高中数学三角恒等变换与三角函数的化简求值
- 格式:doc
- 大小:313.50 KB
- 文档页数:12
三角函数的恒等变换及化简求值精选题一.选择题(共7小题) 1.若3ta n 4α=,则2c o s 2s in 2(αα+=)A .6425B .4825C .1D .16252.若3c o s ()45πα-=,则sin 2(α=)A .725B .15C .15-D .725-3.已知向量(sin ,2),(1,c o s )ab θθ=-=,且ab⊥,则2sin 2c o s θθ+的值为( )A .1B .2C .12D .34.若1ta n 3θ=,则c o s 2(θ=)A .45-B .15- C .15D .455.已知角α的终边经过点(2,1)P -,则sin c o s (sin c o s αααα-=+ )A .3B .13C .13-D .3- 6.已知函数()s in (2)6f x x π=-,若方程3()5f x =的解为1x ,212(0)x x x π<<<,则12sin ()(x x -=)A .45-B .35-C .3-D .3-7.已知1ta n 4ta n θθ+=,则2c o s ()(4πθ+=)A .12B .13C .14D .15二.填空题(共15小题)9.设当x θ=时,函数()s in o s f x x x=+取得最大值,则ta n ()4πθ+=.10.求值:s in 50(1n 10)︒+︒=.11.1s in 10c o s 10-=︒︒.12.已知s in 10c o s 102c o s 140m ︒+︒=︒,则m=.13.4c o s 50ta n 40︒-︒=.14.2c o s 10s in 20s in 70︒-︒=︒.15.已知1ta n 31ta n αα+=-,则2sin 2sin co s 1ααα-+=.16.若1s in ()43πα-=,则c o s ()4πα+=.17.若o s 2in 2c o s ()4θθπθ=+,则s in 2θ=.18.若ta n 3α=,则s in 2ta n ()4απα+的值为 .19.若ta n 3,(0,)2παα=∈,则c o s ()4πα-=.20.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为2s in 18m =︒,若24m n +=,si n 63=︒.21.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现0.618就是黄金分割,这是一个伟大的发现,这一数值也表示为2s in 18a=︒,若24a b +=,则2=.22.函数2()ta n 60s in 2inf x x x=︒+在[,]2ππ上的值域为 .三.解答题(共3小题) 23.设函数()s in ()s in ()62f x x x ππωω=-+-,其中03ω<<,已知()06f π=.(Ⅰ)求ω; (Ⅱ)将函数()yf x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在[4π-,3]4π上的最小值.24.已知α,β为锐角,4ta n 3α=,c o s ()5αβ+=-(1)求c o s 2α的值; (2)求tan ()αβ-的值.25.已知函数22()s inc o s in f x x x x =--co s ()x x R ∈.(Ⅰ)求2()3f π的值.(Ⅱ)求()f x 的最小正周期及单调递增区间.三角函数的恒等变换及化简求值精选题25道参考答案与试题解析一.选择题(共7小题) 1.若3ta n 4α=,则2c o s 2s in 2(αα+=)A .6425B .4825C .1D .1625【分析】将所求的关系式的分母“1”化为22(c o s sin )αα+,再将“弦”化“切”即可得到答案. 【解答】解:3ta n 4α=,22222314c o s 4s in c o s 14ta n 644c o s 2s in 29s in c o s ta n 125116ααααααααα+⨯++∴+====+++.故选:A .【点评】本题考查三角函数的化简求值,“弦”化“切”是关键,是基础题. 2.若3c o s ()45πα-=,则sin 2(α=)A .725B .15C .15-D .725-【分析】法1︒:利用诱导公式化s in 2c o s (2)2παα=-,再利用二倍角的余弦可得答案.法︒:利用余弦二倍角公式将左边展开,可以得s in c o s αα+的值,再平方,即得s in2α的值【解答】解:法31:c o s ()45πα︒-=,297s in 2c o s (2)c o s 2()2c o s ()1212442525πππαααα∴=-=-=--=⨯-=-,法32:c o s ()in c o s )425πααα︒-=+=,∴19(1s in 2)225α+=,97s in 2212525α∴=⨯-=-,故选:D .【点评】本题考查三角函数的恒等变换及化简求值,熟练掌握诱导公式化与二倍角的余弦是关键,属于中档题.3.已知向量(sin ,2),(1,c o s )ab θθ=-=,且ab⊥,则2sin 2c o s θθ+的值为( )A .1B .2C .12D .3【分析】由题意可得a b ⋅=,即解得ta n 2θ=,再由222222s in c o s c o s 2ta n 1s in 2c o s c o s s in 1ta n θθθθθθθθθ+++==++,运算求得结果.【解答】解:由题意可得sin 2co s 0ab θθ⋅=-=,即ta n 2θ=.222222s in c o s c o s 2ta n 1s in 2c o s 1c o s s in 1ta n θθθθθθθθθ++∴+===++,故选:A .【点评】本题主要考查两个向量数量积公式的应用,两个向量垂直的性质;同角三角函数的基本关系的应用,属于基础题. 4.若1ta n 3θ=,则c o s 2(θ=)A .45-B .15- C .15D .45【分析】原式利用二倍角的余弦函数公式变形,再利用同角三角函数间的基本关系化简,将ta n θ的值代入计算即可求出值.【解答】解:1ta n 3θ=,22224c o s 22c o s 11111519ta n θθθ∴=-=-=-=++.故选:D .【点评】此题考查了二倍角的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.5.已知角α的终边经过点(2,1)P -,则sin c o s (sin c o s αααα-=+ )A .3B .13C .13-D .3-【分析】先根据已知条件得到ta n α,再化简s in c o s s in c o s αααα-+代入即可得到结果.【解答】解:因为角α的终边经过点(2,1)P -,所以1ta n 2α=-,则11s in c o s ta n 1231s in c o s ta n 112αααααα----===-++-+,故选:D .【点评】本题考查三角函数的化简求值,着重考查同角三角函数的基本关系式,考查任意角的三角函数的定义,属于中档题. 6.已知函数()s in (2)6f x x π=-,若方程3()5f x =的解为1x ,212(0)x x x π<<<,则12sin ()(x x -=)A .45- B .35-C.3-D.3-【分析】由已知可得2123x x π=-,结合12x x <求出1x 的范围,再由12112s i n ()s i n (2)c o s (2)36x xx x ππ-=-=--求解即可. 【解答】解:因为0x π<<,∴112(,)666x πππ-∈-,又因为方程3()5f x =的解为1x ,212(0)x x x π<<<,∴1223x x π+=,∴2123x x π=-,∴12112s in ()s in (2)c o s (2)36x x x x ππ-=-=--,因为12212,3x x x x π<=-,103x π∴<<,∴12(,)662x πππ-∈-,∴由113()s in (2)65f x x π=-=,得14c o s (2)65x π-=,∴124s in ()5x x -=-,故选:A .【点评】本题考查了三角函数的恒等变换及化简求值和三角函数的图象与性质,属中档题. 7.已知1ta n 4ta n θθ+=,则2c o s ()(4πθ+=)A .12B .13C .14D .15【分析】由已知求得s in c o s θθ的值,再由二倍角的余弦及诱导公式求解2c o s ()4πθ+的值.【解答】解:由1ta n 4ta n θθ+=,得s in c o s 4c o s s in θθθθ+=,即224s in c o s s in c o s θθθθ+=,1s in c o s 4θθ∴=,∴21c o s (2)1s in 22c o s ()422πθπθθ++-+==11212s in c o s 14224θθ-⨯-===.故选:C .【点评】本题考查三角函数的化简求值,考查了同角三角函数基本关系式及诱导公式的应用,是基础题.二.填空题(共15小题) 9.设当xθ=时,函数()s in o s f x x x=+取得最大值,则ta n ()4πθ+=2+【分析】()f x 解析式提取,利用两角和与差的正弦公式化为一个角的正弦函数,由x θ=时函数()f x 取得最大值,得到θ的取值,后代入正切公式中计算求值.【解答】解:()sin o s 2sin ()3f x x x x π=+=+;当xθ=时,函数()f x 取得最大值2,32k k zππθπ∴+=+∈;26k πθπ∴=+,kz∈;∴1ta n ()ta n (2)ta n ()2464463k πππππθπ++=++=+==+故答案为:2+.【点评】本题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,熟练掌握公式是解本题的关键.10.求值:s in 50(1n 10)︒+︒=1 .【分析】先把原式中切转化成弦,利用两角和公式和整理后,运用诱导公式和二倍角公式化简整理求得答案.【解答】解:原式2s in 40s in 80c o s 10s in 50c o s 401c o s 10c o s 10c o s 10c o s 10︒︒︒=︒⋅=︒===︒︒︒︒故答案为:1【点评】本题主要考查了三角函数的恒等变换及其化简求值,以及两角和公式,诱导公式和二倍角公式的化简求值.考查了学生对三角函数基础知识的综合运用. 11.1s in 10c o s 10-=︒︒4 .【分析】s in 10c o s 10得结果.【解答】解:12(c o s 10in 10)1221s in 10c o s 10s in 10c o s 10s in 202︒-︒-==︒︒︒︒︒4s in 20420S in ==故答案为:4【点评】本题主要基础知识的考查,考查了在三角函数的化简与求值中,综合运用二倍角正弦公式、两角和的正弦公式,要求考生熟练运用公式对三角函数化简. 12.已知s in 10c o s 102c o s 140m ︒+︒=︒,则m=【分析】由题意可得2c o s 140s in 10c o s 10m ︒-︒=︒,再利用三角恒等变换求得它的值. 【解答】解:由题意可得2c o s 140s in 102c o s 40s in 102c o s (3010)s in 10c o s 10c o s 10c o s 10m ︒-︒-︒-︒-︒+︒-︒===︒︒︒2c o s 10s in 10s in 102c o s 10-︒+︒-︒==︒故答案为:【点评】本题主要考查三角恒等变换,属于中档题. 13.4c o s 50ta n 40︒-︒=【分析】表达式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果. 【解答】解:4c o s 50ta n 404s in 40ta n 40︒-︒=︒-︒4s in 40c o s 40s in 40c o s 40︒︒-︒=︒2s in 80s in (3010)c o s 40︒-︒+︒=︒12c o s 10c o s 10in 1022c o s 40︒-︒-︒=︒3c o s 10in 1022c o s 40︒-︒=︒==.【点评】本题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键. 14.2c o s 10s in 20s in 70︒-︒=︒【分析】利用两角和差的余弦公式,进行化简即可.