高一生物核酸知识点总结
- 格式:doc
- 大小:19.50 KB
- 文档页数:7
高一生物必修一核酸知识点一、核酸的分类核酸是生物体内最重要的物质之一,它主要分为DNA(脱氧核糖核酸)和RNA(核糖核酸)两类。
二、DNA的结构DNA是双链螺旋结构,由磷酸、脱氧核糖和四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶)组成。
三、RNA的结构与DNA相比,RNA是单链结构,由磷酸、核糖和四种碱基(腺嘌呤、鸟嘌呤、尿嘧啶和胞嘧啶)组成。
四、核酸的功能1. 遗传信息的传递DNA是所有生物体遗传信息的载体,通过DNA复制和转录,能准确地传递遗传信息。
2. 蛋白质的合成DNA通过转录生成RNA,而RNA则参与到蛋白质的合成过程中。
RNA具有多种类型,如mRNA、tRNA和rRNA等。
3. 能量转换和储存核酸在生物体的新陈代谢中起着重要的作用,能够转换和储存能量。
例如,ATP(三磷酸腺苷)作为一种常见的核酸,能够释放出能量供细胞使用。
五、核酸的作用1. 遗传信息的稳定传递通过DNA的复制和维修,确保了遗传信息在后代之间稳定、准确地传递。
2. 蛋白质合成的调控基因通过转录生成mRNA,mRNA再通过翻译合成具体的蛋白质,从而实现对生物体结构和功能的调控。
3. 细胞内代谢的调节RNA还能参与细胞内多种生物化学反应的调控和催化。
六、核酸的研究和应用1. 基因工程通过对核酸的研究和操作,可以实现对基因的精确调控和改造,进而开展基因工程的相关应用。
2. 药物研发核酸作为一种重要的靶标,对于药物研发起着关键的作用。
通过针对核酸的特定作用机制,可以开发出有效的药物。
3. 遗传疾病的诊断与治疗核酸缺陷或突变可能导致某些遗传疾病的产生。
通过对核酸进行检测和分析,可以对遗传疾病进行准确的诊断和治疗。
七、总结核酸作为生物体中重要的分子之一,在遗传信息传递、蛋白质合成、能量转换和储存以及细胞内代谢调节等方面起着重要的作用。
通过对核酸的研究和应用,能够推动基因工程、药物研发以及遗传疾病的诊疗等领域的发展。
深入理解核酸的结构和功能,对于学生们学习生物学知识、掌握分子遗传学的基本概念具有重要意义。
高一必修一生物核酸知识点生物核酸是生物体内重要的分子之一,其作为遗传信息的存储和传递载体,在细胞的生命活动中起着重要的作用。
本文将为大家介绍高一必修一生物核酸的基本知识点。
一、核酸的基本结构生物体内的核酸可分为两类,即脱氧核糖核酸(DNA)和核糖核酸(RNA)。
它们的基本结构由碱基、糖和磷酸组成。
DNA由脱氧核糖、腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)组成;RNA由核糖、腺嘌呤(A)、尿嘧啶(U)、鸟嘌呤(G)和胞嘧啶(C)组成。
二、核酸的功能1. 遗传信息的存储和传递DNA是细胞遗传信息的主要存储介质,它携带有决定个体性状的遗传信息,并通过复制、转录和翻译等过程传递给后代。
RNA 在转录和翻译过程中参与基因的表达调控,起到传递和翻译DNA 信息的作用。
2. 蛋白质的合成DNA在细胞质中通过转录过程生成RNA,而RNA通过翻译过程合成蛋白质。
蛋白质是生物体内最基本的功能分子,参与构建细胞结构、调节代谢功能等重要生命过程。
三、DNA的结构与复制1. DNA的双螺旋结构DNA呈双螺旋结构,由两根互补的链组成,形成一个稳定的螺旋状。
两条链以氢键连接,腺嘌呤与胸腺嘧啶之间形成两个氢键,鸟嘌呤与胞嘧啶之间形成三个氢键。
2. DNA的复制DNA的复制是指在细胞有丝分裂和无丝分裂过程中,通过DNA聚合酶的作用,在两条DNA链的模板上合成新的DNA链。
复制过程保证了遗传信息的准确传递,是细胞分裂和繁殖的基础。
四、RNA的结构与功能1. RNA的结构RNA的结构可分为成熟的mRNA、转运的tRNA和核糖体结构的rRNA。
mRNA是由DNA转录而来,携带有蛋白质合成所需的遗传信息。
tRNA将氨基酸输送到翻译过程中的核糖体,参与蛋白质的合成。
rRNA是核糖体的主要结构组分。
2. RNA的功能RNA参与基因的转录和翻译过程,调控基因的表达。
mRNA将DNA的遗传信息转录为RNA信息,tRNA通过将氨基酸带到翻译机器上,使其按照mRNA信息合成蛋白质。
高一生物核酸知识点总结高一生物核酸知识点一一、核酸的种类:脱氧核糖核酸(DNA)和核糖核酸(RNA)二、核酸:是细胞内携带遗传信息的物质,对于生物的遗传、变异和蛋白质的合成具有重要作用.三、组成核酸的基本单位是:核苷酸,是由一分子磷酸、一分子五碳糖(DNA为脱氧核糖、RNA为核糖)和一分子含氮碱基组成;组成DNA的核苷酸叫做脱氧核苷酸,组成RNA的核苷酸叫做核糖核苷酸.四、DNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、胸腺嘧啶(T)RNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、尿嘧啶(U)五、核酸的分布:真核细胞的DNA主要分布在细胞核中;线粒体、叶绿体内也含有少量的DNA;RNA主要分布在细胞质中.高一生物核酸知识点二1、核酸的由许多核苷酸聚合而成的生物大分子化合物,为生命的最基本物质之一。
最早由米歇尔于1868年在脓细胞中发现和分离出来。
核酸广泛存在于所有动物、植物细胞、微生物内、生物体内核酸常与蛋白质结合核蛋白。
不同的核酸,其化学组成、核苷酸排列顺序等不同。
根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA。
