【最新】用坐标表示轴对称
- 格式:ppt
- 大小:815.00 KB
- 文档页数:16
教学设计2024秋季八年级数学上册第十三章画轴对称图形《用坐标表示轴对称》教学目标(核心素养)1.知识与技能:学生能够理解并掌握在平面直角坐标系中,点关于x轴、y轴对称的坐标变化规律。
2.过程与方法:通过观察、分析、讨论和动手实践,培养学生运用坐标表示轴对称图形的能力,提升抽象思维能力和空间想象能力。
3.情感态度与价值观:激发学生对数学美的感受,培养严谨的科学态度和合作学习的精神。
教学重点•掌握点关于x轴、y轴对称的坐标变化规律。
•能够应用这些规律在坐标系中画出轴对称图形。
教学难点•理解并灵活应用坐标变化规律解决实际问题。
•准确判断图形关于坐标轴的对称性并绘制对称图形。
教学资源•多媒体课件(含动态展示轴对称图形变化的动画)•纸质坐标纸•学生分组学习材料•实物模型(可选,如对称的几何图形卡片)教学方法•情境导入法:通过生活实例引入轴对称概念。
•讲授与演示法:结合多媒体展示,清晰讲解坐标变化规律。
•探究学习法:组织小组讨论,引导学生自主发现规律。
•实践操作法:让学生在坐标纸上绘制轴对称图形,加深理解。
教学过程导入新课•情境引入:展示生活中的轴对称现象(如蝴蝶、窗花等),引导学生观察并讨论其对称性,引出轴对称图形的概念。
•提出问题:如何在平面直角坐标系中表示这种对称性?激发学生探索兴趣。
新课教学1.理论讲解•x轴对称:介绍点P(x, y)关于x轴对称的点P'的坐标规律(P'(x, -y)),结合多媒体动画演示变化过程。
•y轴对称:同理,介绍点P(x, y)关于y轴对称的点P''的坐标规律(P''(-x, y)),再次演示。
•对比分析:引导学生比较x轴和y轴对称时坐标变化的异同点。
2.例题解析•例1:给出点A(3, 4),求其关于x轴、y轴的对称点坐标,并画图表示。
•例2:在坐标系中给出几个点,要求学生判断这些点能否构成一个轴对称图形,并指出对称轴。
3.分组探究•分组让学生自行选择或设计一组点,讨论并绘制它们关于x轴或y轴的对称图形,然后在全班展示交流。
《用坐标表示轴对称》说课稿一、教材分析:1.教材的地位和作用:《用坐标表示轴对称》是人教版八年级上册第十二章第二节第三课时的内容。
本节课是在学生学习了轴对称及轴对称变换的概念和特征后进行的。
用坐标表示轴对称体现了轴对称在平面直角坐标系中的应用,从数量关系的角度来刻画轴对称。
通过这节课的学习,让学生感受图形轴对称变换之后的坐标的变化,从而体验数和形的紧密结合,把坐标思想和图形变换的思想联系起来。
为后面函数的知识的学习打下基础。
2.教学重点和难点:根据教材编写的特点:内容直观性较强,知识点较简单容易掌握,及教学任务的要求,结合学生的实际情况我确定这节课的重点和难点如下:重点:(1)掌握在平面直角坐标系中关系x轴,y轴对称的点坐标之间的对应关系。
(2)发展学生的形象思维能力和数形结合的意识。
难点:根据成轴对称的点的坐标的变换规律,在平面直角坐标系中作出已知图形的轴对称图形。
二.教学目标分析:根据《新课程标准》的要求,教材的编写意图和学生的实际情况,我确定这节课的教学目标如下:1.知识目标:在平面直角坐标系中,探索点关于轴,轴对称的点的坐标的规律并运用这一规律作出一个图形关于x轴,y轴对称的图形。
2.能力目标:在探索关于x轴,y轴对称的点的坐标的规律时,发展学生数形结合的思维意识,并在这一过程中,培养学生的语言表达能力、观察能力、分析和归纳能力,养成良好的数学学习研究的习惯。
3.情感目标:在探索规律的过程中,提高学生的求知欲望和强烈的学习好奇心,同时,在用坐标表示轴对称的过程中,形成学生了解数学,应用数学的态度。
三.教法和学法分析1.教学方法:根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,这节课我主要采用了创设情景,直观演示,自主探究,探索发现法,谈论式教学方法。
2.学法:根据学法指导自主性和差异性原则,让学生在“观察一操作一概括一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。