【解答】解:原式12o s 20s in 20)s in 202c o s (3020)s in 2022c o s 20c o s 20︒+︒-︒︒-︒-︒==︒︒o s 20s in 20s in 20o s 20c o s 20c o s 20︒+︒-︒︒===︒︒【点评】本题主要考查三角函数值的化简,利用两角和差的余弦公式是解决本题的关键. 15.已知1ta n 31ta n αα+=-,则2sin 2sin co s 1ααα-+=25.【分析】由1ta n 31ta n αα+=-,我们可计算出ta n α的值,由于2sin α2c o s +α1=,所以将所求的代收式变形为222222s in c o s s in s in c o s s in c o s ααααααα-+++,然后化弦为切,代入求值.【解答】解:1ta n 31ta n αα+=-,1ta n 2α∴=.22222222222112()212s in c o s 2ta n 1222s in 2s in c o s 1115()12s in s in c o s ta n ta n s in c o s ta n αααααααααααααα⨯-⨯+-++-++∴-+====+++. 故答案是:25.【点评】本题考查的知识点是三角函数的恒等变换及化简求值,同角三角函数间的基本关系,解题的关键是将角的弦化切,属于中档题. 16.若1s in ()43πα-=,则c o s ()4πα+=13.【分析】由已知利用诱导公式化简所求即可得解. 【解答】解:1sin ()43πα-=,∴1c o s ()s in (())s in ()42443a ππππαα+=--=-=.故答案为:13.【点评】本题主要考查了诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题. 17.若o s 2in 2c o s ()4θθπθ=+,则s in 2θ=23-.【分析】由已知利用三角函数恒等变换的应用可得:2(c o s s in )in 2θθθ+=,平方后整理可得:23sin 24sin 240θθ--=,进而解得s in 2θ的值. 【解答】解:o s 22c o s()4θθπθ=+,∴2(c o s s in )in 22θθθ=+=,∴平方可得:24(1sin 2)3sin 2θθ+=,整理可得:23sin 24sin 240θθ--=,∴解得:2s in 23θ=-,或2(舍去).故答案为:23-.【点评】本题主要考查了三角函数恒等变换的应用,考查了计算能力和转化思想,属于中档题. 18.若ta n 3α=,则s in 2ta n ()4απα+的值为310-.【分析】直接利用三角函数关系式的变换和倍角公式的应用求出结果.【解答】解:由于ta n 3α=,所以22ta n 3s in 21ta n 5ααα==+,1ta n 4ta n ()241ta n 2πααα++===---所以3s in 235210ta n ()4απα==--+.故答案为:310-【点评】本题考查的知识要点:三角函数关系式的恒等变换,倍角公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 19.若ta n 3,(0,)2παα=∈,则c o s ()4πα-=5.【分析】由已知结合同角三角函数基本关系式求解s in α、c o s α的值,然后展开两角差的余弦求解.【解答】解:由ta n 3α=,得s in 3c o s αα=,即s in 3c o s αα=.又22sin c o s 1αα+=,且(0,)2πα∈,解得:s in 10α=,c o s 10α=.∴c o s ()c o s c o s s in s in4441021025πππααα-=+=+=.故答案为:5.【点评】本题考查三角函数的化简求值,考查了同角三角函数基本关系式及两角差的余弦,是基础题.20.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为2s in 18m=︒,若24m n +=,则s i n 63m +=︒【分析】根据三角函数同角三角函数关系表示n ,利用辅助角公式结合两角和差的正弦公式进行化简即可. 【解答】解:2s in 18m =︒,∴由24m n +=,得222444sin 184co s 18nm =-=-︒=︒,则2s in 182c o s 18in (4518)in 63s in 63s in 63s in 63s in 63m +︒+︒︒+︒︒====︒︒︒︒故答案为:【点评】本题主要考查三角函数值的化简和求解,利用辅助角公式以及两角和差的正弦公式进行化简是解决本题的关键.21.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现0.618就是黄金分割,这是一个伟大的发现,这一数值也表示为2s in 18a=︒,若24a b +=,则2=12-.【分析】由已知利用同角三角函数基本关系式可求24co s 18b =︒,然后利用降幂公式,诱导公式,二倍角的正弦函数公式化简得答案. 【解答】解:2s in 18a =︒,若24a b +=,2222444sin 184(1sin 18)4c o s 18b a∴=-=-︒=-︒=︒,∴22c o s 54sin 3614sin 18c o s 182sin 362-︒-︒====-︒︒︒,故答案为:12-.【点评】本题主要考查了同角三角函数基本关系式,降幂公式,诱导公式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.22.函数2()ta n 60s in 2inf x x x=︒+在[,]2ππ上的值域为.【分析】由已知利用三角函数恒等变换的应用可求()in (2)4f x x π=-+[,]2x ππ∈,可得:32[44x ππ-∈,7]4π,进而利用正弦函数的性质即可得解.【解答】解:2()tan 60sin 22f x x x=︒+1c o s 2in 22xx -=+2o s 2x x=+-in (2)4x π=-+又[,]2x ππ∈,可得:32[44xππ-∈,7]4π,s in (2)[14x π∴-∈-,2,可得()in (2)4f x x π=-+-,.故答案为:.【点评】本题主要考查了三角函数恒等变换的应用及正弦函数的性质,考查了转化思想和函数思想,属于基础题. 三.解答题(共3小题) 23.设函数()s in ()s in ()62f x x x ππωω=-+-,其中03ω<<,已知()06f π=.(Ⅰ)求ω; (Ⅱ)将函数()yf x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在[4π-,3]4π上的最小值.【分析】(Ⅰ)利用三角恒等变换化函数()f x 为正弦型函数,根据()06f π=求出ω的值;(Ⅱ)写出()f x 解析式,利用平移法则写出()g x 的解析式,求出[4x π∈-,3]4π时()g x 的最小值.【解答】解:(Ⅰ)函数()s in ()s in ()62f x x x ππωω=-+-s in c o sc o s s ins in ()662x x x πππωωω=---3in c o s 22x xωω=-in ()3x πω=-,又()in ()0663f πππω=-=,∴63k ππωπ-=,k Z∈,解得62k ω=+,又03ω<<,2ω∴=;(Ⅱ)由(Ⅰ)知,()in (2)3f x x π=-,将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数in ()3y x π=-的图象;再将得到的图象向左平移4π个单位,得到in ()43yx ππ=+-的图象,∴函数()in ()12yg x x π==-;当[4x π∈-,3]4π时,[123xππ-∈-,2]3π,s in ()[122x π∴-∈-,1],∴当4xπ=-时,()g x取得最小值是322-=-.【点评】本题考查了三角恒等变换与正弦型函数在闭区间上的最值问题,是中档题. 24.已知α,β为锐角,4ta n 3α=,c o s ()5αβ+=-(1)求c o s 2α的值; (2)求tan ()αβ-的值.【分析】(1)由已知结合平方关系求得s in α,c o s α的值,再由倍角公式得c o s 2α的值; (2)由(1)求得t a n 2α,再由c o s ()5αβ+=-求得t a n (αβ+,利用tan ()tan [2()]αβααβ-=-+,展开两角差的正切求解.【解答】解:(1)由22431s in c o s s in c o s ααααα⎧=⎪⎪+=⎨⎪⎪⎩为锐角,解得4s in 53c o s 5αα⎧=⎪⎪⎨⎪=⎪⎩,227c o s 225c o s s in ααα∴=-=-;(2)由(1)得,24s in 22s in c o s 25ααα==,则s in 224ta n 2c o s 27ααα==-.α,(0,)2πβ∈,(0,)αβπ∴+∈,s in ()5αβ∴+==.则s in ()ta n ()2c o s ()αβαβαβ++==-+.ta n 2ta n ()2ta n ()ta n [2()]1ta n 2ta n ()11ααβαβααβααβ-+∴-=-+==-++.【点评】本题考查三角函数的恒等变换及化简求值,考查同角三角函数基本关系式的应用,是中档题. 25.已知函数22()s inc o s in f x x x x =--co s ()x x R ∈.(Ⅰ)求2()3f π的值.(Ⅱ)求()f x 的最小正周期及单调递增区间.【分析】利用二倍角公式及辅助角公式化简函数的解析式,(Ⅰ)代入可得:2()3f π的值.(Ⅱ)根据正弦型函数的图象和性质,可得()f x 的最小正周期及单调递增区间【解答】解:函数22()s inc o s in f x x x x =--7c o s in 2c o s 22s in (2)6x x x x π=-=+(Ⅰ)2275()2s in (2)2s in 23362f ππππ=⨯+==,(Ⅱ)2ω=,故Tπ=,即()f x 的最小正周期为π,由72[262xk πππ+∈-+,2]2k ππ+,k Z∈得:5[6x k ππ∈-+,]3k ππ-+,kZ∈,故()f x 的单调递增区间为5[6k ππ-+,]3k ππ-+或写成[6k ππ+,2]3k ππ+,kZ∈.【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档。
5.5.2 简单的三角恒等变换(教师独具内容)课程标准:1.能用二倍角公式导出半角公式.2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式进行化简、求值以及证明三角恒等式.教学重点:利用三角恒等变换对三角函数式化简、求值和证明. 教学难点:利用三角恒等变换来解决问题.【知识导学】知识点一 半角公式知识点二 积化和差与和差化积公式 (1)积化和差公式sin αcos β=12[sin(α+β)+sin(α-β)].cos αsin β=12[sin(α+β)-sin(α-β)].cos αcos β=12[cos(α+β)+cos(α-β)].sin αsin β=-12[cos(α+β)-cos(α-β)].(2)和差化积公式 sin α+sin β=2sinα+β2cosα-β2.sin α-sin β=2cos α+β2sin α-β2. cos α+cos β=2cosα+β2cosα-β2. cos α-cos β=-2sinα+β2sinα-β2.【新知拓展】辅助角公式辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫tan φ=b a.推导过程:a sin x +b cos x =a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2sin x +b a 2+b 2cos x . 令cos φ=a a 2+b2,sin φ=b a 2+b2,则a sin x +b cos x =a 2+b 2(sin x cos φ+cos x sin φ)=a 2+b 2sin(x +φ), 其中角φ所在象限由a ,b 的符号确定,角φ的值由tan φ=ba确定或由sin φ=b a 2+b 2和cos φ=a a 2+b2共同确定.1.判一判(正确的打“√”,错误的打“×”)(1)已知cos α=13,α∈(0,π),则sin α2=-33.( )(2)cos2π8-14=2+14.( ) (3)函数f (x )=3sin x +cos x (x ∈R )的最小正周期为π.