DNA是储存、复制和遗传信息的主要物质基础,RNA在蛋白质牲合成过程中起着重要作用,其中转移核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。
核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长、遗传、变异等一系列重大生命现象中起决定性的作用。
核酸在应用方面有极重要的作用,现已发现近2000种遗传性疾病都和DNA结构有关.如人类镰刀形红血细胞贫血症是由于患者的血红蛋白分子中一个氨基酸的遗传密码发生了改变,白化病毒者则是DNA分子上缺乏产生促黑色素生成的酷氨酸酶的基因所致。
肿瘤的发生、病毒的感染、射线对机体的作用等都与核酸有关。
高一生物必修一知识点核酸高一生物必修一知识点:核酸核酸是生物体中一类巨大的分子,它在细胞的遗传信息传递、遗传性状的表达以及蛋白质的合成中扮演着重要的角色。
核酸由核苷酸组成,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)两种。
一、DNA的结构和功能DNA是由两条链组成的双螺旋结构,每条链都是由磷酸、脱氧核糖和四种碱基(腺嘌呤、鸟嘌呤、胞嘧啶和鸟嘌呤)组成。
其中,腺嘌呤和胞嘧啶之间通过氢键相互配对,形成稳定的碱基对。
碱基对的组合方式决定了遗传信息的传递。
DNA具有储存和传递遗传信息的功能。
在细胞分裂过程中,DNA能够复制自身,并将复制得到的DNA传递给子细胞,确保遗传信息的传承。
此外,DNA还参与了基因的表达调控和蛋白质的合成过程,是生物体遗传性状的决定因素。
二、RNA的结构和功能RNA由磷酸、核糖和四种碱基(腺嘌呤、尿嘧啶、胞嘧啶和鸟嘌呤)组成,与DNA的结构类似,但RNA是单链的。
RNA在细胞内主要分为信使RNA(mRNA)、核糖体RNA(rRNA)和转运RNA(tRNA)三种。
mRNA是由DNA模板转录得到的,它能携带DNA的遗传信息到核糖体,指导蛋白质的合成。
rRNA是核糖体的主要构成成分,参与蛋白质的合成。
tRNA能够将氨基酸与mRNA上的密码子配对,从而将氨基酸按照一定顺序排列,合成特定的多肽链。
三、核酸的重要性核酸在生物体内起着至关重要的作用。
首先,核酸是细胞遗传信息的承载者,能够储存和传递遗传信息,确保后代能够继承父代的遗传特征。
其次,核酸参与生物体的生长、发育和代谢过程,调控基因的表达,控制蛋白质的合成,维持细胞正常的功能和机体的稳态。
此外,核酸还能够作为模板引导药物的设计和合成,具有广泛的应用前景。
总结:核酸是生物体中的重要分子,包括DNA和RNA两种。
DNA 具有双链结构,储存和传递遗传信息,参与基因的表达调控。
RNA是单链结构,参与蛋白质的合成过程。
核酸在细胞的遗传信息传递、遗传性状的表达以及蛋白质的合成中起着重要的作用,是生物体正常功能维持和稳态维护的关键分子。
高一必修生物核酸知识点生物学中,核酸是构成基因的重要分子,对于高一生物学学习来说,掌握核酸的知识点是非常重要的。
本文将对高一必修生物核酸的知识点进行详细介绍,帮助学生更好地理解和掌握相关内容。
1. 核酸的组成核酸分为两种类型:脱氧核酸(DNA)和核糖核酸(RNA)。
它们的组成单位叫做核苷酸。
核苷酸由碱基、糖和磷酸组成。
DNA中的糖是脱氧核糖,而RNA中的糖是核糖。
2. 核酸的碱基核酸的碱基分为两类:嘌呤和嘧啶。
嘌呤碱基包括腺嘌呤(A)和鸟嘌呤(G),嘧啶碱基包括胸腺嘧啶(T)和胞嘧啶(C)(在RNA中胞嘧啶被尿嘧啶(U)取代)。
3. DNA的结构DNA的结构是由双螺旋构成的。
两条螺旋以氢键相连,并呈反向对称。
嘌呤碱基与嘧啶碱基之间形成氢键连接,A与T之间是两个氢键,G与C之间是三个氢键。
这种互补配对使得DNA能够稳定地储存和传递遗传信息。
4. DNA的功能DNA是生命基因的存储库,它包含了一个个基因,通过这些基因来控制生命活动。
DNA的主要功能是遗传信息的传递、复制和表达。
在细胞分裂过程中,DNA会复制自己,确保信息的传递不断。
5. RNA的结构和功能RNA是一条单链分子,相比DNA,RNA含有核糖糖分子。
RNA具有多种功能,包括信使RNA(mRNA)、转移RNA (tRNA)和核糖体RNA(rRNA)。
mRNA将DNA的信息转录并带到核糖体,tRNA将氨基酸带到核糖体上,rRNA则组成核糖体的结构。
6. RNA合成RNA合成又称为转录,通过转录过程,DNA的遗传信息被复制到RNA中。
转录由RNA聚合酶催化完成,通过读取DNA上的编码区域,合成相应的RNA分子。
转录是生物体内基因表达的重要过程。
7. DNA复制DNA复制是生命繁殖和细胞分裂的重要步骤。
在DNA复制过程中,DNA解旋酶首先解开两条DNA链,然后DNA聚合酶在每条DNA链上合成新的互补链。
DNA复制保证了每个细胞都能拥有完整的基因组。
新高一生物必修一核酸知识点总结高中生物必修一核酸知识点总结高中生物课程中,核酸是一个重要且复杂的知识点。
核酸是生命的基础,对于了解和研究生物体的遗传和进化具有重要意义。
下面将对高一生物必修一核酸知识点进行总结,帮助同学们更好地理解和掌握这一知识。
一、核酸的组成核酸是由核苷酸组成的大分子,包括DNA和RNA两种。
核苷酸是由一个五碳糖、一个磷酸基团和一个嘌呤碱基或嘧啶碱基组成。
1. DNA:即脱氧核糖核酸,是遗传物质的主要组成部分。
它的五碳糖是脱氧核糖,嘌呤碱基有腺嘌呤(A)和鸟嘌呤(G),嘧啶碱基有胸腺嘧啶(T)和胞嘧啶(C)。
