具有极性,即从形态学上端向下端运输,这是由遗传物质决定的。
本实验通过观察植物茎尖生长素向下运输的现象,验证生长素极性运输的存在。
三、实验材料与仪器1. 实验材料:植物茎尖、蒸馏水、碘液、显微镜等;2. 实验仪器:烧杯、试管、滴管、剪刀、镊子、显微镜等。
四、实验步骤1. 将植物茎尖剪下,放入装有蒸馏水的试管中,浸泡一段时间;2. 将浸泡后的茎尖取出,用镊子夹住茎尖,将其放入装有碘液的烧杯中,观察茎尖颜色的变化;3. 在显微镜下观察茎尖横切面的颜色变化,记录观察结果;4. 将茎尖横切面置于显微镜下,观察生长素在茎尖内的运输方向;5. 分析实验结果,验证生长素极性运输的存在。
五、实验结果与分析1. 实验结果:浸泡后的茎尖在碘液中呈现蓝色,说明生长素在茎尖内分布不均匀;2. 在显微镜下观察茎尖横切面,发现生长素在茎尖内的运输方向为从形态学上端向下端;3. 分析:实验结果验证了生长素极性运输的存在。
生长素在植物体内的运输具有极性,这与遗传物质决定的运输途径有关。
生长素在茎尖内的运输方向为从形态学上端向下端,这与植物生长发育的需求密切相关。
本实验通过观察植物茎尖生长素向下运输的现象,验证了生长素极性运输的存在。
生长素极性运输在植物生长发育中起着重要作用,它有助于植物体内激素的分布和调控,进而影响植物的生长发育。
七、实验讨论1. 实验过程中,茎尖浸泡时间的长短对实验结果有一定影响。
浸泡时间过长,可能会导致生长素在茎尖内分布不均匀,影响实验结果;2. 实验过程中,茎尖横切面的厚度也会影响观察结果。
横切面越薄,观察到的生长素运输现象越明显;3. 本实验验证了生长素极性运输的存在,但实验过程中并未涉及生长素极性运输的具体机制。
生长素极性运输长度,在植物生长和发育过程中,极性运输起着至关重要的作用。
它可以有效地帮助植物吸收运输必需的营养物质和水,从而促进植物的生长发育。
生长素(auxin)是植物生长发育的一种重要激素,它可以调节光合作用、减弱叶片突出度和调节植物的细胞分裂等多种功能。
生长素的极性运输在植物的生长发育中发挥着关键性作用,它重要的作用包括:1.节植物内部生长素分布:生长素通过极性运输,可以在植物内部有效地分布和调节,充分发挥它的活性作用。
2.性运输对植物外部物质的反应:吸收的外部物质,包括精氨酸、氨基酸和核糖核酸,都可以与生长素相结合,促进植物的生长发育。
3.发植物的枝条发育:极性运输可以帮助植物以特定角度分化出新枝条,同时确保植物在特定环境下可以有效地利用阳光。
4.性运输对植物抗逆性能的影响:极性运输有助于补充植物营养物质和水,同时激活植物的抗逆机制,从而有效地抵抗外部环境的不利影响。
正确的极性运输能够帮助植物有效地吸收必需的营养物质和水,从而有效地促进植物的生长发育。
因此,为了有效地利用极性运输,开发必要的生物技术,植物生长素极性运输已经成为植物生物学领域的重要研究方向。
在植物生长素极性运输的研究进展方面,近年来已取得了一定的进展。
针对植物生长素的极性运输,研究者们设计了表达不同拓扑结构的基因,在植物内部形成极性转运系统,从而使生长素的极性运输更加有效。
另外,研究者们还研制出了可以精准把握植物生长素极性运输的传感器,以及能够有效抑制或促进植物生长素极性运输的药物,这些研究成果可以有效解决植物生长发育过程中极性运输系统的问题,促进植物的生长发育。
从长远来看,通过对植物生长素极性运输进行研究可以有效提高植物生长发育效率,增加植物的产量和品质。
