03运动与骨骼肌机能
- 格式:ppt
- 大小:2.58 MB
- 文档页数:79
运动生理学可出问答题的章节(王瑞元2002年)重点章节1、3、10非重点章节6、8、9、12、13、16(9、12见论述题章节)运动生理学研究任务:在对人体生命活动规律有了基本认识的基础之上,揭示体育运动对人体机能影响的规律及机理、阐明运动训练、体育教学和运动健身过程中的生理学原理、指导不同年龄、性别和训练程度的人群进行科学的运动锻炼、以达到提高运动水平,增强全民体质,延缓衰老,提高工作效率和生活质量的目的。
第一章骨骼肌机能1、神经—肌肉接头的兴奋传递当动作电位延神经纤维传到轴突末梢时,引起轴突末梢处的接头前膜上的钙离子通道开放,在钙离子的作用下,突触小泡将乙酰胆碱释放到接头间隙。
乙酰胆碱通过接头间隙到达接头后膜后和接头后膜上的特异性乙酰胆碱受体结合,因其接头后膜上的钠、钾离子通道开放,使钠离子内流、钾离子外流,结果使接头后膜处的膜电位幅度减小,产生终板电位。
当终板电位达到一定幅度时,可引发肌细胞膜产生动作电位,从而使骨骼肌细胞产生兴奋。
2、肌丝肌丝滑行学说在调节因素的作用下,肌小节中的细肌丝在粗肌丝的带动下向A带中央滑行,相邻的Z线相互靠近,使肌小节长度变短,导致肌原纤维肌纤维以致整块肌肉的收缩。
3肌纤维的兴奋—收缩耦联过程1.兴奋通过横小管系统传到肌细胞内部;横小管是肌细胞膜的延续,动作电位可沿着肌细胞膜传导到横小管,并深入到三联管结构。
2.三联管处钙离子释放并与肌钙蛋白结合引起肌丝滑行;横小管膜上的动作电位可引起与其邻近的终末池膜及肌质网膜上的大量钙离子通道开放,钙离子顺着浓度梯度从肌质网内流入胞浆,肌浆中钙离子浓度升高后,钙离子与肌钙蛋白亚单位C结合时,导致一系列蛋白质的结构发生改变,最终导致肌丝滑行。
3.肌质网对钙再回收:肌质网膜上存在的钙泵,当肌浆中的钙浓度升高时,钙泵将肌浆中的钙逆浓度梯度转运到肌质网中贮存,从而使肌浆钙浓度保持较低水平,由于肌浆中的钙浓度降低,钙与肌钙蛋白亚单位C分离,最终引起肌肉舒张。
骨骼肌形态和机能研究方案
一、研究的提出及意义
每块肌肉都是具有一定形态、结构和功能的器官,有丰富的血管、淋巴分布。
在躯体内,肌肉(骨骼肌)是使骨骼运动的动力器官,全身骨骼肌有600块左右,约占体重的40%左右。
每块肌肉都由肌腹和肌腱组成。
肌腱附着于骨,起固定的作用,无收缩能力,肌腹有收缩能力。
有些肌肉跨过关节附着在组成关节的骨上,肌肉收缩可以促使关节运动。
由于肌肉分布部位的不同(如附着在骨的前面或后面,外侧或内侧等),可以引起关节不同方向的活动。
此外,骨骼肌在体育运动中起到决定性的作用,所以对骨骼肌形态与机能的研究对提高运动成绩和发展体育运动有很大的帮助。
二、研究目的与方法
通过对骨骼肌的解剖和观察了解骨骼肌的基本形态,和运动特点。
通过显微镜下对骨骼肌形态的观察了解肌肉的微观形态和基本结构。
也可在不同的运动状态下,对肌肉进行活体检验,观察不同运动状态下肌肉的机能状态。
1.在解剖实验室里观察解离出的骨骼肌的外观形态。
观察骨骼肌宏观状态下的基本形态和不同骨骼肌的运动特点。
2.将骨骼肌骨骼肌薄片的标本放置在显微镜下观察肌纤维的基本机构。
了解骨骼肌微观状态下的形态。
3.将运动状态下的骨骼肌,安静状态下的骨骼肌,运动后的骨骼肌等不同状态下的骨骼肌进行活检观察,了解骨骼肌在不同状态下的运动特点。
三、预期结果
通过宏观微观的观察我们能了解到骨骼肌的基本形态,观察到不同类型的肌纤维,了解到不同肌肉的工作方式。
在分组观察中能看到肌纤维在不同的运动状态下的变化。
这些观察结果为通过骨骼肌研究提高运动成绩奠定了基础。