2. RNA:即核糖核酸,参与蛋白质的合成。
它的五碳糖是核糖,嘌呤碱基有腺嘌呤(A)和鸟嘌呤(G),嘧啶碱基有胸腺嘧啶(U)和胞嘧啶(C)。
二、DNA的结构DNA的结构是由两条互补的链以螺旋结构相互缠绕而成的双螺旋结构。
它的重要特点有以下几点:1. 螺旋结构:DNA的结构呈双螺旋,即著名的“双螺旋梯子”结构。
两条链通过碱基间的氢键连接在一起,形成了一个稳定的结构。
2. 互补配对:DNA的两条链通过碱基间的互补配对,A与T之间存在两个氢键连接,C与G之间存在三个氢键连接。
这种互补配对使得DNA的复制过程更加稳定。
3. 基因编码:基因是DNA的一部分,通过DNA中的氨基酸序列编码着各种蛋白质的合成。
DNA的核苷酸序列决定了蛋白质的氨基酸序列,从而决定了生物体的性状。
三、DNA的复制DNA的复制是指在细胞分裂过程中,DNA分子通过复制产生两条完全相同的新的DNA分子的过程。
复制的过程包括以下几个关键步骤:1. 分离:DNA双链被酶分离成两个单链。
2. 合成:以已有的单链为模板,通过核苷酸的互补配对原则,合成新的DNA链。
这个过程由DNA聚合酶酶完成。
3. 连接:新合成的DNA链与已有的DNA链连接在一起,形成两个新的DNA双链。
四、RNA的类型和功能RNA是包括mRNA、rRNA和tRNA在内的多种类型的核糖核酸。
高一上册核酸的知识点在高一生物课程中,我们学习了许多关于生命科学的知识,其中一个重要的内容就是核酸。
核酸是生物体中的一个重要分子,具有多种重要功能,对于我们了解生命起着至关重要的作用。
在本文中,我们将深入探讨核酸的知识点,包括其结构、功能以及与生物体的联系。
一、核酸的结构核酸分为DNA(脱氧核糖核酸)和RNA(核糖核酸)两种类型。
DNA是细胞遗传信息的主要携带者,而RNA在遗传信息的转录和翻译过程中发挥着重要作用。
1. DNA的结构DNA是由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)组成的双螺旋结构。
这些碱基通过氢键相互结合,形成了DNA分子的梯状结构。
这种特殊的结构使得DNA具有较高的稳定性和复制能力,在生物体内起着重要的作用。
2. RNA的结构RNA的结构与DNA有所不同,它是由碱基、糖和磷酸组成的单链分子。
在RNA中,胸腺嘧啶被尿嘧啶取代。
此外,RNA还包括信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA (rRNA)等不同类型。
二、核酸的功能核酸作为生物体中的重要分子,具有多种功能。
1. 遗传信息的传递核酸是细胞中遗传信息的携带者。
在这个过程中,DNA将体细胞中的遗传信息传递给下一代。
通过DNA的复制、转录和翻译过程,细胞能够生成RNA,并最终合成蛋白质,实现遗传信息的传递。
2. 蛋白质合成的调控在细胞中,RNA通过转录和翻译过程参与了蛋白质的合成调控。
mRNA在细胞核中被转录为RNA分子,然后通过核孔进入细胞质。
在细胞质中,tRNA和rRNA协同作用,配对并合成蛋白质。
这个过程中,RNA起到了重要的媒介和调控作用。
3. 免疫反应和防御机制核酸还参与了免疫反应和防御机制。
RNA糖核酸复合体(RNP)可以被免疫系统识别为自身或外来的抗原,从而引发相应的免疫反应。
这种机制在抗病毒、抗细菌和免疫调节中起着重要的作用。
三、核酸与生物体的联系核酸作为生物体的重要组成部分,与生物体的发育、功能和适应性密切相关。
高一生物必修一核酸的知识点核酸的知识点核酸是生物体内重要的生物大分子之一,由核苷酸组成。
在生物体内,核酸起着储存和传递基因信息的重要作用。
本文将介绍高一生物必修一中所学的核酸的知识点。
一、核酸的组成核酸由核苷酸组成,每个核苷酸由一个碱基、一个五碳糖和一个磷酸基团组成。
碱基可以分为嘌呤和嘧啶两类,其中嘌呤包括腺嘌呤(A)和鸟嘌呤(G),嘧啶包括胞嘧啶(C)和胸腺嘧啶(T)。
在RNA中,胸腺嘧啶被尿嘧啶(U)替代。
二、DNA和RNA的结构差异DNA(脱氧核糖核酸)和RNA(核糖核酸)是两种常见的核酸。
它们的结构有以下差异:1. 五碳糖:DNA中的糖是脱氧核糖,而RNA中的糖是核糖。
2. 碱基:DNA中的碱基有腺嘌呤、鸟嘌呤、胞嘧啶和胸腺嘧啶,而RNA中的碱基有腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶。
3. 双链和单链:DNA是双链结构,由两条互补的链以螺旋形式缠绕在一起,RNA是单链结构。
三、DNA的结构DNA的结构是由Watson和Crick提出的双螺旋结构模型。
该结构由两条互补的链以螺旋形式缠绕在一起,形成了一个类似于梯子的结构。
两条链通过碱基间的氢键相互连接,腺嘌呤与胸腺嘧啶之间形成两个氢键,鸟嘌呤与胞嘧啶之间形成三个氢键。
这种互补配对保证了DNA的复制的准确性。
四、DNA的功能1. 储存遗传信息:DNA是生物体内遗传信息的主要储存形式,通过碱基序列的不同组合,存储了生物体遗传信息的蓝图。
2. 传递遗传信息:DNA能够通过复制自我复制过程,传递遗传信息给下一代。
五、RNA的种类和功能RNA包括mRNA、tRNA、rRNA等多种类型,它们在细胞内发挥不同的功能。
1. mRNA(信使RNA):mRNA是由DNA转录得到的,在蛋白质合成过程中传递遗传信息,决定了蛋白质的氨基酸序列。
2. tRNA(转运RNA):tRNA能够将氨基酸与mRNA上的密码子匹配,参与蛋白质的合成过程。
3. rRNA(核糖体RNA):rRNA是核糖体的主要组成部分,参与蛋白质的合成过程。