第2课时用坐标表示轴对称1.直角坐标系中关于x轴、y轴对称的点的特征.(重点)2.直角坐标系中关于某条直线对称的点的特征.(难点)一、情境导入十一黄金周,北京吸引了许多游客.一天,小红在天安门广场玩,一位外国友人向小红问西直门的位置,可小红只知道东直门的位置,不过,小红想了想,就准确的告诉了他.你知道为什么吗?结合老北京的地图向学生介绍:老北京城关于中轴线成轴对称设计,东直门、西直门就关于中轴线对称.如果以天安门为原点,分别以长安街和中轴线为x轴和y轴,就可以在这个平面图上建立直角坐标系,各个景点的地理位置就可以用坐标表示出来.提问:这些景点关于坐标轴的对称点你可以找出来吗?这些对称点的坐标与已知点的坐标有什么关系呢?二、合作探究探究点一:用坐标表示轴对称【类型一】求一个点关于坐标轴的对称点的坐标在平面直角坐标系中,与点P(2,3)关于x轴或y轴成轴对称的点是( ) A.(-3,2) B.(-2,-3)C.(-3,-2) D.(-2,3)解析:点P (2,3)关于x 轴对称的点的坐标为(2,-3),关于y 轴对称的点的坐标为(-2,3),故选D.方法总结:关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数.关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变.【类型二】 关于坐标轴对称的点与方程的综合已知点A (2a -b ,5+a ),B (2b -1,-a +b ).(1)若点A 、B 关于x 轴对称,求a 、b 的值;(2)若A 、B 关于y 轴对称,求(4a +b )2016的值.解析:(1)根据关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数可得2a -b =2b -1,5+a -a +b =0,解方程(组)即可;(2)根据关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变可得2a -b +2b -1=0,5+a =-a +b ,解方程(组)即可.解:(1)∵点A 、B 关于x 轴对称,∴2a -b =2b -1,5+a -a +b =0,解得a =-8,b =-5;(2)∵A 、B 关于y 轴对称,∴2a -b +2b -1=0,5+a =-a +b ,解得a =-1,b =3,∴(4a +b )2016=1.方法总结:根据关于x 轴、y 轴对称的点的特征列方程(组)求解.【类型三】 关于坐标轴对称的点与不等式(组)的综合已知点P (a +1,2a -1)关于x 轴的对称点在第一象限,求a 的取值范围.解析:点P (a +1,2a -1)关于x 轴的对称点在第一象限,则点P (a +1,2a -1)在第四象限.解:依题意得P 点在第四象限,∴⎩⎪⎨⎪⎧a +1>0,2a -1<0,解得-1<a <12,即a 的取值范围是-1<a <12. 方法总结:根据点的坐标关于坐标轴对称,判断出对称点所在的象限,由各象限内坐标的符号,列不等式(组)求解.探究点二:作关于坐标轴对称的图形【类型一】 作关于x 轴或y 轴对称的图形在平面直角坐标系中,已知点A (-3,1),B (-1,0),C (-2,-1),请在图中画出△ABC ,并画出与△ABC 关于y 轴对称的图形.解析:作出A ,B ,C 三点关于y 轴的对称点,顺次连接各点即可.解:如图所示,△DEF 是△ABC 关于y 轴对称的图形.方法总结:在坐标系中作出关于坐标轴的对称点,然后顺次连接,此类问题一般比较简单.【类型二】 与对称点有关的综合题如图,在10×10的正方形网格中,每个小方格的边长都是1,四边形ABCD 的四个顶点在格点上.(1)若以点B 为原点,线段BC 所在直线为x 轴建立平面直角坐标系,画出四边形ABCD 关于y 轴对称的四边形A 1B 1C 1D 1;(2)点D 1的坐标是________;(3)求四边形ABCD 的面积.