( ) 答案 (1)× (2)√ (3)× 2.做一做(1)若cos α=13,α∈(0,π),则cos α2的值为( )A.63 B .-63 C .±63 D .±33(2)已知cos α=45,α∈⎝ ⎛⎭⎪⎫3π2,2π,则sin α2等于( )A .-1010 B.1010 C.3310 D .-35(3)函数f (x )=sin 2x +3sin x cos x 在区间⎣⎢⎡⎦⎥⎤π4,π2上的最大值是( )A .1 B.1+32 C.32 D .1+ 3(4)若tan α=2,则tan α2=________.答案 (1)A (2)B (3)C (4)-1±52题型一 利用半角公式求值例1 已知sin α=-45,π<α<3π2,求sin α2,cos α2,tan α2的值.[解] ∵π<α<3π2,sin α=-45,∴cos α=-35,且π2<α2<3π4,∴sin α2=1-cos α2=255, cos α2=-1+cos α2=-55, tan α2=sin α2cosα2=-2.金版点睛由三角函数值求其他三角函数式的值的步骤(1)若没有给出角的范围,则根号前的正负号需要根据条件讨论.一般讨论角所在象限. (2)由三角函数值求其他三角函数式的值的步骤: ①先化简所求的式子.②观察已知条件与所求式子之间的联系(从角和三角函数名称入手). ③将已知条件代入所求式子,化简求值.[跟踪训练1] 已知sin α2-cos α2=-15,450°<α<540°,求tan α2的值.解 由题意,得⎝⎛⎭⎪⎫sin α2-cos α22=15,即1-sin α=15,得sin α=45.∵450°<α<540°,∴cos α=-35,∴tan α2=1-cos αsin α=1-⎝ ⎛⎭⎪⎫-3545=2.题型二 三角函数式的化简例2 化简:(1+sin α+cos α)⎝⎛⎭⎪⎫sin α2-cos α22+2cos α(π<α<2π).[解] 原式=⎝⎛⎭⎪⎫2cos 2α2+2sin α2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α22·2cos2α2=2cos α2⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫sin α2-cos α22⎪⎪⎪⎪⎪⎪cos α2=cos α2(-cos α)⎪⎪⎪⎪⎪⎪cos α2.又∵π<α<2π,∴π2<α2<π,∴cos α2<0,∴原式=cos α2·(-cos α)-cosα2=cos α.[变式探究] 将本例改为化简:(1+sin α-cos α)⎝⎛⎭⎪⎫sin α2-cos α22-2cos α(180°<α<360°).解 原式=⎝⎛⎭⎪⎫2sin 2α2+2sin α2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α22·2sin2α2=2sin α2⎝ ⎛⎭⎪⎫sin α2+cos α2⎝ ⎛⎭⎪⎫sin α2-cos α22⎪⎪⎪⎪⎪⎪sin α2=2sin α2(-cos α)2⎪⎪⎪⎪⎪⎪sin α2=sin α2(-cos α)⎪⎪⎪⎪⎪⎪sin α2.∵180°<α<360°,∴90°<α2<180°,∴sin α2>0,∴原式=-cos α. 金版点睛化简问题中的“三变”(1)变角:三角变换时通常先寻找式子中各角之间的联系,通过拆、凑等手段消除角之间的差异,合理选择联系它们的公式.(2)变名:观察三角函数种类的差异,尽量统一函数的名称,如统一为弦或统一为切. (3)变式:观察式子的结构形式的差异,选择适当的变形途径.如升幂、降幂、配方、开方等.[跟踪训练2] 化简: (1)1+sin θ-1-sin θ⎝ ⎛⎭⎪⎫3π2<θ<2π;(2)cos 2α1tanα2-tanα2.解 (1)原式=⎪⎪⎪⎪⎪⎪sin θ2+cos θ2-⎪⎪⎪⎪⎪⎪sin θ2-cos θ2,∵3π2<θ<2π,∴3π4<θ2<π, ∴0<sin θ2<22,-1<cos θ2<-22,从而sin θ2+cos θ2<0,sin θ2-cos θ2>0.∴原式=-⎝⎛⎭⎪⎫sin θ2+cos θ2-⎝ ⎛⎭⎪⎫sin θ2-cos θ2=-2sin θ2. (2)原式=cos 2αtan α21-tan 2α2=12cos 2α·2tanα21-tan 2α2=12cos 2α·tan α=12cos αsin α=14sin2α. 题型三 三角恒等式的证明例3 求证:tan 3x 2-tan x 2=2sin x cos x +cos2x .[证明] 证法一:tan 3x 2-tan x2=sin 3x 2cos 3x 2-sinx2cosx2=sin 3x 2cos x 2-cos 3x 2sin x 2cos 3x 2cos x 2=sin ⎝ ⎛⎭⎪⎫3x 2-x 2cos 3x 2cosx 2=sin x cos 3x 2cos x 2=2sin x cos ⎝ ⎛⎭⎪⎫3x 2+x 2+cos ⎝ ⎛⎭⎪⎫3x 2-x 2 =2sin xcos x +cos2x.∴原式成立.证法二:2sin x cos x +cos2x =2sin ⎝ ⎛⎭⎪⎫3x 2-x 2cos ⎝ ⎛⎭⎪⎫3x 2-x 2+cos ⎝ ⎛⎭⎪⎫3x 2+x 2=2⎝⎛⎭⎪⎫sin 3x 2cos x 2-cos 3x 2sin x 22cos 3x 2cos x 2=sin3x 2cos 3x 2-sin x 2cosx 2=tan 3x 2-tan x2.∴原式成立. 金版点睛在三角恒等式的证明中,化繁为简是化简三角函数式的一般原则,按照目标确定化简思路,由复杂的一边化到简单的一边.如果两边都比较复杂,也可以采用左右归一的方法.[跟踪训练3] 求证:sin (α+β)sin (α-β)sin 2αcos 2β=1-tan 2βtan 2α. 证明 证法一:左边=(sin αcos β+cos αsin β)(sin αcos β-cos αsin β)sin 2αcos 2β =sin 2αcos 2β-cos 2αsin 2βsin 2αcos 2β =1-cos 2αsin 2βsin 2αcos 2β=1-tan 2βtan 2α=右边. ∴原等式成立.证法二:右边=1-cos 2αsin 2βsin 2αcos 2β =sin 2αcos 2β-cos 2αsin 2βsin 2αcos 2β =(sin αcos β+cos αsin β)(sin αcos β-cos αsin β)sin 2αcos 2β =sin (α+β)sin (α-β)sin 2αcos 2β=左边. ∴原式成立.题型四 利用辅助角公式研究函数性质例4 已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+2sin 2⎝ ⎛⎭⎪⎫x -π12(x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. [解] (1)∵f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+2sin 2⎝ ⎛⎭⎪⎫x -π12 =3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12=2⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫32sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-12cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+1 =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6+1 =2sin ⎝⎛⎭⎪⎫2x -π3+1,∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝ ⎛⎭⎪⎫2x -π3=1, 有2x -π3=2k π+π2,即x =k π+5π12(k ∈Z ),∴所求x 的集合为{x ⎪⎪⎪⎭⎬⎫x =k π+5π12,k ∈Z .金版点睛(1)为了研究函数的性质,往往要充分利用三角变换公式转化为正弦型(余弦型)函数,这是解决问题的前提.(2)解此类题时要充分运用两角和(差)公式、二倍角公式、辅助角公式消除差异,减少角的种类和函数式的项数,为讨论函数性质提供保障.[跟踪训练4] 已知函数f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π4上的最大值和最小值.解 (1)f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1=4cos x ⎝⎛⎭⎪⎫32sin x +12cos x -1=3sin2x +2cos 2x -1 =3sin2x +cos2x =2sin ⎝⎛⎭⎪⎫2x +π6, 所以f (x )的最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.于是当2x +π6=π2,即x =π6时,f (x )max =2;当2x +π6=-π6,即x =-π6时,f (x )min =-1.题型五 三角变换的实际应用例5 如图,A ,B 是半径为1的圆O 上任意两点,以AB 为一边作等边三角形ABC .当点A ,B 处于怎样的位置时,四边形OACB 的面积最大?最大面积是多少?[解] 如图,设∠AOB =θ(0<θ<π),四边形OACB 的面积为S .取AB 的中点D ,连接OD ,CD ,则OD ⊥AB ,CD ⊥AB .在Rt △ODA 中,OA =1,∠AOD =θ2,所以AD =OA sin ∠AOD =sinθ2,OD =OA cos ∠AOD =cos θ2,所以AB =2AD =2sin θ2.因为△ABC 为等边三角形,所以CD =AC sin ∠CAB =2sin θ2sin60°=3sin θ2.所以S =S △ABC +S △AOB =12CD ·AB +12OD ·AB =12×3sin θ2×2sin θ2+12×cos θ2×2sin θ2 =3sin2θ2+12sin θ=3×1-cos θ2+12sin θ=12sin θ-32cos θ+32 =sin ⎝⎛⎭⎪⎫θ-π3+32.因为0<θ<π,所以-π3<θ-π3<2π3.所以当θ-π3=π2,即θ=5π6时,S 取得最大值1+32.所以当OA 与OB 的夹角为5π6时,四边形OACB 的面积最大,最大面积是1+32.金版点睛解答此类问题,关键是合理引入辅助角,先将实际问题转化为三角函数问题,再利用三角函数的有关知识求解.在求解过程中,要注意角的取值范围.[跟踪训练5] 有一块以O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 建为绿地,使其一边AD 落在半圆的直径上,另外两点B ,C 落在半圆的圆周上.已知半圆的半径长为a ,如何选择关于点O 对称的点A ,D 的位置,才能使矩形ABCD 的面积最大?解 画出图形如图所示.设∠AOB =θ,θ∈⎝⎛⎭⎪⎫0,π2,则AB =a sin θ,OA =a cos θ. 设矩形ABCD 的面积为S , 则S =2OA ·AB=2a cos θ·a sin θ=a 2·2sin θcos θ=a 2sin2θ.因为θ∈⎝⎛⎭⎪⎫0,π2,所以2θ∈(0,π).当2θ=π2,即θ=π4时,S max =a 2,此时点A ,D 距离点O 均为22a .1.已知sin α=35⎝ ⎛⎭⎪⎫0<α<π2,则cos α2等于( )A.45 B .-45 C .-31010 D.31010 答案 D解析 ∵sin α=35且0<α<π2,∴cos α=45.又cos α=2cos 2α2-1,∴cos 2α2=1+cos α2=910, ∵0<α2<π4,∴cos α2=31010.2.2sin 2αsin2α·2cos 2αcos2α等于( ) A .tan α B .tan2α C .1 D.12答案 B解析 原式=(2sin αcos α)2sin2αcos2α=sin 22αsin2αcos2α=sin2αcos2α=tan2α.3.函数y =3sin x +3cos x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2的值域为________. 答案 [-3,23]解析 函数y =3sin x +3cos x =23sin ⎝⎛⎭⎪⎫x +π6, 又x ∈⎣⎢⎡⎦⎥⎤-π2,π2, ∴x +π6∈⎣⎢⎡⎦⎥⎤-π3,2π3, ∴sin ⎝ ⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤-32,1, ∴23sin ⎝⎛⎭⎪⎫x +π6∈[-3,23]. 4.求值:sin 235°-12cos10°cos80°=________. 答案 -1解析 sin 235°-12cos10°cos80°=1-cos70°2-12cos10°sin10°=-12cos70°12sin20°=-1. 5.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+sin ⎝⎛⎭⎪⎫2x -π3+2cos 2x -1,x ∈R . (1)求函数f (x )的最小正周期;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值和最小值. 解 (1)f (x )=sin2x cos π3+cos2x sin π3+sin2x cos π3-cos2x sin π3+cos2x =sin2x +cos2x =2sin ⎝⎛⎭⎪⎫2x +π4,所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π8上单调递增,在区间⎣⎢⎡⎦⎥⎤π8,π4上单调递减,又f ⎝ ⎛⎭⎪⎫-π4=-1,f ⎝ ⎛⎭⎪⎫π8=2,f ⎝ ⎛⎭⎪⎫π4=1,故函数f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值为2,最小值为-1.。