千里之行,始于足下。
高一生物必修一知识点核酸核酸是生物体内一种重要的生物大分子,是传递、复制和控制遗传信息的基础。
核酸主要由核苷酸组成,是由多个核苷酸单元通过磷酸二酯键连接而成的。
核酸分为DNA(脱氧核糖核酸)和RNA(核糖核酸)两种。
下面将从核酸的结构、功能及复制等方面详细介绍核酸的知识点。
一、核酸的结构1.核苷酸的组成与结构:核苷酸是核酸的组成单元,由一个五碳糖(脱氧核糖或核糖)、一个含氮碱基和一个磷酸基团组成。
2.核酸的结构:DNA的结构是双螺旋结构,由两股互补的链以螺旋形状排列,两条链通过碱基对之间的氢键连接在一起。
RNA的结构通常是单链状。
二、核酸的功能1.储存遗传信息:核酸是细胞内遗传信息的主要储存和传递分子。
DNA携带着生物体遗传信息的全部,通过DNA复制和RNA转录传递给下一代。
2.指导蛋白质合成:DNA通过RNA转录来合成RNA分子,其中包括mRNA(信使RNA)、rRNA (核糖体RNA)和tRNA(转移RNA)。
mRNA带着DNA的信息转移到核糖体,指导蛋白质的合成。
3.调控基因表达:一些特定的RNA分子能干扰基因或调节基因的表达,参与生物体发育、分化和生理代谢等过程。
三、核酸的复制第1页/共2页锲而不舍,金石可镂。
DNA的复制是细胞分裂的前提和基础,是生命物质的自我复制。
DNA的复制遵循半保留复制规律,即一个DNA分子在复制过程中产生两个完全相同的DNA分子,并且每个新的DNA分子包含一条模板链和一个新合成的链。
1.复制酶与复制起始点:DNA复制过程中的复制酶主要有DNA聚合酶和DNA连接酶,它们在复制起始点上起到关键作用。
2.复制过程:DNA复制可分为三个主要步骤:解旋、复制和连接。
解旋过程是由解旋酶催化DNA两条链的分离,形成复制起始点,为DNA复制提供模板。
复制过程中,DNA聚合酶沿着模板链合成新链,每个核苷酸由它的三个基本组件(脱氧核糖、碱基、磷酸)组成。
连接过程由DNA连接酶完成,将新合成的DNA片段粘贴在一起。
高一生物必修核酸知识点核酸是生物体中重要的生物大分子,由核苷酸单元连接而成。
它是存储和传递遗传信息的重要物质,对于生命的维持和发展起着关键作用。
核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA),它们在结构和功能上存在一些差异。
本文将重点介绍高一生物必修的核酸知识点。
1. DNA的结构DNA是双链螺旋结构,由四种不同的核苷酸单元组成,分别是脱氧腺苷酸(A)、脱氧胞苷酸(C)、脱氧鸟苷酸(G)和脱氧胸腺苷酸(T)。
它们通过氢键连接在一起,形成DNA的结构。
DNA的两条链以互补配对的方式相互连接,A与T之间有两个氢键连接,G与C之间有三个氢键连接。
这种互补配对使得DNA能够通过复制过程精确地传递遗传信息。
2. DNA的复制DNA复制是细胞分裂过程中非常重要的一步。
在复制过程中,DNA的两条链被解开,然后通过互补配对规则,每一条单链上的核苷酸被复制成新的链。
复制过程由DNA聚合酶酶促进行,它能识别模板链上的碱基序列,并将合适的核苷酸添加到新链上。
这样,原有的DNA分子就能够复制成两个完全相同的DNA分子。
3. RNA的结构和功能与DNA不同,RNA是单链结构,由脱氧核糖核苷酸单元组成。
RNA有多种类型,包括信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA(rRNA),它们在维持细胞正常功能中发挥重要作用。
mRNA是信息分子,能够将DNA中的遗传信息转录成RNA分子,然后进入细胞质中参与蛋白质合成。
tRNA是转运分子,它能够将氨基酸送到mRNA上,参与蛋白质的翻译过程。
rRNA是核糖体的组成部分,是蛋白质合成的场所。
4. DNA的转录与翻译DNA转录是指将DNA信息转录成mRNA分子的过程。
在细胞核中,RNA聚合酶能够识别DNA模板链上的碱基序列,将合适的核苷酸添加到新合成的mRNA链上。
这样,DNA的信息就被转录成了mRNA,然后通过核孔进入细胞质。
mRNA进入细胞质后,参与蛋白质的合成过程,这个过程称为翻译。
高一生物核酸知识点笔记在生物学中,核酸是一种重要的生物大分子,它是构成生物体遗传信息的重要基础。
这里将介绍高一生物中关于核酸的知识点,包括核酸的结构和功能等方面。
一、核酸的结构核酸由核苷酸组成,每个核苷酸包含一个核糖(或去氧核糖)和一个碱基,以及一个磷酸基团。
而核苷酸通过磷酸基团的相连而形成长链状的结构。
核酸分为两种类型:DNA(脱氧核糖核酸)和RNA(核糖核酸)。
它们的主要区别在于核糖的不同,DNA中的核糖为去氧核糖,而RNA中的核糖为核糖。
此外,核酸中的碱基有四种,分别是腺嘌呤(A)、胸腺嘧啶(T,仅存在于DNA中)、鸟嘌呤(G)和胞嘧啶(C)。
二、DNA的结构与功能DNA是生物体中携带遗传信息的重要分子,它呈现双螺旋结构。
DNA的双螺旋结构由两条互相螺旋缠绕的链构成,链之间通过碱基间的氢键相互连接。
DNA的功能主要有两个方面:1. 复制:DNA能够通过自我复制,在细胞分裂时将遗传信息传递给下一代细胞。
这一过程是由酶的调控下进行的,具有高度的精确性和准确性。
2. 遗传信息的传递和表达:DNA中的遗传信息通过RNA的转录和翻译转化为蛋白质。
转录是指将DNA中的一部分信息复制到RNA分子上,翻译是指将该RNA分子转化为具有特定功能的蛋白质。
三、RNA的结构与功能RNA是一种单链结构,它的碱基序列与DNA相对应,但在RNA中胸腺嘧啶(T)被尿嘧啶(U)替代。