解析:(1)以点B 为原点,线段BC 所在直线为x 轴建立平面直角坐标系,然后作出各点关于y 轴对称的点,顺次连接即可;(2)根据直角坐标系的特点,写出点D 1的坐标;(3)把四边形ABCD 分解为两个直角三角形,求出面积.解:(1)如图所示;(2)点D 1的坐标为(-1,1);(3)四边形ABCD 的面积为12×1×3+12×1×2=52. 方法总结:轴对称变换作图,基本作法是:(1)先确定图形的关键点;(2)利用轴对称性质作出关键点的对称点;(3)按原图形中的方式顺次连接对称点.求多边形的面积可将多边形转化为规则图形的面积的和或差求解.三、板书设计用坐标表示轴对称1.直角坐标系中关于x轴、y轴对称的点的特征.2.直角坐标系中关于某条直线对称的点的特征.从本节课的授课过程来看,灵活运用了多种教学方法,既有教师的讲解,又有讨论,在教师指导下的自学,组织学生活动等.调动了学生学习的积极性,充分发挥了学生的主体作用.课堂拓展了学生的学习空间,给学生充分发表意见的自由度.作者留言:非常感谢!您浏览到此文档。
13.2.2 用坐标表示轴对称数学策略及教法设计本节课通过北京城内天安门、地安门、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣.本堂课共分创设情境;探索新知;巩固新知;拓展延伸;巩固练习;总结归纳六个环节.采用探究、发现式教学法,通过找具有一定代表性的分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,培养学生观察、归纳、分析问题、解决问题的能力,并通过研究线段之间关系发现点的坐标之间关系,使学生体验数形结合思想.并通过一定的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标本节教学设计的特点是以探索活动贯穿整个课堂教学。
包括的有:(1)探索关于坐标轴对称的点的坐标的规律;(2)探索关于平行于坐标轴的直线对称的点的坐标的规律;(3)探究在平面直角坐标系中如何画一个图形关于x轴或y轴的对称图形。
另外坚持做到教师的讲解恰当、到位、有效。
紧紧抓住教材的重点在教学设计上始终突出点的位置与点的坐标之间的一一对应的关系。
教学流程安排教学过程设计对称的点的坐标有什么规律吗? 4、尝试再找几个点,分别画出它们的对称点。
5、小组合作,总结规律 在平面直角坐标系中: 关于x 轴对称的点横坐标相等,纵坐 标互为相反数;关于y 轴对称的点横坐标互为相反数,纵坐标相等. 即:点(x, y )关于x 轴对称的点的坐标为(x, - y);点(x, y )关于y 轴对称的点的坐标为(- x, y)。
学生认真观察,动手实践。
[活动3] 巩固新知1、说出下列各点关于x 轴、y 轴对称的点的坐标: (2,-3);(-1,2);(-6,-5);(0,-1.6); (4,0)。
2、如下图,△ABC 关于x 轴对称,点A 的坐标为(1,-2),说出点B 的坐标。
3、四边形ABCD 的四个顶点的坐标分别为A (-5,1)、B (-2,1)、 C (-2,5) 、D (-5,4),分别作出四边形关于x 轴与y 轴对称的图形。
《用坐标表示轴对称》教学设计【学习内容】《用坐标表示轴对称》是人教版义务教育课程标准实验教科书八年级数学上册第13章第二节第二课时的内容。
【设计背景】初中学生正处于形象思维想抽象思维过渡的阶段,如何引导学生从感性的图形理解提升到理性理解的数学思维是本节课的一个关键所在。
《用坐标表示轴对称》体现了轴对称在平面直角坐标系中的应用,从数量关系的角度刻画轴对称的内容。
教材从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y轴对称的点的坐标的对应关系,并进一步探讨了如何利用这种关系在平面直角坐标系中作出一个图形关于x轴或y轴对称的图形,让学生感受图形轴对称变换之后的坐标的变化,把“形”和“数”紧密的结合在一起,体验数形结合思想。
学生在此之前已经学习了轴对称及轴对称变换的概念和特征,也掌握了平面直角坐标系的相关概念及基本知识点。