高中数学中的三角恒等变换利用恒等变换简化复杂三角式子的技巧在高中数学中,三角函数是一个非常重要的概念。
通过恒等变换,我们可以简化复杂的三角式子,使其更易于计算和理解。
本文将介绍一些常用的三角恒等变换以及利用恒等变换简化复杂三角式子的技巧。
一、基本恒等变换1. 正弦函数的基本恒等变换正弦函数的基本恒等变换包括:sin²θ + cos²θ = 1sin(90° - θ) = cosθsin(-θ) = -sinθsin(180° - θ) = sinθ2. 余弦函数的基本恒等变换余弦函数的基本恒等变换包括:cos²θ + sin²θ = 1cos(90° - θ) = sinθcos(-θ) = cosθcos(180° - θ) = -cosθ3. 正切函数的基本恒等变换正切函数的基本恒等变换包括:tanθ = sinθ/cosθtan(-θ) = -tanθtan(π/2 - θ) = 1/tanθtan(π + θ) = tanθ二、常用恒等变换1. 二倍角恒等变换二倍角恒等变换可以将一个角的正弦、余弦、正切函数转化为两倍角的正弦、余弦、正切函数。
常用的二倍角恒等变换包括:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ/1 - tan²θ2. 和差角恒等变换和差角恒等变换可以将两个角的正弦、余弦、正切函数转化为一个角的正弦、余弦、正切函数。
常用的和差角恒等变换包括:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)三、利用恒等变换简化复杂三角式子的技巧1. 利用二倍角恒等变换当我们遇到一个三角函数中带有角度为θ的复杂式子时,可以尝试使用二倍角恒等变换将其转化为两倍角的三角函数。
三角函数的恒等变换与化简三角函数在数学中扮演着重要的角色,其中包括一系列的恒等变换和化简公式。
这些变换与化简公式不仅在解决三角函数问题时起着重要的作用,而且在数学推导和证明中也发挥着重要的作用。
本文将介绍一些常见的三角函数恒等变换和化简公式,旨在帮助读者更好地理解和应用这些概念。
1. 三角恒等变换(1)余弦定理在任意三角形ABC中,设边长分别为a、b、c,角A、B、C的对边分别为a、b、c,则余弦定理可以表示为:c² = a² + b² - 2abcosC。
这个定理在解决三角形问题中经常使用。
(2)正弦定理在任意三角形ABC中,设边长分别为a、b、c,角A、B、C的对边分别为a、b、c,则正弦定理可以表示为:a/sinA = b/sinB = c/sinC,其中a、b、c分别为三角形的边长,A、B、C为所对应的角。
(3)倍角公式正弦函数的倍角公式可以表示为:sin2θ = 2sinθcosθ,余弦函数的倍角公式可以表示为:cos2θ = cos²θ - sin²θ。
这些公式在求解具有倍角的三角函数问题时非常有用。
2. 三角函数化简公式(1)和差化积两角和公式可以表示为:sin(α +β) = sinαcosβ + cosαsinβ,cos(α + β) = cosαcosβ - sinαsinβ。
这个公式可以将两个角的三角函数和转化为单个角的三角函数和。
类似地,两角差公式可以表示为:sin(α - β) =sinαcosβ - cosαsinβ,cos(α - β) = cosαcosβ + sinαsinβ。
(2)平方公式正弦函数的平方公式可以表示为:sin²θ = (1 - cos2θ)/2,余弦函数的平方公式可以表示为:cos²θ = (1 + cos2θ)/2。
这些公式在化简复杂的三角函数表达式时非常有用。
(3)倒数公式正切函数的倒数公式可以表示为:cotθ = 1/tanθ,割函数的倒数公式可以表示为:secθ = 1/cosθ,余割函数的倒数公式可以表示为:cscθ =1/sinθ。
5.5.2 简单的三角恒等变换学习目标1.能用二倍角公式导出半角公式2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及证明三角恒等式,并能进行一些简单的应用.知识点一 半角公式 sin α2=±1-cos α2, cos α2=±1+cos α2, tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α.知识点二 辅助角公式 辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).⎝⎛⎭⎫其中tan θ=b a1.cos α2=1+cos α2.( × ) 2.对任意α∈R ,sin α2=12cos α都不成立.( × )3.若cos α=13,且α∈(0,π),则cos α2=63.( √ )4.对任意α都有sin α+3cos α=2sin ⎝⎛⎭⎫α+π3.( √ )一、三角恒等式的证明例1 求证:1+sin θ-cos θ1+sin θ+cos θ+1+sin θ+cos θ1+sin θ-cos θ=2sin θ.证明 方法一 左边=2sin 2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cos θ2+2cos 2θ2+2sin θ2cosθ22sin 2θ2+2sin θ2cosθ2=sinθ2cos θ2+cos θ2sin θ2=1cos θ2sinθ2=2sin θ=右边.所以原式成立.方法二 左边=(1+sin θ-cos θ)2+(1+sin θ+cos θ)2(1+sin θ+cos θ)(1+sin θ-cos θ)=2(1+sin θ)2+2cos 2θ(1+sin θ)2-cos 2θ=4+4sin θ2sin θ+2sin 2θ=2sin θ=右边. 所以原式成立.反思感悟 三角恒等式证明的常用方法 (1)执因索果法:证明的形式一般是化繁为简; (2)左右归一法:证明左右两边都等于同一个式子;(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同;(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”;(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立. 跟踪训练1 求证:2sin x cos x(sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x .证明 左边=2sin x cos x⎝⎛⎭⎫2sin x 2cos x 2-2sin 2x 2⎝⎛⎭⎫2sin x 2cos x 2+2sin 2x 2=2sin x cos x 4sin 2x 2⎝⎛⎭⎫cos 2x 2-sin 2x 2=sin x 2sin 2x 2=cos x 2sin x 2=2cos 2x 22sin x 2cos x 2=1+cos x sin x =右边.所以原等式成立.二、三角恒等变换的综合问题例2 已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性. 解 (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+ 2 =2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8,f (x )单调递增; 当π2<2x +π4≤5π4,即π8<x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增,在区间⎝⎛⎦⎤π8,π2上单调递减. 反思感悟 研究三角函数的性质,如单调性和最值问题,通常是把复杂的三角函数通过恰当的三角变换,转化为一种简单的三角函数,再研究转化后函数的性质.在这个过程中通常利用辅助角公式,将y =a sin x +b cos x 转化为y =A sin(x +φ)或y =A cos(x +φ)的形式,以便研究函数的性质.跟踪训练2 已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 解 (1)由已知,有f (x )=1-cos 2x2-1-cos ⎝⎛⎭⎫2x -π32=12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间⎣⎡⎦⎤-π6,π4上是增函数,且f ⎝⎛⎭⎫-π3=-14,f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34, 所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34,最小值为-12. 三、三角函数的实际应用例3 如图,有一块以点O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 开辟为绿地,使其一边AD 落在半圆的直径上,另两点B ,C 落在半圆的圆周上.已知半圆的半径长为20 m ,如何选择关于点O 对称的点A ,D 的位置,可以使矩形ABCD 的面积最大,最大值是多少?解 连接OB (图略),设∠AOB =θ,则AB =OB sin θ=20sin θ,OA =OB cos θ=20cos θ,且θ∈⎝⎛⎭⎫0,π2. 因为A ,D 关于原点对称, 所以AD =2OA =40cos θ. 设矩形ABCD 的面积为S ,则 S =AD ·AB =40cos θ·20sin θ=400sin 2θ. 因为θ∈⎝⎛⎭⎫0,π2,所以当sin 2θ=1, 即θ=π4时,S max =400(m 2).此时AO =DO =102(m).故当A ,D 距离圆心O 为10 2 m 时,矩形ABCD 的面积最大,其最大面积是400 m 2. 反思感悟 (1)三角函数与平面几何有着密切联系,几何中的角度、长度、面积等问题,常借助三角变换来解决;实际问题的意义常反映在三角形的边、角关系上,故常用三角恒等变换的方法解决实际的优化问题.(2)解决此类问题的关键是引进角为参数,列出三角函数式.跟踪训练3 如图所示,要把半径为R 的半圆形木料截成长方形,应怎样截取,才能使△OAB 的周长最大?解 设∠AOB =α,则0<α<π2,△OAB 的周长为l ,则AB =R sin α,OB =R cos α, ∴l =OA +AB +OB =R +R sin α+R cos α =R (sin α+cos α)+R =2R sin ⎝⎛⎭⎫α+π4+R . ∵0<α<π2,∴π4<α+π4<3π4.∴l 的最大值为2R +R =(2+1)R , 此时,α+π4=π2,即α=π4,即当α=π4时,△OAB 的周长最大.1.已知cos α=15,α∈⎝⎛⎭⎫3π2,2π,则sin α2等于( ) A.105 B .-105 C.265 D.255答案 A解析 ∵α∈⎝⎛⎭⎫3π2,2π, ∴α2∈⎝⎛⎭⎫3π4,π,sin α2=1-cos α2=105. 2.若函数f (x )=-sin 2x +12(x ∈R ),则f (x )是( )A .最小正周期为π2的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数 答案 D解析 f (x )=-1-cos 2x 2+12=12cos 2x .