RNA分为三种类型:mRNA(信使RNA)、tRNA(转运RNA)和rRNA(核糖体RNA)。
RNA的功能有以下几个方面:1. mRNA:它将DNA上的基因信息转录成RNA信息,然后通过核糖体的翻译转化为蛋白质。
mRNA在遗传信息的传递和表达过程中起着重要作用。
2. tRNA:它将氨基酸运送到核糖体上,并将其顺序性地组装成链状的蛋白质。
tRNA是富含特殊结构和功能的RNA分子。
3. rRNA:它是核糖体的主要组成成分,参与蛋白质的合成过程。
rRNA通过与甲基化酶结合来调控基因表达。
新高一生物知识点总结核酸核酸是生物体内非常重要的生物大分子,它承担着储存、传递遗传信息以及调控生物体内化学反应的功能。
在高一生物学的学习过程中,我们系统地学习了核酸的结构、合成、功能和应用等方面的知识。
下面将对新高一生物知识点总结核酸进行讲解。
一、核酸的结构核酸由核苷酸组成,每个核苷酸都是由磷酸、五碳糖和一个碱基组成。
核酸分为DNA和RNA两种,DNA是双链结构,RNA是单链结构。
1. DNA的结构DNA是由脱氧核苷酸组成的双链螺旋结构,其中脱氧核苷酸的五碳糖是脱氧核糖,碱基有腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)四种。
2. RNA的结构RNA是由核苷酸组成的单链结构,其中核苷酸的五碳糖是核糖,碱基有腺嘌呤(A)、鸟嘌呤(G)、尿嘧啶(U)和胞嘧啶(C)四种。
二、核酸的合成核酸的合成包括DNA的复制和RNA的转录,这些过程是生物体传递遗传信息的关键环节。
1. DNA的复制DNA的复制是指在细胞分裂过程中,DNA分子能够通过一系列酶的作用,将其完整地复制出一份相同的分子。
复制过程中,DNA的双链会被解开,新合成的核苷酸与模板链上的互补碱基进行配对,形成新的DNA双链。
2. RNA的转录RNA的转录是指在细胞生物体中,DNA的信息被转录成RNA 分子的过程。
转录过程中,DNA的双链会被解开,RNA的核苷酸与模板链上的互补碱基进行配对,形成mRNA(信使RNA),然后mRNA会被翻译成蛋白质。
三、核酸的功能核酸作为生物体内转录遗传信息的媒介,具有重要的功能。
1. 储存遗传信息DNA是生物体内储存遗传信息的分子,它能够记录物种、个体的遗传信息,并通过复制过程将遗传信息传递给后代。
2. 传递遗传信息DNA的信息通过RNA的转录和翻译过程,转化为具体的蛋白质信息,并通过蛋白质的合成传递给细胞。
3. 调控生物体内化学反应RNA不仅能传递遗传信息,还可以在细胞内发挥一定的生物催化作用,参与多种化学反应并调控细胞内的代谢过程。
高一生物核酸知识点归纳生物学是研究生命现象的科学,而核酸则是构成生命基本单位的重要分子之一。
本文将对高一生物课程中涉及的核酸知识点进行归纳和阐述,以帮助同学们更好地理解和掌握这一重要内容。
一、核酸的基本概念核酸是一类由核苷酸组成的大分子,它广泛存在于生物体内,具有储存和传递遗传信息的重要功能。
在细胞内,核酸主要分为DNA(脱氧核酸)和RNA(核糖核酸)两种类型。
二、DNA的结构和功能DNA是生物体内的遗传物质,它组成了基因,掌握着生物体遗传信息的传递。
DNA的结构可以简化为双螺旋结构,由脱氧核糖、磷酸基团和四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶)组成。
DNA通过碱基间的氢键连接成稳定的双螺旋结构,形成了DNA的各种功能。
三、DNA的复制过程DNA的复制是指将一个DNA分子复制为两个完全相同的DNA分子的过程。
复制是生物体遗传物质传递的基础,它使得细胞可以在分裂后将遗传信息传递给下一代细胞。
DNA的复制过程包括解旋、合成和连接三个步骤,通过这些步骤实现DNA分子的复制。
四、RNA的结构和功能RNA是一种核糖核酸,与DNA有很多相似之处,但具有一些独特的特征。
在细胞内,RNA起到了信息传递、蛋白质合成和调控基因表达等重要功能。
RNA的结构包括mRNA(信使RNA)、tRNA(转运RNA)和rRNA(核糖体RNA)等不同类型,分别参与到不同的生物过程中。
五、基因的表达和调控基因的表达是指将DNA中的遗传信息转录成RNA,并最终通过翻译产生蛋白质的过程。
基因的表达是生物体发育、生长和代谢等正常生理过程的基础,而基因调控则是控制基因表达的关键。
基因调控通过启动子、转录因子和表观遗传修饰等机制来控制基因的表达级别和时机,从而实现生物体内各种生命过程的正常进行。
六、核酸的突变和遗传变异核酸的突变和遗传变异是生物体进化和适应环境的基础。
核酸的突变是指DNA序列发生突发性的变化,可能导致基因表达的异常和功能的改变。
高一必修一生物知识点核酸核酸是生物体内一类重要的大分子化合物,广泛存在于细胞中,担负着存储、传递和表达遗传信息的功能。
在高中生物教学中,必修一的课程中涵盖了核酸的基本知识点。
本文将就高一必修一生物课中的核酸知识点进行全面的介绍。
一、DNA的结构与功能DNA,全称为脱氧核糖核酸(Deoxyribonucleic Acid),是生物体内存储遗传信息的主要分子。
DNA由核苷酸单元经糖苷键连接形成的双链结构。
核苷酸由糖、磷酸和碱基组成。
DNA双链的结构使得其能够稳定地储存遗传信息,并通过复制来传递给下一代。
DNA具有以下几项重要功能:1. 遗传信息的存储:DNA可以存储生物体的全部遗传信息,包括生物的形态、生理功能和行为特征等。
2. 遗传信息的复制:DNA通过复制过程,能够保证遗传信息的准确传递给下一代。
3. 遗传信息的表达:DNA通过转录和翻译的过程,将遗传信息转化为蛋白质,从而决定生物体的性状。