第三篇运动生理学绪论(一)运动生理学的研究对象、目的和任务(二)生命的基本特征(三)人体生理机能的调节第一章骨骼肌机能(一)肌肉收缩的原理1 神经肌肉接头的兴奋传递2 肌肉收缩的滑行学说3 肌纤维的兴奋-收缩偶联(二)肌肉收缩的形式1 向心收缩2 等长收缩3 离心收缩(三)骨骼肌不同收缩形式的比较1、力量2、肌肉酸疼(四)肌肉收缩的力学特征1 张力与速度的关系2 肌肉力量与运动速度的关系3 肌肉力量与爆发力1 形态特征2 生理特征3 代谢特征(六)骨骼肌纤维类型与运动的关系1 运动员的肌纤维类型2 运动训练对骨骼肌纤维的影响(七)肌电的研究与应用第二章血液(一)血液概述1 体液2 血液组成3 内环境的概念及生理意义(二)血液的功能1 维持内环境相对稳定的功能2 运输功能3 调节作用4 保护和防御功能(三)渗透压和酸碱度(四)运动对红细胞和血红蛋白的影响1 运动对红细胞的影响2 运动对血红蛋白的影响第三章循环机能(一)心输出量和心脏做功1 心输出量及其影响因素2 心脏泵血功能及其评价(二)血管中的血压和血流1 动脉血压的成因及其影响因素2 静脉回流及其影响因素(三)运动对心血管功能的影响1 肌肉运动时血液循环功能的变化及调节2 运动训练对心血管系统的影响3 脉搏(心率)和血压测定在运动实践中的意义第四章呼吸(一)呼吸运动与肺通气1 呼吸的定义及全过程组成2 呼吸的形式3 肺通气功能的评价4 训练对通气功能的影响(二)气体的交换肺换气和组织换气(三)氧气的血液运输与氧解离曲线的意义1 氧气的血液运输2 氧解离曲线及其生理意义(四)呼吸运动的调节1 化学因素对呼吸的调节2 运动时呼吸的变化和调节(五)运动时的合理呼吸1 减小呼吸道阻力2 提高肺泡通气效率3 呼吸与技术动作相适应4 合理运用憋气第五章物质与能量代谢(一)肌肉活动与物质能量代谢的相关概念1 物质代谢2 能量代谢3 基础代谢率(二)糖代谢与运动能力1 人体的糖储备2 糖的分解供能(无氧酵解和有氧氧化)3 运动与补糖(三)脂肪代谢与运动1 人体的脂肪储备2 脂肪的分解供能3 脂肪代谢与运动减肥(四)蛋白质代谢与运动1 蛋白质在体内的代谢2 关于蛋白质的补充(五)水的代谢运动员脱水及其复水(六)人体运动的能量供应1 与能量代谢有关的几个概念2 人体三个供能系统的特征3 不同运动项目的能量供应4 运动时能耗量的计算及其意义5 体温调节第六章肾脏机能(一)运动性蛋白尿(二)运动性血尿第七章内分泌机能(一)激素及其生理作用1 激素的概念2 激素的生理作用(二)几种主要激素的生物学作用1 糖皮质激素与应激反应2 儿茶酚胺与“应急”反应3 生长激素4 胰岛素5 睾酮(三)兴奋剂及其危害1 兴奋剂与使用兴奋剂2 分类3 危害第八章感觉与神经机能(一)视觉器官1 视调节2 视野(二)听觉与位觉1 前庭器的感受装置与适宜刺激2 前庭反射与前庭机能稳定性(三)本体感觉1 肌梭2 腱梭(四)肌肉运动的神经调控1 牵张反射2 状态反射第九章运动技能(一)运动技能的形成(条件反射学说)1 运动技能的概念和分类2 运动技能的形成过程及其影响因素3 体育教学训练中应注意的问题第十章有氧、无氧工作能力(一)能量代谢有关的几个概念1 需氧量2 摄氧量3 氧亏与运动后过量氧耗(二)有氧工作能力1 最大摄氧量的概念、影响因素、测定方法及在运动实践中的应用2 乳酸阈概念、测定方法及在运动实践中的意义3 提高有氧工作能力的训练方法(二)无氧工作能力1 无氧工作能力的生理基础2 无氧工作能力的测试与评价3 提高无氧工作能力的训练方法第十一章身体素质(一)身体素质概述1 身体素质的概念2 发展身体素质的意义(二)力量素质1 力量素质的概念2 力量素质的生理基础3 功能性肌肉肥大4 力量素质的训练(三)速度素质1 