故选D.3.下列各式与tan α相等的是( ) A.1-cos 2α1+cos 2αB.sin α1+cos αC.sin α1-cos 2αD.1-cos 2αsin 2α答案 D解析 1-cos 2αsin 2α=2sin 2α2sin αcos α=sin αcos α=tan α.4.函数y =-3sin x +cos x 在⎣⎡⎦⎤-π6,π6上的值域是________. 答案 [0,3]解析 y =-3sin x +cos x =2sin ⎝⎛⎭⎫π6-x . 又∵-π6≤x ≤π6,∴0≤π6-x ≤π3.∴0≤y ≤ 3.5.已知sin α2-cos α2=-15,π2<α<π,则tan α2=________.答案 2解析 ∵⎝⎛⎭⎫sin α2-cos α22=15, ∴1-sin α=15,∴sin α=45.又∵π2<α<π,∴cos α=-35.∴tan α2=1-cos αsin α=1-⎝⎛⎭⎫-3545=2.1.知识清单: (1)半角公式; (2)辅助角公式;(3)三角恒等变换的综合问题; (4)三角函数在实际问题中的应用. 2.方法归纳:换元思想,化归思想.3.常见误区:半角公式符号的判断,实际问题中的定义域.1.设5π<θ<6π,cos θ2=a ,则sin θ4等于( )A.1+a 2 B.1-a2C .-1+a2D .-1-a2答案 D解析 ∵5π<θ<6π,∴5π4<θ4<3π2,∴sin θ4=-1-cosθ22=-1-a2. 2.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .c <b <a B .a <b <c C .a <c <b D .b <c <a 答案 C解析 由题意可知,a =sin 24°,b =sin 26°,c =sin 25°,而当0°<x <90°,y =sin x 为增函数,∴a <c <b ,故选C.3.已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4 答案 B解析 易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=32(2cos 2x -1)+32+1=32cos 2x +52,则f (x )的最小正周期为π,当x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. 4.化简⎝⎛⎭⎫sin α2+cos α22+2sin 2⎝⎛⎭⎫π4-α2得( ) A .2+sin α B .2+2sin ⎝⎛⎭⎫α-π4 C .2 D .2+2sin ⎝⎛⎭⎫α+π4 答案 C解析 原式=1+2sin α2cos α2+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π4-α2 =2+sin α-cos ⎝⎛⎭⎫π2-α=2+sin α-sin α=2.5.设函数f (x )=2cos 2x +3sin 2x +a (a 为实常数)在区间⎣⎡⎦⎤0,π2上的最小值为-4,那么a 的值等于( )A .4B .-6C .-4D .-3 答案 C解析 f (x )=2cos 2x +3sin 2x +a =1+cos 2x +3sin 2x +a =2sin ⎝⎛⎭⎫2x +π6+a +1. 当x ∈⎣⎡⎦⎤0,π2时,2x +π6∈⎣⎡⎦⎤π6,7π6, ∴f (x )min =2·⎝⎛⎭⎫-12+a +1=-4. ∴a =-4.6.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ=________. 答案 -π6解析 因为3sin x -3cos x =23⎝⎛⎭⎫32sin x -12cos x =23sin ⎝⎛⎭⎫x -π6, 因为φ∈(-π,π),所以φ=-π6.7.若θ是第二象限角,且25sin 2θ+sin θ-24=0,则cos θ2=________.答案 ±35解析 由25sin 2θ+sin θ-24=0, 又θ是第二象限角,得sin θ=2425或sin θ=-1(舍去).故cos θ=-1-sin 2θ=-725,由cos 2 θ2=1+cos θ2得cos 2 θ2=925.又θ2是第一、三象限角, 所以cos θ2=±35.8.化简:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x1+cos x =________.考点 利用简单的三角恒等变换化简求值 题点 综合运用三角恒等变换公式化简求值 答案 tan x2解析 原式=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x1+cos x=sin 2x 1+cos 2x ·cos x 1+cos x =2sin x cos x 2cos 2x ·cos x1+cos x=sin x 1+cos x=tan x2.9.已知cos θ=-725,θ∈(π,2π),求sin θ2+cos θ2的值.解 因为θ∈(π,2π), 所以θ2∈⎝⎛⎭⎫π2,π, 所以sin θ2=1-cos θ2=45, cos θ2=-1+cos θ2=-35, 所以sin θ2+cos θ2=15.10.已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12 =2⎩⎨⎧⎭⎬⎫32sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-12cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1, 有2x -π3=2k π+π2(k ∈Z ),即x =k π+5π12(k ∈Z ),∴所求x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+5π12,k ∈Z .11.函数f (x )=sin 2x +3sin x cos x 在区间⎣⎡⎦⎤π4,π2上的最大值是( ) A .1 B .2 C.32 D .3答案 C解析 f (x )=1-cos 2x 2+32sin 2x=sin ⎝⎛⎭⎫2x -π6+12, ∵x ∈⎣⎡⎦⎤π4,π2,∴2x -π6∈⎣⎡⎦⎤π3,5π6, ∴sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤12,1, ∴f (x )max =1+12=32,故选C.12.化简:tan 70°cos 10°(3tan 20°-1)=________. 答案 -1解析 原式=sin 70°cos 70°·cos 10°·⎝⎛⎭⎫3sin 20°cos 20°-1 =sin 70°cos 70°·cos 10°·3sin 20°-cos 20°cos 20° =sin 70°cos 70°·cos 10°·2sin (-10°)cos 20°=-sin 70°cos 70°·sin 20°cos 20°=-1.13.设0≤α≤π,不等式8x 2-8x sin α+cos 2α≥0对任意x ∈R 恒成立,则α的取值范围是________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 Δ=(8sin α)2-4×8×cos 2α≤0, 即2sin 2α-cos 2α≤0,所以4sin 2α≤1, 所以-12≤sin α≤12.因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π.14.函数y =sin 2x +sin x cos x +1的最小正周期是______,单调递增区间是________. 答案 π ⎝⎛⎭⎫k π-π8,k π+3π8,k ∈Z 解析 y =sin 2x +sin x cos x +1=1-cos 2x 2+sin 2x 2+1=22sin ⎝⎛⎭⎫2x -π4+32.最小正周期T =2π2=π. 令-π2+2k π<2x -π4<π2+2k π,k ∈Z , 解得-π8+k π<x <3π8+k π,k ∈Z . 所以f (x )的单调递增区间是⎝⎛⎭⎫k π-π8,k π+3π8(k ∈Z ).15.已知sin 2θ=35,0<2θ<π2,则2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4=________. 答案 12解析 2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4 =⎝⎛⎭⎫2cos 2θ2-1-sin θ2⎝⎛⎭⎫sin θcos π4+cos θsin π4 =cos θ-sin θsin θ+cos θ=1-sin θcos θsin θcos θ+1=1-tan θtan θ+1. 因为sin 2θ=35,0<2θ<π2, 所以cos 2θ=45,所以tan θ=sin 2θ1+cos 2θ=351+45=13, 所以1-tan θtan θ+1=1-1313+1=12, 即2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4=12. 16.如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,四边形ABCD 是扇形的内接矩形,B ,C 两点在圆弧上,OE 是∠POQ 的平分线,E 在PQ 上,连接OC ,记∠COE =α,则角α为何值时矩形ABCD 的面积最大?并求最大面积.解 如图所示,设OE 交AD 于M ,交BC 于N ,显然矩形ABCD 关于OE 对称,而M ,N 分别为AD ,BC的中点,在Rt △ONC 中,CN =sin α,ON =cos α,OM =DM tan π6=3DM =3CN =3sin α, 所以MN =ON -OM =cos α-3sin α,即AB =cos α-3sin α,而BC =2CN =2sin α,故S 矩形ABCD =AB ·BC =()cos α-3sin α·2sin α=2sin αcos α-23sin 2α=sin 2α-3(1-cos 2α)=sin 2α+3cos 2α- 3=2⎝⎛⎭⎫12sin 2α+32cos 2α- 3 =2sin ⎝⎛⎭⎫2α+π3- 3. 因为0<α<π6,所以0<2α<π3,π3<2α+π3<2π3. 故当2α+π3=π2,即α=π12时,S 矩形ABCD 取得最大值, 此时S 矩形ABCD =2- 3.。
高一数学三角恒等变换知识点介绍在高一学生学习的知识点是比较的多,学生需要学好,否则高三的时候会很吃力,下面是店铺给大家带来的有关于高一数学关于三角恒等变化知识点的介绍,希望能够帮助到大家。
高一数学三角恒等变换知识点三角函数式的化简是指利用诱导公式、同角基本关系式、和与差的三角函数公式、二倍角公式等,将较复杂的三角函数式化得更简洁、更清楚地显示出式子的结果.化简三角函数式的基本要求是:(1)能求出数值的要求出数值;(2)使三角函数式的项数最少、次数最低、角与函数的种类最少;(3)分式中的分母尽量不含根式等.1.求值中主要有三类求值问题:(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.2.三角恒等变换的常用方法、技巧和原则:(1)在化简求值和证明时常用如下方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等.(2)常用的拆角、拼角技巧如:2α=(α+β)+(α-β),α=(α+β)-β,α=(α-β)+β,α+β2=α-β2+β-α2,α2是α4的二倍角等.(3)化繁为简:变复角为单角,变不同角为同角,化非同名函数为同名函数,化高次为低次,化多项式为单项式,化无理式为有理式.(4)消除差异:消除已知与未知、条件与结论、左端与右端以及各项的次数、角、函数名称、结构等方面的差异.高一数学期末综合复习题一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后的括号内。