因此,植物生长素极性运输的研究是一个潜在的研究课题,而植物生物学家们也应该把极性运输作为一种重要的研究方向,在此基础上促进植物的生长发育,实现植物的质量提高和产量增加。
生长素的运输方式解读1、极性运输:生长素是唯一具有极性运输性质的植物激素。
在胚芽鞘或植物茎节中,生长素主要是向基性运输。
不同植物或组织中参与生长素运输的细胞可能不同,例如在燕麦胚芽鞘中主要是在非维管束组织的细胞,而在双子叶植物茎中,主要是维管束薄壁细胞。
生长素的极性运输是采取“细胞—细胞壁空间—细胞”的形式,即一个细胞中的生长素透过质膜流出到细胞壁,然后再通过质膜流入下一个细胞内。
这个过程是一个需能的过程。
生长素的极性运输对分子结构具有选择性,即只有活性内源或合成生长素具有极性运输性质,而一些无活性的生长素类似物或生长素的代谢物不表现极性运输性质,这表明生长素的极性运输可能有存在于质膜上的一些载体蛋白参与,它们可以特异地识别活性和非活性的生长素及其类似物。
植物根中的生长素也表现极性运输性质,不过是由根基部向根尖方向的运输,即向顶性运输。
生长素的极性运输模型:生长素极性运输的化学渗透模型有两个重要的步骤:首先,生长素在质子势和化学势的推动下从细胞壁通过质膜流入细胞;其次,细胞内生长素在化学势的推动下借助于细胞基端的载体蛋白流出细胞。
2、生长素在韧皮部的非极性运输:在成熟叶片中合成的生长素大部分是通过韧皮部进行非极性运输的,和其他韧皮部运输的物质一样,可以沿着植物茎干向上或向下运输,大部分生长素结合物的运输也是通过韧皮部进行的,例如萌发的玉米种子中生长素结合物就是通过韧皮部从胚乳运输到胚芽鞘顶端的,生长素的沿韧皮部的长距离运输可能对形成层活动以及侧根发生具有调控意义。
3、横向运输:向光性产生的原因:推测向光性反应是一种蓝光反应,其光受体应是蓝光受体。
目前认为黄素蛋白更可能是向光性反应中接受蓝关的受体,接受蓝光受体的色素也被称为隐花色素。
目前对蓝光引起向光性反应的分子机制仍不清楚,近年来发现,在依赖蓝光的向光性反应中,可能有蛋白质磷酸化作用介入。
向重力性产生的原因分析:根直立生长时,茎尖运向根尖的IAA在根中均匀分布;当根从垂直方向转到水平方向时,根冠柱细胞中淀粉体向重力方向沉降,对细胞两侧内质网产生不同的压力,刺激Ca2+从内质网释放到细胞质中,和CaM结合,激活质膜ATPase,使Ca2+和生长素分布不均匀,下侧积累超最适浓度的生长素抑制根下侧的生长,引起根的向下弯曲。
生长素极性运输生长素是植物、真菌和类硫脲体生物体中负责极性运输的蛋白质,在拥有细胞膜的细胞体内具有重要的生理功能。
通过生长素的极性运输,其中的有机物能够从一个细胞体被转运到另一个细胞体,从而有效地调节细胞内部环境。
此外,生长素蛋白在运输过程中还有其他作用,包括调节细胞间信号传递、调节细胞内活性物质的合成和分解、促进外源性物质的导入和遗传信息的转录和转录。
一般来说,生长素极性运输可以分为三个阶段:受体识别、转运体结合和蛋白质电位调节。
首先,生长素的受体识别是负责把生长素的转运体拉到细胞膜上的第一步。
受体识别一般分两种:一种是被动的受体识别,其中转运体与受体结合,使转运体紧密附着在细胞膜上;另一种是主动的受体识别,其中受体会发出一种激素,使转运体更容易地与受体结合。
例如,植物的酸性激素受体(AHRs)与植物的酸性激素转运体(ACHs)相互作用,使生长素转运体与受体结合更容易。
其次,转运体结合是将生长素的转运体与细胞膜上的受体结合的过程。
一般来说,转运体和受体之间有很多结合位点,这些结合位点为生长素转运过程提供了依据。