二、RNA的结构与功能RNA,全称为核糖核酸(Ribonucleic Acid),是DNA的近亲。
RNA由核苷酸单元组成,其中糖是核糖,碱基有腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和尿嘧啶(U)。
与DNA相比,RNA具有单链结构。
RNA的主要功能有以下几个方面:1. 转录:RNA能够在DNA模板上进行转录,合成互补的RNA 分子,是基因表达的重要环节。
2. 翻译:mRNA(信使RNA)通过与核糖体结合,在细胞质内将遗传信息翻译成蛋白质。
3. 同源重组:RNA可以通过同源重组与其他RNA分子发生互作用,产生新的遗传变异。
三、DNA的复制与遗传信息传递DNA的复制是指在细胞分裂过程中,原有的DNA分子通过复制过程生成两个完全相同的DNA分子。
DNA的复制包括解旋、复制和合成三个步骤。
复制的准确性是细胞遗传信息传递的重要保证。
DNA的遗传信息传递是指DNA通过复制、转录和翻译等过程,将遗传信息传递给下一代。
DNA的特定序列编码了特定的遗传信息,通过蛋白质的合成和基因调控,决定了生物的性状和特征。
高一生物核酸知识点总结生物是一门研究生命活动的科学。
在高中生物课程中,核酸是一个重要的知识点。
核酸是由核苷酸构成的生物大分子,在生物体内具有重要的功能和作用。
本文将从核酸的结构、功能和应用等方面进行总结。
一、核酸的结构核酸由核苷酸单元连接而成。
核苷酸包含一个五碳糖(核糖或脱氧核糖)、一磷酸基团和一个氮碱基。
根据五碳糖的不同,核酸可以分为DNA(脱氧核糖核酸)和RNA(核糖核酸)两类。
DNA的结构是双螺旋结构,由两条互补的链组成。
每条链都是以磷酸基团和五碳糖(脱氧核糖)交替连接起来的,而氮碱基则通过氢键连接在两条链之间。
DNA的氮碱基分为腺嘌呤和胸腺嘧啶,它们之间也是互补配对。
RNA的结构也是类似的,但是只有单链,其中的脱氧核糖被核糖所替代。
二、核酸的功能核酸在生物体内具有重要的功能。
DNA是遗传信息的携带者,能够传递父母给子女的遗传物质。
它通过基因的形式存在于细胞核内,并且能指导蛋白质的合成,调控生物体的生长发育和功能。
RNA在转录和翻译过程中起到重要的作用。
在转录过程中,RNA能够把DNA上的遗传信息转录成RNA分子,然后进行后续处理。
在翻译过程中,mRNA能够通过与tRNA的配对,将遗传信息转化为氨基酸序列,进而合成蛋白质。
除了遗传信息的携带和转录翻译以外,核酸还参与了细胞信号传导、调控基因表达和维持细胞结构稳定等生物过程。
核酸也被用于分子生物学实验中的分析和检测。
三、核酸的应用核酸在生物工程和医学领域有着广泛的应用。
生物工程是利用生物技术手段对生物体进行改造和利用的学科,核酸在其中起到了至关重要的作用。
通过基因工程技术,可以将外源基因导入到生物体内,进而改变其性状和产生特定的生物制品,为农业、医药等行业提供了巨大的发展空间。
在医学领域,核酸也被广泛应用于诊断和治疗。
例如,PCR技术可以通过扩增DNA片段来进行疾病的快速检测。
而基因治疗则是通过将正常基因导入病人体内,从而修复或替代缺陷基因,以达到治疗疾病的效果。
高一生物核酸知识点列表核酸是构成生物体的一种重要物质,也是遗传信息的载体。
它包括DNA和RNA两种形式,它们在细胞内起着不可或缺的作用。
下面将讨论一些高一生物中与核酸相关的知识点。
一、DNA的结构DNA的全称为脱氧核糖核酸(Deoxyribonucleic Acid),它由磷酸、糖和四种碱基组成。
DNA的碱基可以分为两类:嘌呤(腺嘌呤和鸟嘌呤)和嘧啶(胸腺嘧啶和胞嘧啶)。
DNA分子呈双螺旋结构,由两条互补的链相互缠绕而成。
两条链通过碱基间的氢键相互连接,形成稳定的双螺旋结构。
二、DNA的功能1. 遗传信息的存储:DNA是传递遗传信息的主要分子。
它携带了组成生物体的遗传基因,决定了个体的生物特性和发育过程。
2. DNA复制:在细胞分裂过程中,DNA能够通过复制自身来传递遗传信息给下一代细胞。
这是生物传代的基础,确保了生物的延续性。
3. 指导蛋白质合成:DNA通过转录过程产生RNA分子,然后RNA 会被翻译成蛋白质。
蛋白质是构成生物体的主要成分,也是维持生物活动的关键分子。
三、RNA的结构和功能RNA的全称为核糖核酸(Ribonucleic Acid),与DNA相比,RNA 的糖分子是核酮糖,缺少了一种碱基——胸腺嘧啶,而多了一种碱基——尿嘧啶。
RNA分子通常是单链的,但也存在某些辅助功能的RNA 具有二级结构。
1. 转录RNA(mRNA):它是由DNA模板上的信息合成的,可将遗传信息从细胞核携带到细胞质中的核糖体。
2. 使能RNA(tRNA):tRNA可以与mRNA上的三个碱基序列(密码子)配对,携带相应的氨基酸到核糖体,参与蛋白质合成。
3. 核糖体RNA(rRNA):rRNA是核糖体的组成部分,具有结构稳定的二级结构,与蛋白质共同组成核糖体颗粒。
4. 小核RNA(snRNA):snRNA参与前体mRNA加工过程,帮助剪接成熟的mRNA形成。
四、基因表达调控生物体通过基因表达控制蛋白质的合成,从而实现对细胞功能和形态的调控。
生物高一知识点核酸核酸是生物体内一类重要的生物大分子,也是生命的基础之一。
它在细胞中扮演着重要的角色,不仅能储存遗传信息,还能参与蛋白质合成等生命活动。
本文将详细介绍核酸的结构和功能。
一、核酸的结构核酸主要由核苷酸组成,每个核酸分子都有一个或多个核苷酸链。
核苷酸由糖、磷酸和一个氮碱基组成。