三角函数的恒等变换及化简求值(北京习题集)(教师版)一.选择题(共5小题)1.(2018•西城区校级模拟)若函数())cos(2)(0)f x x x θθθπ=+++<<的图象经过点(2π,0),则( )A .()f x 在(0,)2π上单调递减B .()f x 在(4π,3)4π上单调递减 C .()f x 在(0,)2π上单调递增D .()f x 在(4π,3)4π上单调递增 2.(2018•北京模拟)在sin50︒,sin50-︒,sin40︒,sin40-︒四个数中,与sin130︒相等的是( ) A .sin50︒B .sin50-︒C .sin40︒D .sin40-︒3.(2018秋•海淀区校级月考)函数21()sin sin cos 2f x x x x =+-的最小正周期和振幅分别是(( )A .B .2C .2πD .π4.(2017秋•大兴区期末)设3a ln =,8b π=,sin8c π=,则a ,b ,c 之间的大小关系是( )A .a b c >>B .a c b >>C .b c a >>D .c b a >>5.(2018秋•海淀区期中)函数()sin()f x x ϕ=+满足()13f π=,则5()6f π的值是( )A .0B .12C D .1二.填空题(共8小题)6.(2019秋•海淀区校级月考)若角α满足sin cos αα-=α= .7.(2019•海淀区校级模拟)已知α锐角,且cos()2πα-=,则tan α= .8.(2019秋•东城区校级月考)已知1sin cos 3αα+=,则2sin ()4πα-= .9.(2017秋•昌平区期末)已知tan 2α=,则5cos sin sin 2cos αααα-=+ .10.(2017秋•东城区校级期末)已知tan 2α=,则sin 3cos sin cos αααα-=+ ,2sin 2sin cos ααα+= .11.(2018春•通州区期末)已知(0,)2πα∈,tan 2α=,则cos α= .12.(2017秋•西城区期末)已知函数()sin tan f x x x =.给出下列结论: ①函数()f x 是偶函数; ②函数()f x 在区间(,0)2π-上是增函数;③函数()f x 的最小正周期是2π; ④函数()f x 的图象关于直线x π=对称.其中正确结论的序号是 .(写出所有正确结论的序号)13.(2018•顺义区二模)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,他们的终边关于x 轴对称,若1cos 4α=,则cos()αβ-= . 三.解答题(共2小题)14.(2019•房山区一模)已知函数()f x =.(Ⅰ)求(0)f 的值; (Ⅱ)求函数()f x 的定义域;(Ⅲ)求函数()f x 在(0,)2π上的取值范围.15.(2018秋•海淀区校级期末)求值:tan150cos(210)sin(420)sin1050cos(600)︒-︒-︒︒-︒.三角函数的恒等变换及化简求值(北京习题集)(教师版)参考答案与试题解析一.选择题(共5小题)1.(2018•西城区校级模拟)若函数())cos(2)(0)f x x x θθθπ=+++<<的图象经过点(2π,0),则( )A .()f x 在(0,)2π上单调递减B .()f x 在(4π,3)4π上单调递减 C .()f x 在(0,)2π上单调递增D .()f x 在(4π,3)4π上单调递增 【分析】利用三角恒等变换化简函数的解析式,再利用正弦函数的单调性,得出结论.【解答】解:函数())cos(2)2sin(2)6f x x x x πθθθ=+++=++(0)θπ<<的图象经过点(2π,0),2sin()06ππθ∴++=,sin()06πθ∴+=,6k πθπ∴+=,k Z ∈,56πθ∴=,5()2sin(2)2sin 266f x x x ππ=++=-. 在(0,)2π上,2(0,)x π∈,()2sin 2f x x =-没有单调性,故排除A 、C ;在(4π,3)4π上,2(2x π∈,3)2π,()2sin 2f x x =-单调递增,故排除B ,故选:D .【点评】本题主要考查三角恒等变换,正弦函数的单调性,属于基础题.2.(2018•北京模拟)在sin50︒,sin50-︒,sin40︒,sin40-︒四个数中,与sin130︒相等的是( ) A .sin50︒B .sin50-︒C .sin40︒D .sin40-︒【分析】利用诱导公式化简可得答案.【解答】解:由sin130sin(18050)sin50︒=︒-︒=︒.∴与sin130︒相等的是sin50︒故选:A .【点评】题主要考察了诱导公式的应用,属于基本知识的考查. 3.(2018秋•海淀区校级月考)函数21()sin sin cos 2f x x x x =+-的最小正周期和振幅分别是(( )A .B .2C .22πD .2π【分析】利用倍角公式降幂,再由辅助角公式化积,则答案可求. 【解答】解:211cos211()sin sin cos sin 22222x f x x x x x -=+-=+-1(sin 2cos2))24x x x π=--.∴函数()f x 的最小正周期为22ππ=,振幅是2. 故选:D .【点评】本题考查sin()y A x ωϕ=+型函数的图象和性质,是基础题. 4.(2017秋•大兴区期末)设3a ln =,8b π=,sin8c π=,则a ,b ,c 之间的大小关系是( )A .a b c >>B .a c b >>C .b c a >>D .c b a >>【分析】借用中间值和三角函数公式化简即可比较大小. 【解答】解:31a ln lne =>= 0.390.48b π<=<.由sin 2sin cos 488πππ==,即sin cos88ππ22sin cos 188ππ+=sin0.388c π==≈ a b c ∴>>.故选:A .【点评】本题考查三角恒等变换及化简求值,是中档题.5.(2018秋•海淀区期中)函数()sin()f x x ϕ=+满足()13f π=,则5()6f π的值是( )A .0B .12C D .1【分析】由已知求得ϕ,进一步得到5()6f π的值. 【解答】解:由()sin()f x x ϕ=+满足()13f π=,得sin()13πϕ+=,即232k ππϕπ+=+,k Z ∈.则26k πϕπ=+,k Z ∈.()sin()sin(2)sin()66f x x x k x ππϕπ∴=+=++=+.∴5()sin 06f ππ==. 故选:A .【点评】本题考查三角函数的化简求值,考查由已知三角函数值求角,是基础题. 二.填空题(共8小题)6.(2019秋•海淀区校级月考)若角α满足sin cos 2αα-=,则α= 5212k ππ+或13212k ππ+,k Z ∈ . 【分析】由已知推导出1sin()42πα-=,由此能求出α.【解答】解:sin cos αα-∴)4πα-=, 1sin()42πα∴-=,∴246k ππαπ-=+或5246k ππαπ-=+,k Z ∈, ∴5212k παπ=+或13212k παπ=+,k Z ∈. 故答案为:5212k ππ+或13212k ππ+,k Z ∈. 【点评】本题考查三角函数中角的求法,是基础题,解题时要认真审题,注意三角函数的性质的合理运用.7.(2019•海淀区校级模拟)已知α锐角,且cos()2πα-=,则tan α【分析】由已知利用诱导公式求得α,进一步得到tan α的值.【解答】解:由cos()2πα-=sin α,α是锐角,60α∴=︒,则tan α.【点评】本题考查三角函数的化简求值,考查由已知三角函数值求角,是基础题. 8.(2019秋•东城区校级月考)已知1sin cos 3αα+=,则2sin ()4πα-= 1718.【分析】利用平方化简已知条件,两角和与差的三角函数化简求解即可. 【解答】解:1sin cos 3αα+=,可得82sin cos 9αα=-,则2211817sin ())(12sin cos )(1)422918πααααα-==-=+=.故答案为:1718.【点评】本题考查两角和差的三角函数,三角函数化简求值,考查计算能力. 9.(2017秋•昌平区期末)已知tan 2α=,则5cos sin sin 2cos αααα-=+34. 【分析】利用同角三角函数的基本关系化弦为切,然后代值计算即可得答案. 【解答】解:tan 2α=,∴5cos sin 5tan 523sin 2cos tan 2224αααααα---===+++.故答案为:34. 【点评】本题考查了同角三角函数基本关系的意义,熟练掌握基本关系是解本题的关键,是基础题. 10.(2017秋•东城区校级期末)已知tan 2α=,则sin 3cos sin cos αααα-=+ 13- ,2sin 2sin cos ααα+= .【分析】把要求值的式子化弦为切求解. 【解答】解:tan 2α=,∴sin 3cos tan 3231sin cos tan 1213αααααα---===-+++;2222222sin cos 2tan 448sin 2sin cos 1415sin tan sin cos tan ααααααααααα++++====+++.故答案为:18,35-.【点评】本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础题.11.(2018春•通州区期末)已知(0,)2πα∈,tan 2α=,则cos α=. 【分析】由题意利用同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得cos α的值. 【解答】解:已知(0,)2a π∈,sin 0α∴>,cos 0α>,tan sin 2cos ααα==,22sin cos 1αα+=,则cos α=【点评】本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题. 12.(2017秋•西城区期末)已知函数()sin tan f x x x =.给出下列结论: ①函数()f x 是偶函数; ②函数()f x 在区间(,0)2π-上是增函数;③函数()f x 的最小正周期是2π; ④函数()f x 的图象关于直线x π=对称.其中正确结论的序号是 ①③④ .(写出所有正确结论的序号)【分析】利用函数奇偶性的判定判断①;举例说明②错误;利用周期函数的定义判断③;由()()f x f x ππ-=+判断④.【解答】解:对于()sin tan f x x x =,其定义域为{|2x x k ππ≠+,}k Z ∈,关于原点对称,且()sin()tan()sin tan f x x x x x -=--=,∴函数()f x 是偶函数,故①正确;当3x π=-时,3()sin()tan()3332f πππ-=--=,当6x π=-时,()sin()tan()666f πππ-=--36ππ-<-,而()()36f f ππ->-,故②错误;(2)sin(2)tan(2)sin tan f x x x x x πππ+=++=,∴函数()f x 的最小正周期是2π,故③正确;()sin()tan()sin tan f x x x x x πππ-=--=-, ()sin()tan()sin tan f x x x x x πππ+=++=-,()()f x f x ππ∴-=+,即函数()f x 的图象关于直线x π=对称,故④正确.∴正确结论的序号是①③④.故答案为:①③④.【点评】本题考查命题的真假判断与应用,考查三角函数的性质,是中档题.13.(2018•顺义区二模)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,他们的终边关于x 轴对称,若1cos 4α=,则cos()αβ-= 78- . 【分析】由已知求得cos β,进一步求得sin sin αβ的值,展开两角差的余弦即可求得cos()αβ-. 【解答】解:1cos 4α=,且α与角β均以Ox 为始边,他们的终边关于x 轴对称, 1cos 4β∴=, 若α为第一象限角,则β为第四象限角, 若α为第四象限角,则β为第一象限角, 15sin sin 16αβ∴=-, 11157cos()cos cos sin sin 44168αβαβαβ∴-=+=⨯-=-.故答案为:78-.【点评】本题考查三角函数的化简求值,考查两角差的余弦,是基础的计算题. 三.解答题(共2小题)14.(2019•房山区一模)已知函数()f x =.(Ⅰ)求(0)f 的值; (Ⅱ)求函数()f x 的定义域;(Ⅲ)求函数()f x 在(0,)2π上的取值范围.【分析】(Ⅰ)直接在函数解析式中取0x =求解;(Ⅱ)由分式函数的分母不为0即可求得函数定义域;(Ⅲ)把已知函数解析式变形,再由x 的范围求得相位的范围,则函数值域可求. 【解答】解:(Ⅰ)3sin 0cos011(0)12f ++===;(Ⅱ)由cos 0x ≠,得,2x k k Z ππ≠+∈.∴函数的定义域是,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭;(Ⅲ)232sin cos 2cos1()x x x f x +-+=..sin cos 2sin()6x x x π=+=+.(0,)2x π∈,即02x π<<,∴2663x πππ<+<, ∴1sin()126x π<+,得12sin()26x π<+. ∴函数()f x 在(0,)2π上的取值范围为(1,2].【点评】本题考查三角函数的化简求值,考查三角函数中的恒等变换应用,考查sin()y A x ωϕ=+型函数的图象和性质,是中档题.15.(2018秋•海淀区校级期末)求值:tan150cos(210)sin(420)sin1050cos(600)︒-︒-︒︒-︒.【分析】由条件利用诱导公式求得tan15︒、cos210︒、sin 420︒、sin1050︒、cos(600)-︒的值,可得要求式子的值. 【解答】解:由诱导公式可得:tan150tan(18030)tan30︒=︒-︒=-︒=,cos(210)cos210cos(18030)cos30-︒=︒=︒+︒=-︒=, sin(420)sin 420sin(36060)sin 60-︒=-︒=-︒+︒=-︒=,1sin1050sin(336030)sin302︒=⨯︒-︒=-︒=-, 1cos(600)cos600cos(318060)cos602-︒=︒=⨯︒+︒=-︒=-,∴原式3()(3224111()()224-===--.【点评】本题主要考查诱导公式的应用,特殊角的三角函数值,属于基础题.。