所以,本节课通过学生在自主探究中,相互合作,相互交流,掌握坐标平面上一个点关于x轴或y轴对称的点的坐标特征。
在经历知识的生成过程中培养学生的语言表达水平、观察水平、分析和归纳水平,养成良好的学习习惯。
【教学目标】一.知识与技能1.能在平面直角坐标系中画点关于坐标轴的对称点。
2.能表示点关于坐标轴对称的点的坐标,表示关于平行于坐标轴的直线的对称点的坐标。
二.过程与方法在寻找关于坐标轴对称的点的坐标特征的过程中,培养学生的语言表达水平、观察水平、归纳水平,养成良好的自觉探索习惯。
三.情感态度与价值观在找点、描点的过程中,让学生体验数形结合的思想。
【教学重点和难点】1.教学重点:用坐标表示关于坐标轴对称的点的坐标。
2.教学难点:利用对称点的坐标之间的关系,画一个图形关于x轴或y轴的对称图形。
【教学过程】一.创设情境,引入新课课本69页图13.2-3是一张老北京城的示意图,其中东直门和西直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,根据如图所示的东直门的坐标,你能说出西直门的坐标吗?设计意图:通过创设问题情境,激发学生的学习兴趣,开门见山的导入新课。
课题:§13.2.3 用坐标表示轴对称教学目标(一)〔知识与技能〕1.在平面直角坐标系中,探索关于x轴、y轴对称的点的坐标规律.2.利用关于x轴、y轴对称的点的坐标的规律,能作出关于x 轴、y•轴对称的图形.(二)〔过程与方法〕1.在探索关于x轴,y轴对称的点的坐标的规律时,•发展学生数形结合的思维意识.2.在同一坐标系中,•感受图形上点的坐标的变化与图形的轴对称变换之间的关系.(三)〔情感、态度与价值观〕在探索规律的过程中,提高学生的求知欲和强烈的好奇心.教学重点1.理解图形上的点的坐标的变化与图形的轴对称变换之间的关系.2.在用坐标表示轴对称时发展形象思维能力和数形结合的意识.教学难点:用坐标表示轴对称.教学方法:探索发现法.教具准备:坐标纸.学具准备:坐标纸.教学过程一、提出问题,创设情境[活动1]1.如图:(1)观察上图中两个圆脸有什么关系?(2)已知右边图脸右眼的坐标为(4,3),左眼的坐标为(2,3),嘴角两个端点,右端点的坐标为(4,1),左端点的坐标为(2,1).你能根据轴对称的性质写出左边圆脸上左眼,右眼及嘴角两端点的坐标吗?2.在平面直角坐标系中,将坐标为(2,2),(4,2),(4,4),(2,4),(2,2)的点用线段依次连结起来形成一个图案.(1)纵坐标不变,横坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案与原图案相比有何变化?(2)横坐标不变,纵坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案又与原图案相比有何变化?设计意图:通过有趣的轴对称图形的研究,激发学生探究坐标特点的好奇心,是一种形到数的探究,接着又从对坐标实施变化,引起图案的变化,•使学生在坐标的变化中产生对每对关于x轴、y轴对称的点的坐标规律的探究.师生行为:[生]1.(1)观察可发现图中的两个圆脸关于y轴对称.(2)我们可以设右脸中的左眼为A点,右眼为B点,则A(2,3),B(4,3),•嘴角的左右端为D(2,1),C(4,1).根据轴对称的性质,A与A1关于y轴对称,则A1到y轴的距离和A•到y轴的距离相等,A1、A到x轴的距离也相等,∵A1在第二象限,∴A1的坐标为(-2,3).同理,B1、C1、D1的坐标分别为(-4,3)、(-4,1)、(-2,1). 2.师生共同完成[生]在直角坐标系中根据坐标描出四个点并依次连结如图.A(2,2),B(4,2),•C(4,4),D(2,4).(1)纵坐标不变,横坐标乘以-1,得到相应四个点为A1(-2,2),B1(-4,2),C1(-4,4)•,D1(-2,4).顺次连结所得到的图案和原图案比较,不难发现它们是关于y轴对称的.(2)横坐标不变,纵坐标乘以-1,得到相应的四个点为A2(2,-2),B2(4,-2),C2(4,-4),D2(2,-4).顺次连结所得到的图案和原图案比较,可得它们是关于x轴对称的.