在DNA(脱氧核酸)和RNA(核糖核酸)中,糖分别是脱氧核糖和核糖,磷酸以磷酸二酯的形式连接在糖的3'端和5'端。
氮碱基可以分为嘧啶和嘌呤两类,DNA中的氮碱基有腺嘌呤(A)、胞嘧啶(T)、鸟嘌呤(G)和胸腺嘧啶(C),RNA中则用胸腺嘧啶的衍生物尿嘧啶(U)替代了胞嘧啶。
二、DNA与RNA的区别DNA和RNA是两种不同的核酸,它们在结构和功能上有所不同。
首先,在糖的部分,DNA中的糖是脱氧核糖,而RNA中的糖是核糖。
其次,在氮碱基的组成上,DNA中有胞嘧啶,而RNA 中有尿嘧啶。
此外,DNA是双链结构,呈右旋螺旋状,而RNA则是单链结构。
最后,在功能上,DNA主要负责遗传信息的储存和传递,而RNA参与了蛋白质的合成过程。
三、DNA的功能1. 遗传信息的储存和传递:DNA是生物体内最重要的遗传物质,它可以将生物体的遗传信息传递给下一代。
通过DNA的复制,每个细胞都能获得完整的遗传信息,并将其传递给后代。
2. 蛋白质合成:DNA通过转录过程生成了RNA,然后RNA通过翻译过程合成了蛋白质。
这是生物体内蛋白质合成的基本过程,也是生命活动中不可或缺的环节。
3. 调控基因表达:DNA上的不同基因区域可以激活或抑制基因的表达,从而控制细胞的功能和特性。
通过DNA上的甲基化、化学修饰等过程,细胞可以对基因进行调控,实现细胞分化和发育等过程。
四、RNA的功能1. 转录:DNA通过转录过程生成了RNA,这是基因表达的第一步。
在细胞核内,RNA通过与DNA互作用,合成与DNA上的编码相对应的RNA序列。
2. 翻译:由转录生成的RNA被转移到细胞质中,参与蛋白质的合成过程。
高一生物核酸知识点总结导读:我根据大家的需要整理了一份关于《高一生物核酸知识点总结》的内容,具体内容:核酸是由许多核苷酸聚合成的生物大分子化合物,为生命的最基本物质之一,广泛存在于所有动物、植物细胞、微生物内、生物体内核酸常与蛋白质结合形成核蛋白。
以下是我为您整理的关于高一生物核酸知识...核酸是由许多核苷酸聚合成的生物大分子化合物,为生命的最基本物质之一,广泛存在于所有动物、植物细胞、微生物内、生物体内核酸常与蛋白质结合形成核蛋白。
以下是我为您整理的关于高一生物核酸知识点的相关资料,希望对您有所帮助。
高一生物核酸知识点一一、核酸的种类:脱氧核糖核酸(DNA)和核糖核酸(RNA)二、核酸:是细胞内携带遗传信息的物质,对于生物的遗传、变异和蛋白质的合成具有重要作用。
三、组成核酸的基本单位是:核苷酸,是由一分子磷酸、一分子五碳糖(DNA为脱氧核糖、RNA为核糖)和一分子含氮碱基组成;组成DNA的核苷酸叫做脱氧核苷酸,组成RNA的核苷酸叫做核糖核苷酸。
四、DNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、胸腺嘧啶(T) RNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、尿嘧啶(U)五、核酸的分布:真核细胞的DNA主要分布在细胞核中;线粒体、叶绿体内也含有少量的DNA;RNA主要分布在细胞质中。
高一生物核酸知识点二1、核酸的简介由许多核苷酸聚合而成的生物大分子化合物,为生命的最基本物质之一。
最早由米歇尔于1868年在脓细胞中发现和分离出来。
核酸广泛存在于所有动物、植物细胞、微生物内、生物体内核酸常与蛋白质结合形成核蛋白。
不同的核酸,其化学组成、核苷酸排列顺序等不同。
根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA。
DNA 是储存、复制和传递遗传信息的主要物质基础,RNA在蛋白质牲合成过程中起着重要作用,其中转移核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。
核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长、遗传、变异等一系列重大生命现象中起决定性的作用。
核酸在实践应用方面有极重要的作用,现已发现近2000种遗传性疾病都和DNA结构有关。
如人类镰刀形红血细胞贫血症是由于患者的血红蛋白分子中一个氨基酸的遗传密码发生了改变,白化病毒者则是DNA分子上缺乏产生促黑色素生成的酷氨酸酶的基因所致。
肿瘤的发生、病毒的感染、射线对机体的作用等都与核酸有关。
70年代以来兴起的遗传工程,使人们可用人工方法改组DNA,从而有可能创造出新型的生物品种。
如应用遗传工程方法已能使大肠杆菌产生胰岛素、干扰素等珍贵的生化药物2、核酸的研究历史核酸是怎么发现的?1869年,F.Miescher从脓细胞中提取到一种富含磷元素的酸性化合物,因存在于细胞核中而将它命名为"核质"(nuclein)。
核酸 (nucleic acids),但这一名词于Miescher的发现20年后才被正式启用,当时已能提取不含蛋白质的核酸制品。
早期的研究仅将核酸看成是细胞中的一般化学成分,没有人注意到它在生物体内有什么功能这样的重要问题。
核酸为什么是遗传物质?1944年,Avery等为了寻找导致细菌转化的原因,他们发现从S 型肺炎球菌中提取的DNA与R型肺炎球菌混合后,能使某些R型菌转化为S型菌,且转化率与DNA纯度呈正相关,若将DNA预先用DNA酶降解,转化就不发生。
结论是:S型菌的DNA将其遗传特性传给了R型菌,DNA就是遗传物质。
从此核酸是遗传物质的重要地位才被确立,人们把对遗传物质的注意力从蛋白质移到了核酸上。
双螺旋的发现核酸研究中划时代的工作是Watson和Crick于1953年创立的DNA 双螺旋结构模型。