高中数学三角函数经典例题及详解高中数学三角函数专题复考试要求:三角函数是一类最典型的周期函数。
本单元的研究可以帮助学生在用锐角三角函数刻画直角三角形中边角关系的基础上,借助单位圆建立一般三角函数的概念,体会引入弧度制的必要性。
同时,我们可以利用几何直观和代数运算的方法研究三角函数的周期性、奇偶性(对称性)、单调性和最大(小)值等性质;探索和研究三角函数之间的一些恒等关系;并且利用三角函数构建数学模型,解决实际问题。
内容包括:角与弧度、三角函数概念和性质、同角三角函数的基本关系式、三角恒等变换、三角函数应用。
1)角与弧度了解任意角的概念和弧度制,能进行弧度与角度的互化,体会引入弧度制的必要性。
2)三角函数概念和性质①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,能画出这些三角函数的图象,了解三角函数的周期性、奇偶性、最大(小)值。
借助单位圆的对称性,利用定义推导出诱导公式(α±π,α±π的正弦、余弦、正切)。
②借助图象理解正弦函数在[0,2π]上、余弦函数在[0,2π]上、正切函数在(-π/2,π/2)上的性质。
③结合具体实例,了解y=Asin(ωx+φ)的实际意义;能借助图象理解参数ω,φ,A的意义,了解参数的变化对函数图象的影响。
3)同角三角函数的基本关系式理解同角三角函数的基本关系式sinx+cosx=4)三角恒等变换①经历推导两角差余弦公式的过程,知道两角差余弦公式的意义。
②能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。
③能运用上述公式进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要求记忆)。
5)三角函数应用会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型。
经典题型:一、求值化简型这类问题常常用到的公式包括三角函数定义、同角三角函数关系式、诱导公式、和差倍公式、降幂公式、辅助角公式。
第5讲 三角恒等变换[考情分析] 1.三角恒等变换的求值、化简是命题的热点,利用三角恒等变换作为工具,将三角函数与解三角形相结合求解最值范围问题.2.单独考查可出现在选择题、填空题中,综合考查以解答题为主,中等难度.考点一、两角和、差的正、余弦公式 二倍角公式(记准)()sin()sin cos cos sin ()S αβαβαβαβ±±=±; sin 22sin cos ααα=2()S α;()cos()cos cos sin sin ()C αβαβαβαβ±±=; ααα22sin cos 2cos -=2()C α;()tan tan tan()()1tan tan T αβαβαβαβ±±±=-;22tan tan 21tan ααα=-2()T α。
考点二、二倍角公式的推论(熟悉会推导即可)降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=; 22cos 1cos 2αα+=.万能公式:ααα2tan 1tan 22sin +=;ααα22tan 1tan 12cos +-=.微点提示:1.三角求值“三大类型”:“给角求值”“给值求值”“给值求角”. 2.三角恒等变换“四大策略”(1)常值代换:常用到“1”的代换,1=sin 2θ+cos 2θ=tan 45°等.(2)项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等. (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化.类型一:正用公式 例1-1.若,则( ) (A )(B ) (C ) (D )解析:因为3cos()45πα-=,所以2cos 2()2cos ()144ππαα-=--,即237cos(2)sin 22()12525παα-==⨯-=-,即7sin 225α=-. 【点评】对已知条件变形来表示目标式子是处理三角恒等变化的基本思路。
高中数学三角恒等变换与三角函数的化简求值-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第1讲 三角恒等变换与三角函数的化简、求值高考定位 高考对本内容的考查主要有:(1)两角和(差)的正弦、余弦及正切,C 级要求;(2)二倍角的正弦、余弦及正切,B 级要求.应用时要适当选择公式,灵活应用,试题类型可能是填空题,同时在解答题中也是必考题,经常与向量综合考查,构成中档题.真 题 感 悟1.(2017·江苏卷)若tan ⎝ ⎛⎭⎪⎫α-π4=16,则tan α=________.解析 法一 ∵tan ⎝ ⎛⎭⎪⎫α-π4=tan α-tan π41+tan αtan π4=tan α-11+tan α=16, ∴6tan α-6=1+tan α(tan α≠-1),∴tan α=75.法二 tan α=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π4+π4=tan ⎝ ⎛⎭⎪⎫α-π4+tan π41-tan ⎝ ⎛⎭⎪⎫α-π4tan π4=16+11-16×1=75. 答案 752.(2018·江苏卷)已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos 2α的值; (2)求tan(α-β)的值.解(1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α.因为sin2α+cos2α=1,所以cos2α=9 25,因此,cos 2α=2cos2α-1=-7 25.(2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-5 5,所以sin(α+β)=1-cos2(α+β)=255,因此tan(α+β)=-2.因为tan α=43,所以tan 2α=2tan α1-tan2α=-247,因此,tan(α-β)=tan[2α-(α+β)]=tan 2α-tan(α+β)1+tan 2αtan(α+β)=-211.考点整合1.三角函数公式(1)同角关系:sin2α+cos2α=1,sin αcos α=tan α.(2)诱导公式:对于“kπ2±α,k∈Z的三角函数值”与“α角的三角函数值”的关系可按下面口诀记忆:奇变偶不变,符号看象限.(3)两角和与差的正弦、余弦、正切公式:sin(α±β)=sin αcos β±cos αsin β;cos(α±β)=cos αcos β±sin αsin β;tan(α±β)=tan α±tan β1tan αtan β.(4)二倍角公式:sin 2α=2sin αcos α,cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.(5)辅助角公式:a sin x+b cos x=a2+b2sin(x+φ),其中cos φ=aa2+b2,sin φ=ba2+b2.2.公式的变形与应用(1)tan α+tan β=tan(α+β)(1-tan αtan β);tan α-tan β=tan(α-β)(1+tan αtan β).(2)升幂、降幂公式1+cos α=2cos2α2,1-cos α=2sin2α2;sin2α=1-cos 2α2,cos2α=1+cos 2α2.(3)角的拆分与组合2α=(α+β)+(α-β),2β=(α+β)-(α-β);α=(α+β)-β=(α-β)+β;α=⎝⎛⎭⎪⎫π4+α-π4=⎝⎛⎭⎪⎫α-π3+π3等.热点一三角函数式的化简与求值【例1】 (1)(2018·泰州模拟)化简:2cos4x-2cos2x+122tan⎝⎛⎭⎪⎫π4-x sin2⎝⎛⎭⎪⎫π4+x=________.(2)若tan α=2tanπ5,则cos⎝⎛⎭⎪⎫α-3π10sin⎝⎛⎭⎪⎫α-π5=________.解析(1)原式=12(4cos4x-4cos2x+1)2×sin⎝⎛⎭⎪⎫π4-xcos⎝⎛⎭⎪⎫π4-x·cos2⎝⎛⎭⎪⎫π4-x=(2cos2x-1)24sin⎝⎛⎭⎪⎫π4-x cos⎝⎛⎭⎪⎫π4-x=cos22x2sin⎝⎛⎭⎪⎫π2-2x=cos22x2cos 2x=12cos 2x.(2)cos⎝⎛⎭⎪⎫α-3π10sin⎝⎛⎭⎪⎫α-π5=sin⎝⎛⎭⎪⎫π2+α-3π10sin⎝⎛⎭⎪⎫α-π5=sin⎝⎛⎭⎪⎫α+π5sin⎝⎛⎭⎪⎫α-π5=sin αcosπ5+cos αsinπ5sin αcosπ5-cos αsinπ5=tan αtanπ5+1tan αtanπ5-1=2+12-1=3.答案(1)12cos 2x(2)3探究提高 (1)三角函数式的化简要遵循“三看”原则:一看角,二看名,三看式子结构与特征.(2)三角函数式化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点.【训练1】 (1)(2018·徐州调研)计算:tan 70°cos 10°(3tan 20°-1)=________. (2)若α∈⎝ ⎛⎭⎪⎫π2,π,且3cos 2α=sin ⎝ ⎛⎭⎪⎫π4-α,则sin 2α的值为________.解析 (1)原式=sin 70°cos 70°·cos 10°⎝ ⎛⎭⎪⎫3sin 20°-cos 20°cos 20° =cos 10°·2⎝ ⎛⎭⎪⎫32sin 20°-12cos 20°cos 70°=-2cos 10°sin 10°cos 70°=-sin 20°cos 70°=-1.(2)由cos 2α=sin ⎝ ⎛⎭⎪⎫π2-2α=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-α=2sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α代入原式,得6sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α=sin ⎝ ⎛⎭⎪⎫π4-α,∵α∈⎝ ⎛⎭⎪⎫π2,π,∴π4-α∈⎝ ⎛⎭⎪⎫-3π4,-π4,sin ⎝ ⎛⎭⎪⎫π4-α≠0,∴cos ⎝ ⎛⎭⎪⎫π4-α=16,∴sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1=-1718.答案 (1)-1 (2)-1718 热点二 三角函数的求值(求角)【例2】 (1)(2018·全国Ⅲ卷改编)若sin α=13,则cos 2α=________.(2)(2017·南京、盐城联考)已知α,β为锐角,cos α=17,sin(α+β)=5314,则cos β=________.(3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________. 解析 (1)cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫132=79.(2)∵α为锐角,∴sin α=1-⎝ ⎛⎭⎪⎫172=437.∵α,β∈⎝ ⎛⎭⎪⎫0,π2,∴0<α+β<π.又∵sin(α+β)<sin α,∴α+β>π2,∴cos(α+β)=-11 14.cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-1114×17+5314×437=4998=12.