[师]A(2,2)与A1(-2,2)关于y轴对称,B(4,2)与B1(-4,2)关于y轴对称,C(4,4)与C1(-4,4)关于y轴对称,D(2,4)与D1(-2,4)关于y轴对称.那么关于y轴对称的点具有什么规律呢?A(2,2)与A2(2,-2)关于x轴对称,B(4,2)与B2(4,-2)关于x轴对称,C(4,4)与C2(4,-4)关于x轴对称,D(2,4)与D2(2,-4)关于x轴对称.那么关于x轴对称的点有何规律呢?这节课我们就来研究关于x轴,y轴对称的每对对称点坐标的规律.二、导入新课[活动2]在如图所示的平面坐标系中,画出下列已知点及其对称点,并把坐标填入表格中.看看每对对称点的坐标有怎样的规律.再和同学讨论一下.已知点A(2,-3),B(-1,2),C(-6,-5),D(,1),E(4,0).关于x轴的对称点A′(____,____)B′(_____,______)C•′(•_____,•_____)••D′(____,_____)E′(_____,_____).关于y轴的对称点A″(_____,____)B″(_____,______)C″(•_____,•_____)••D″(____,_____)E″(_____,_____).设计意图:通过学生动手操作,分别作A,B,C,D,E关于x轴、y轴的对称点A′,B′,C′,D′,E′;A″,B″,C″,D″,E″,并且求出它们的坐标,观察,归纳它们坐标之间的关系.师生行为:教师引导,学生自主探索发现关于x轴、y轴对称的每组对称点坐标的规律.[生]如图,我们先在直角坐标系中描出A(2,-3),B(-1,2),C(-6,-5),D(,1),E(4,0)点.我们先在坐标系中作出A点关于x轴的对称点,即过A作x轴的垂线交x轴于M点,•M点的坐标为(2,0).在AM的延长线上截A′M=AM,则A′就是A点关于x轴的对称点,所以A′在第一象限,因为A′M=AM,所以A′的纵坐标为3,因为AA′⊥x 轴,即AA′∥y轴,•所以A′的横坐标为2,即A′的坐标为(2,3).同理可求得B,C,D,E关于x轴的对称点B′,C′,D′,E′的坐标分别为B′(-1,•-2),C′(-6,5),D′(,-1),E′(4,0).列表如下:续表D (,1)ED′(,-1)E[师]观察上表每对对称点坐标之间的关系,你发现什么规律? [生]每对对称点的横坐标相同,纵坐标互为相反数.[师]我们不仿再找几对关于x轴对称的点,写出它们的坐标,还有上面的规律吗?学生亲自动手进一步尝试,在学生认可的情况下明确关于x轴对称的每对对称点的坐标的规律.[师生共析]关于x轴对称的每对对称点的坐标:横坐标相同,纵坐标互为相反数.接着我们再来作出A,B,C,D,E关于y轴的对称点,并求出它们的坐标.[生]同样,我们先作出A关于y轴的对称点A″,并求出A″的坐标.过A作y轴的垂线AN,垂足为N,则N点坐标为(0,-3),然后在AN的延长线上截A″N,使A″N=AN,则A″就是所求的A关于y轴的对称点.A″在第三象限,AA″⊥y轴,•且AN=A″N,所以A″的坐标为(-2,-3),同理可求得B,C,D,E关于y轴的对称点B″,C″,D″,E″的坐标分别为B″(1,2),C″(6,-5),D″(-,1),E″(-4,0).列表如下:续表D(,1)ED″(,1)E[师]观察上表,比较每对关于y轴的对称点的坐标,你能发现什么规律?[生]关于y轴对称的每一对对称点的坐标纵坐标相同,横坐标互为相反数.例2(教材P70)三、随堂练习(教科书P70练习)四、课时小结本节课的主要内容(由学生在教师的引导下共同回忆总结):1.在直角坐标系中,探索了关于x轴,y轴对称的对称点坐标规律.2.利用关于坐标轴对称的点的坐标的特点,作已知图形的轴对称图形,体现了数形结合的数学思想.五、课后作业教科书习题13.2─2、3、4题,第6题、第7题(学有余力的同学做).六、教学反思:本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣.本节课采用探究、发现式教学法,通过找具有一定代表性的分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,培养学生观察、归纳、分析问题、解决问题的能力,并通过研究线段之间关系发现点的坐标之间关系,使学生体验数形结合思想.寻找规律后检验其正确性是科学研究问题的一个必不可少的步骤,“请你想办法检验你所发现的规律的正确性,说说你是如何检验的”,目的在于培养学生形成良好的科学研究方法,并通过一系列的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标.然后通过把对称轴是坐标轴变成了直线x=3和y=-4的变式探究,使学生再次体验数形结合的思想,并拓展到直线x=m和y=n,使学生学会通过寻找线段之间的关系来求点的坐标,形成方法.最后一个练习中的图案匠心独具设计成一只美丽的蝴蝶,能较好地激发学生的学习兴趣,符合八年级学生的心理特征,也是本节课所学内容的一个较好运用.。
坐标表示轴对称数学知识点归纳坐标表示轴对称数学知识点归纳大家要熟知三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
用坐标表示轴对称小结:1.在平面直角坐标系中①关于x轴对称的点横坐标相等,纵坐标互为相反数;②关于y轴对称的点横坐标互为相反数,纵坐标相等;③关于原点对称的点横坐标和纵坐标互为相反数;④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;⑤关于与直线X=C或Y=C对称的坐标点(x, y)关于x轴对称的点的坐标为_ (x, -y)_____.点(x, y)关于y轴对称的点的坐标为___(-x, y)___.知识点总结:上面的内容要求大家掌握三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
用坐标表示轴对称课程名称:用坐标表示轴对称、(新)人教版八年级上册第十二章第二节教学目的和要求:能在直角坐标系中画出关于坐标轴对称的点以及能表示关于对称轴对称的点的坐标,并能熟练掌握其变化规律。
重点和难点:用坐标表示点关于坐标轴对称的点的坐标及其变化规律。
课程类型:新课教学方法与手段:探索发现式教学法教学过程:创设情境,引入新课引言:同学们,我们的首都北京是大家都向往的地方,你们去过北京吗?让我们一起去北京逛一逛,好吗?(多媒体放映北京城,抽象出形象地图)引出问题:老北京的地图中,其中西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,对应于如图所示的东直门的坐标,你能找到西直门的位置,说出西直门的坐标吗?用坐标表示轴对称,可以很方便地确定一个地方的位置,实际上在我们日常生活中应用非常广泛,如工程建设的绘图等.这节课我们就来学习用点表示轴对称.引入课题:用坐标表示轴对称.合作探究,探索新知(1)在直角坐标系中画出下列已知点.A(2,-3);B(-1,2);C(-6,-5);D(3,5);E(4,0);F(0,-3).(2)画出这些点分别关于x轴、y轴对称的点.并填写表格.(3)请你仔细观察点的坐标,你能发现关于坐标轴对称的点的坐标有什么规律吗?(4)请你想办法检验你所发现的规律的正确性说说你是如何检验的.利用刚才发现的点关于x轴、y轴对称的点的坐标规律,我们可以很容易地在平面直角坐标系中作出与一个图形关于x轴、y轴对称的图形.成果展示点关于x轴对称,横坐标不变,纵坐标变为相反数点关于y轴对称,纵坐标不变,横坐标变为相反数巩固新知看谁脑子转得快!(1、2抢答):1.说出下列各点关于X轴、y轴对称的点的坐标:(-2,6),(1,-2),(-1,3),(-4,-2),(1,0)2.如下图,△ABC关于X轴对称,点A的坐标为(1,-2),说出点B的坐标.3.如下图,四边形ABCD的四个顶点的坐标分别为A(-5,1)、B(-2,1)、C(-2,5)、D(-5,4),分别作出与四边形关于x轴和y轴对称的图形.变式探究,提升思维1.分别作出△PQR关于直线x=1(记为m)和直线y=-1(记为n)对称的图形.2.你能发现它们的对应点的坐标之间分别有什么关系吗?3.如果作关于直线x=3(记为m)和直线y=-4(记为n)对称的图形,你能发现对应点的坐标之间的关系吗?巩固练习:1、根据下列点的坐标变化,判断他们进行了怎样的变换。