模型的提出建立在对DNA下列三方面认识的基础上:1.核酸化学研究中所获得的DNA化学组成及结构单元的知识,特别是Chargaff于1950-1953年发现的DNA化学组成的新事实;DNA中四种碱基的比例关系为A/T=G/C=1;2.X线衍射技术对DNA结晶的研究中所获得的一些原子结构的最新参数;3.遗传学研究所积累的有关遗传信息的生物学属性的知识。
综合这三方面的知识所创立的DNA双螺旋结构模型,不仅阐明了DNA分子的结构特征,而且提出了DNA作为执行生物遗传功能的分子,从亲代到子代的DNA复制 (replication)过程中,遗传信息的传递方式及高度保真性。
其正确性于1958年被Meselson和Stahl的著名实验所证实。
DNA双螺旋结构模型的确立为遗传学进入分子水平奠定了基础,是现代分子生物学的里程碑。
从此核酸研究受到了前所未有的重视。
对核酸研究有突出贡献的科学家沃森Watson, James Dewey美国生物学家克里克Crick, Francis Harry Compton英国生物物理学家3、核酸的分子结构一、核酸的一级结构核酸是由核苷酸聚合而成的生物大分子。
组成DNA的脱氧核糖核苷酸主要是dAMP、dGMP、dCMP和dTMP,组成RNA的核糖核苷酸主要是AMP、GMP、CMP和UMP。
核酸中的核苷酸以3,5磷酸二酯键构成无分支结构的线性分子。
核酸链具有方向性,有两个末端分别是5末端与3末端。
5末端含磷酸基团,3末端含羟基。
核酸链内的前一个核苷酸的3羟基和下一个核苷酸的5磷酸形成3,5磷酸二酯键,故核酸中的核苷酸被称为核苷酸残基。
通常将小于50个核苷酸残基组成的核酸称为寡核苷酸(oligonucleotide),大于50个核苷酸残基称为多核苷酸(polynucleotide)。
二、 DNA的空间结构(一)DNA的二级结构DNA二级结构即双螺旋结构(double helix structure)。
20世纪50年代初Chargaff等人分析多种生物DNA的碱基组成发现的规则。
DNA双螺旋模型的提出不仅揭示了遗传信息稳定传递中DNA半保留复制的机制,而且是分子生物学发展的里程碑。
DNA双螺旋结构特点如下:①两条DNA互补链反向平行。
②由脱氧核糖和磷酸间隔相连而成的亲水骨架在螺旋分子的外侧,而疏水的碱基对则在螺旋分子内部,碱基平面与螺旋轴垂直,螺旋旋转一周正好为10个碱基对,螺距为3.4nm,这样相邻碱基平面间隔为0.34nm并有一个36的夹角。
③DNA双螺旋的表面存在一个大沟(major groove)和一个小沟(minor groove),蛋白质分子通过这两个沟与碱基相识别。
④两条DNA链依靠彼此碱基之间形成的氢键而结合在一起。
根据碱基结构特征,只能形成嘌呤与嘧啶配对,即A与T相配对,形成2个氢键;G与C相配对,形成3个氢键。
因此G与C之间的连接较为稳定。
⑤DNA双螺旋结构比较稳定。
维持这种稳定性主要靠碱基对之间的氢键以及碱基的堆集力(stacking force)。
生理条件下,DNA双螺旋大多以B型形式存在。
右手双螺旋DNA除B型外还有A型、C型、D型、E型。
此外还发现左手双螺旋Z型DNA。
Z型DNA 是1979年Rich等在研究人工合成的CGCGCG的晶体结构时发现的。
Z-DNA 的特点是两条反向平行的多核苷酸互补链组成的螺旋呈锯齿形,其表面只有一条深沟,每旋转一周是12个碱基对。
研究表明在生物体内的DNA分子中确实存在Z-DNA区域,其功能可能与基因表达的调控有关。
DNA二级结构还存在三股螺旋DNA,三股螺旋DNA中通常是一条同型寡核苷酸与寡嘧啶核苷酸-寡嘌呤核苷酸双螺旋的大沟结合,三股螺旋中的第三股可以来自分子间,也可以来自分子内。
三股螺旋DNA存在于基因调控区和其他重要区域,因此具有重要生理意义。
(二) DNA三级结构——超螺旋结构DNA三级结构是指DNA链进一步扭曲盘旋形成超螺旋结构。
生物体内有些DNA是以双链环状DNA形式存在,如有些病毒DNA,某些噬菌体DNA,细菌染色体与细菌中质粒DNA,真核细胞中的线粒体DNA、叶绿体DNA都是环状的。
环状DNA分子可以是共价闭合环,即环上没有缺口,也可以是缺口环,环上有一个或多个缺口。
在DNA双螺旋结构基础上,共价闭合环DNA(covalently close circular DNA)可以进一步扭曲形成超螺旋形(super helical form)。
根据螺旋的方向可分为正超螺旋和负超螺旋。
正超螺旋使双螺旋结构更紧密,双螺旋圈数增加,而负超螺旋可以减少双螺旋的圈数。
几乎所有天然DNA中都存在负超螺旋结构。
(三) DNA的四级结构——DNA与蛋白质形成复合物在真核生物中其基因组DNA要比原核生物大得多,如原核生物大肠杆菌的DNA约为4.7×103kb,而人的基因组DNA约为3×106 kb,因此真核生物基因组DNA通常与蛋白质结合,经过多层次反复折叠,压缩近10 000倍后,以染色体形式存在于平均直径为5m的细胞核中。
线性双螺旋DNA 折叠的第一层次是形成核小体(nucleosome)。
犹如一串念珠, 核小体由直径为11nm×5.5nm的组蛋白核心和盘绕在核心上的DNA构成。
核心由组蛋白H2A、H2B、H3和H4各2分子组成,为八聚体,146 bp长的 DNA以左手螺旋盘绕在组蛋白的核心1.75圈,形成核小体的核心颗粒,各核心颗粒间有一个连接区,约有60 bp双螺旋DNA和1个分子组蛋白H1构成。
平均每个核小体重复单位约占DNA 200 bp。
DNA组装成核小体其长度约缩短7倍。
在此基础上核小体又进一步盘绕折叠,最后形成染色体。