(3)∵tan α=tan[(α-β)+β]=tan(α-β)+tan β1-tan(α-β)tan β=12-171+12×17=13>0,∴0<α<π2.又∵tan 2α=2tan α1-tan2α=2×131-⎝⎛⎭⎪⎫132=34>0,∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.答案(1)79(2)12(3)-3π4探究提高(1)给值求值问题的关键在“变角”,通过角之间的联系寻找转化方法;(2)给值求角问题:先求角的某一三角函数值,再求角的范围确定角.【训练2】(1)(2015·江苏卷)已知tan α=-2,tan(α+β)=17,则tan β的值为________.(2)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于________.解析(1)∵tan α=-2,∴tan(α+β)=tan α+tan β1-tan αtan β=-2+tan β1+2tan β=17,解得tan β=3.(2)∵α,β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010.又sin α=55,∴cos α=255,∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×⎝ ⎛⎭⎪⎫-1010=22. ∴β=π4.答案 (1)3 (2)π4(3)(2018·浙江卷)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝ ⎛⎭⎪⎫-35,-45. ①求sin(α+π)的值;②若角β满足sin(α+β)=513,求cos β的值.解 ①由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45得sin α=-45,所以sin(α+π)=-sin α=45.②由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45得cos α=-35,由sin(α+β)=513得cos(α+β)=±1213.由β=(α+β)-α得cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665. 热点三 三角恒等变换的应用【例3】 (2018·苏州期末)已知函数f (x )=(3cos x +sin x )2-23sin 2x . (1)求函数f (x )的最小值,并写出f (x )取得最小值时自变量x 的取值集合; (2)若x ∈⎣⎢⎡⎦⎥⎤-π2,π2,求函数f (x )的单调递增区间.解 (1)因为f (x )=3cos 2x +23cos x sin x +sin 2x -23sin 2x =32(1+cos 2x )+3sin 2x +12(1-cos 2x )-23sin 2x =-3sin 2x +cos 2x +2=2sin ⎝ ⎛⎭⎪⎫2x +5π6+2.所以函数f (x )的最小值是0,此时2x +5π6=2k π+3π2,k ∈Z ,即x 的取值集合为⎩⎨⎧⎭⎬⎫xx =k π+π3,k ∈Z .(2)当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,2x +5π6∈⎣⎢⎡⎦⎥⎤-π6,11π6,令-π6≤2x +5π6≤π2或3π2≤2x +5π6≤11π6,得-π2≤x ≤-π6或π3≤x ≤π2. 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π2,-π6和⎣⎢⎡⎦⎥⎤π3,π2.探究提高 三角恒等变换的应用策略(1)进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形用.(2)把形如y =a sin x +b cos x 化为y =a 2+b 2sin(x +φ),可进一步研究函数的周期、单调性、最值与对称性等性质.【训练3】 已知函数f (x )=4tan x sin ⎝ ⎛⎭⎪⎫π2-x cos ⎝ ⎛⎭⎪⎫x -π3- 3.(1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解(1)f (x )的定义域为⎩⎨⎧⎭⎬⎫xx ≠π2+k π,k ∈Z . f (x )=4tan x cos x cos ⎝ ⎛⎭⎪⎫x -π3-3=4sin x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x -3=2sin x cos x +23sin 2x - 3=sin 2x +3(1-cos 2x )-3=sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π.(2)由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,得-π12+k π≤x ≤5π12+k π,k ∈Z . 由π2+2k π≤2x -π3≤3π2+2k π,k ∈Z ,得5π12+k π≤x ≤11π12+k π,k ∈Z .所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.1.对于三角函数的求值,需关注:(1)寻求角与角关系的特殊性,化非特殊角为特殊角,熟练准确地应用公式;(2)注意切化弦、异角化同角、异名化同名、角的变换等常规技巧的运用;(3)对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,对于很难入手的问题,可利用分析法.2.对于三角恒等变换的应用问题,可以运用化归思想和整体代换思想解决问题.讨论形如y=a sin ωx+b cos ωx函数的性质,可先化为y=a2+b2sin(ωx+φ)型的函数.一、填空题1.计算:tan 12°-3(4cos212°-2)sin 12°=________.解析原式=sin 12°-3cos 12°2sin 12°cos 12°cos 24°=2sin(12°-60°)12sin 48°=-2sin 48°12sin 48°=-4.答案-42.(2018·全国Ⅰ卷改编)已知函数f(x)=2cos2x-sin2x+2,则f(x)的最大值为________.解析易知f(x)=2cos2x-sin2x+2=3cos2x+1=3cos 2x+12+1=32cos 2x+52,当x=kπ(k∈Z)时,f(x)取得最大值,最大值为4.答案 43.(2018·南京、盐城模拟)已知锐角α,β满足(tan α-1)·(tan β-1)=2,则α+β的值为________.解析因为(tan α-1)(tan β-1)=2,所以tan αtan β-(tan α+tan β)+1=2,即tan α+tan β1-tan αtan β=-1,所以tan(α+β)=-1.又α,β为锐角,所以α+β∈(0,π),即α+β=3 4π.答案3π44.(2017·苏、锡、常、镇调研)已知α是第二象限角,且sin α=310,tan(α+β)=-2,则tan β=________.解析 由α是第二象限角,且sin α=310,则cos α=-1-sin 2α=-110, 则tan α=sin αcos α=-3,所以tan β=tan[(α+β)-α]=-2+31+6=17.答案 175.(2018·常州期末)满足等式cos 2x -1=3cos x (x ∈[0,π])的x 的值为________. 解析 由题意可得,2cos 2x -3cos x -2=0,解得cos x =-12或cos x =2(舍去).又x ∈[0,π],故x =2π3. 答案 2π36.(2018·全国Ⅱ卷)已知tan ⎝ ⎛⎭⎪⎫α-5π4=15,则tan α=________. 解析 法一 因为tan ⎝ ⎛⎭⎪⎫α-5π4=15,所以tan α-tan 5π41+tan αtan 5π4=15,即tan α-11+tan α=15,解得tan α=32.法二 因为tan ⎝ ⎛⎭⎪⎫α-5π4=15,所以tan α=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-5π4+5π4=tan ⎝ ⎛⎭⎪⎫α-5π4+tan 5π41-tan ⎝ ⎛⎭⎪⎫α-5π4tan 5π4=15+11-15×1=32. 答案 327.(2012·江苏卷)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.解析 ∵α为锐角且cos ⎝ ⎛⎭⎪⎫α+π6=45,∴α+π6∈⎝ ⎛⎭⎪⎫π6,2π3,∴sin ⎝ ⎛⎭⎪⎫α+π6=35. ∴sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α+π6-π4=sin 2⎝ ⎛⎭⎪⎫α+π6cos π4-cos 2⎝ ⎛⎭⎪⎫α+π6sin π4=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6-22⎣⎢⎡⎦⎥⎤2cos 2⎝ ⎛⎭⎪⎫α+π6-1 =2×35×45-22⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫452-1=12225-7250=17250. 答案 172508.(2016·苏北四市模拟)已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2,则sin 2α=________.解析 cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α=12sin ⎝ ⎛⎭⎪⎫2α+π3=-14, 即sin ⎝ ⎛⎭⎪⎫2α+π3=-12.∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3, ∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32,∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2α+π3-π3 =sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝ ⎛⎭⎪⎫2α+π3sin π3=12. 答案 12二、解答题9.已知tan α=2.(1)求tan ⎝ ⎛⎭⎪⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值. 解 (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1. 10.(2018·北京卷)已知函数f (x )=sin 2x +3sin x cos x .(1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32,求m 的最小值. 解 (1)f (x )=12-12cos 2x +32sin 2x =sin ⎝ ⎛⎭⎪⎫2x -π6+12. 所以f (x )的最小正周期为T =2π2=π.(2)由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6+12.由题意知-π3≤x ≤m ,所以-5π6≤2x -π6≤2m -π6. 要使得f (x )在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32,即sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为1. 所以2m -π6≥π2,即m ≥π3.所以m 的最小值为π3. 11.(2018·南京模拟)在平面直角坐标系xOy 中,锐角α,β的顶点为坐标原点O ,始边为x 轴的正半轴,终边与单位圆O 的交点分别为P ,Q .已知点P 的横坐标为277,点Q 的纵坐标为3314.(1)求cos 2α的值;(2)求2α-β的值.解 (1)由三角函数的定义,得cos α=277.所以cos 2α=2cos 2α-1=17.(2)因为α∈⎝ ⎛⎭⎪⎫0,π2,所以2α∈(0,π).由(1)得cos 2α=17,所以2α∈⎝ ⎛⎭⎪⎫0,π2, 且sin 2α=1-cos 22α=437.由三角函数的定义,得sin β=3314,且β∈⎝ ⎛⎭⎪⎫0,π2,所以cos β=1-sin 2β=1314. 因为sin(2α-β)=sin 2αcos β-cos 2αsin β=437×1314-17×3314=32,且2α-β∈⎝ ⎛⎭⎪⎫-π2,π2,所以2α-β=π3.。