13.2.2用坐标表示轴对称夯实基础篇一、单选题:1.在平面直角坐标系xOy 中,点()4,2M -关于x 轴对称的点的坐标是()A .()4,2-B .()4,2C .()4,2--D .()4,2-【答案】C【知识点】关于坐标轴对称的点的坐标特征【解析】【解答】解:点()4,2M -关于x 轴对称的点的坐标是:()4,2.--故答案为:C【分析】根据关于x 轴对称的点的坐标变化特征“横坐标不变、纵坐标变为原来的相反数”可求解.2.如图,在平面直角坐标系xOy 中,点P (﹣3,5)关于y 轴的对称点的坐标为()A .(3,5)B .(﹣3,﹣5)C .(3,﹣5)D .(5,﹣3)【答案】A【知识点】关于坐标轴对称的点的坐标特征【解析】【解答】解:由题意,得点P (﹣3,5)关于y 轴的对称点的坐标为(3,5),故选:A .【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.3.平面直角坐标系中,点P (a ,1)与点Q (3,b )关于x 轴对称,则a 的值是()A .1B .-1C .3D .-3【答案】C【知识点】关于坐标轴对称的点的坐标特征【解析】【解答】解: 点P (a ,1)与点Q (3,b )关于x 轴对称,则横坐标相同,即:3a =,故答案为:C .【分析】关于x 轴对称的两个点横坐标不变,从而求出答案4.设点M(x,y)在第二象限,且|x|=2,|y|=3,则点M关于y轴的对称点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣3,2)D.(﹣3,﹣2)【答案】A【知识点】关于坐标轴对称的点的坐标特征【解析】【解答】解:点M(x,y)在第二象限,且|x|=2,|y|=3,得x=﹣2,y=3.M的坐标为(﹣2,3),点M(﹣2,3)关于y轴的对称点的坐标(2,3),故选:A.【分析】根据第二象限内点的坐标特征,可得M点,根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.5.将点A(2,1)向右平移2个单位得到点A′,再将点A′关于x轴反射得到点A″,则点A″的坐标是()A.(2,﹣3)B.(4,﹣1)C.(﹣4,1)D.(0,﹣1)【答案】B【知识点】坐标与图形变化﹣对称【解析】【解答】解:∵将点A(2,1)向右平移2个单位得到点A′,∴点A′的坐标为(4,1),∵将点A′关于x轴反射得到点A″,∴点A″的坐标是(4,﹣1).故选B.【分析】先将点A的横坐标加上2,纵坐标不变得出点A′的坐标,再根据关于x轴对称的点的坐标特征即可求出点A″的坐标.6.将△ABC的三个顶点坐标的横坐标都乘以﹣1,并保持纵坐标不变,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图形沿x轴的负方向平移了1个单位【答案】B【知识点】关于坐标轴对称的点的坐标特征【解析】【解答】解:根据对称的性质,得三个顶点坐标的横坐标都乘以﹣1,并保持纵坐标不变,就是横坐标变成相反数.即所得到的点与原来的点关于y轴对称.故选B.【分析】熟悉:平面直角坐标系中任意一点P(x,y),分别关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y).二、填空题:7.在直角坐标系中,若点A(m+1,2)与点B(3,n-2)关于y轴对称,则m=,n=.【答案】-4;4【知识点】关于坐标轴对称的点的坐标特征【解析】【解答】解:∵点A(m+1,2)与点B(3,n-2)关于y轴对称,∴m+1=-3,n-2=2,解得:m=-4,n=4,故答案为:-4;4.【分析】利用关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标相等,建立关于m、n的方程,就可求出m、n的值。