最后,生长素具有很强的电位调节功能,它可以调节细胞间的电位,使细胞之间的物质流动更加顺畅。
当转运体结合膜受体时,转运体与细胞内的水分子之间的电位调节作用会使水分子渗透到细胞内,从而促进生长素转运过程。
此外,生长素转运体还可以促进蛋白质、糖分子和酶在细胞间的流动,从而增强胞外物质的输入,参与胞内各种生理功能。
运用生长素极性运输这一概念,研究人员可以深入了解植物体内和真菌体内细胞膜运输机制,可以更好地研究植物和真菌的极性运输机制,为提高植物的产量和真菌的抗病性提供理论指导,从而有助于农业的可持续发展。
总之,生长素极性运输是一种重要的细胞膜调节机制,它不仅可以调节细胞内环境,还为植物对养分的有效利用提供了支持。
因此,生长素极性运输的研究有助于提高农作物的生产力,有助于可持续的农业发展。
生长素的极性运输生长素,作为植物生长和发育的关键激素,在植物体内发挥着重要的调控作用。
而正是通过其在细胞内的极性运输,生长素得以在植物体内发挥其功能。
生长素的极性运输是指生长素在植物体内从一个细胞移动到另一个细胞的过程,这种运输方式对于植物的生长和发育至关重要。
在植物体内,生长素通过极性运输在细胞之间进行传递,这种运输方式通过细胞间的通道或者运输蛋白进行。
生长素在极性运输中主要分为两种类型:上位生长激素极性运输和基底生长激素极性运输。
上位生长激素极性运输是指生长素从细胞的基部向顶部的运输路线,而基底生长激素极性运输则是指生长素从细胞的顶部向基部的运输路线。
这两种类型的极性运输相互作用,共同调节着植物体内的生长和发育过程。
生长素的极性运输不仅在植物体内起着重要的调节作用,而且对植物体内生长素浓度的调控也具有重要意义。
生长素在植物体内通过极性运输从细胞到细胞,形成梯度,这种梯度在植物体内调节着细胞的生长和发育。
当生长素在植物体内形成不同浓度的梯度时,不同细胞之间的生长速率也会发生变化,从而影响着植物的整体生长和发育。
除此之外,生长素的极性运输还与细胞生长和细胞分裂密切相关。
在植物体内,生长素通过极性运输调控着细胞的大小和数量,影响着植物的生长和发育过程。
生长素在细胞间进行极性运输的同时,也在细胞内部进行调控,从而实现细胞的生长和分裂过程。
总的来说,生长素的极性运输是植物体内一个重要的调控机制,通过这种运输方式,生长素在植物体内发挥着调控生长和发育的重要作用。
生长素的极性运输不仅影响着植物体内生长素的浓度分布,而且调控着细胞的生长和分裂过程。
正是通过这种极性运输,生长素在植物体内实现着细胞之间的信息传递和调控,从而影响着整个植物的生长和发育过程。
极性运输的概念
生长素的极性运输就是生长素在植物体内只能从植物形态学上端向下端进行运输的方式。
是一种主动运输过程,其运输速度比物理扩散快约10倍;缺氧会严重地阻碍生长素的运输;生长素可以逆浓度梯度运输。
生长素的极性运输是指生长素在植物体内由形态学的上端向形态学的下端单向运输的现象。
在高等植物茎中, 生长素由茎细长制备位点极性运输至茎基部的促进作用位点。
生长素极性运输具有依赖于能量、需要o2、对温度敏感、随年龄增加而减弱等生理特点,是一种需要消耗代谢提供能量的主动运输。
其运输的速度比维管系统中的运输速度慢得多。
极性运输须要消耗能量, 对称浓度梯度运输。
一些化合物如tiba和npa等能抑制生长素极性运输,缺氧会严重地阻碍生长素的运输。
此外,生长素又存有自动遏制现象,即先发育的器官通过其制备并向外输入的生长素遏制后发育期器官生长素的输入。