速度素质的概念及分类2 速度素质的生理基础3 速度素质的训练(四)耐力素质1 有氧耐力的生理学基础及其训练方法2 无氧耐力的生理学基础及其训练方法(五)灵敏与柔韧素质1 灵敏素质2 柔韧素质第十二章运动过程中人体机能变化规律(一)赛前状态与准备活动1 赛前状态的概念及对运动能力的影响2 准备活动的生理作用(二)极点与第二次呼吸1 极点2 第二次呼吸3 影响极点与第二次呼吸的因素(三)稳定工作状态1 真稳定工作状态2 假稳定工作状态(四)运动性疲劳1 概念2 产生机制3 判断运动性疲劳的指标及方法(五)恢复过程1 恢复过程的一般规律(超量恢复)2 促进人体功能恢复的措施第十三章特殊环境与运动能力(一)高原环境与运动1 高原环境对运动能力的影响2 高原训练(二)热环境与运动1 预防热危害的原则2 补充体液的原则与方法第十五四章运动机能的生理学评定1 安静状态下运动效果的生理学评定2 定量负荷时运动效果的生理学评定3 极量负荷时运动效果的生理学评定4 运动结束后恢复效果的生理学评定第十五章儿童少年生长发育与体育运动(一)儿童少年的生理特点与运动1 儿童少年生长发育的一般规律1 运动系统2 氧运输系统(二)儿童少年身体素质的发展身体素质的发展规律和发展特点本篇参考书目1 王瑞元主编运动生理学北京:人民体育出版社,20022 邓树勋等主编运动生理学北京:高等教育出版社,20053 王步标等主编运动生理学北京:高等教育出版社,2006(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。
教师资格证:体育《骨骼肌机能》知识点详解来源:凯程教师资格证,跟着徐影考教师。
一、肌纤维的结构肌细胞又称肌纤维,是肌肉基本结构和功能单位;肌纤维是由成百上千条肌原纤维所组成。
肌纤维长度为数微米到数十厘米,成人直径约为60微米;肌纤维外面包有一层结缔组织,称为肌内膜,多个肌纤维排列成束(肌束),多个肌束聚集在一起构成一块肌肉,外面有一层结缔组织膜,称为肌外膜。
肌原纤维排列顺序与肌纤维平行,纵贯肌纤维全长了,直径1-2微米。
在显微镜下全长呈暗带(A带)和明带(I带)有规律的横纹排列,故骨骼肌也称横纹肌。
一般每块肌肉两端是肌腱,无收缩功能;中间称为肌腹,可收缩。
肌肉收缩与舒张是由粗、细两种肌丝按一定的规律排列而成。
暗带由粗肌丝而形成,明带由细肌丝儿而形成。
明带中间有一道纵贯I带称为Z线。
在一个肌小节中,两侧Z线细肌丝在A带中段未相遇的距离,即位H区,此时A区只有粗肌丝,H区外为A带。
当肌肉收缩时,I带变小,反之变长,则A带不变。
二、肌丝的组成蛋白质占肌肉干重的75%-8%,与收缩机制有关的蛋白质的50%-60%。
肌细胞收缩的物质基础是粗、细蛋白质肌丝。
1.粗肌丝粗肌丝主要由肌球蛋白(又称肌凝蛋白)组成。
一条粗肌丝中约有200个肌球蛋白。
2.细肌丝细肌丝主要由机动蛋白(又称肌纤蛋白)、原肌球蛋白(又称原肌凝蛋白)、和肌钙蛋白(又称原宁蛋白)组成。
肌动蛋白单体呈球状,称G-肌动蛋白是构成细肌丝的主干;原肌球蛋白也呈双螺旋状,有阻碍横桥与肌肉蛋白结合,每个原肌球蛋白分子大约掩盖7个活性位点。
肌钙蛋白是含有三个亚单位的复合体,主要导致肌纤维收缩。
三、骨骼肌的特性1.骨骼肌的物理特性骨骼肌在受到外牵拉或负重时可被拉长,这种特性称为伸展性。
而当外力或负重取消后,肌肉的长度又可恢复,这种特性称为弹性。
温度降低,肌浆摩擦变大,肌肉粘滞性增加,伸展性和弹性下降;反之则上升。
2.骨骼肌的生理特性骨骼肌是可兴奋组织,收到刺激后可产生兴奋,这种特性称为兴奋性。
运动生理学第二章骨骼肌机能重点
运动生理学第二章讨论了骨骼肌的机能,在其中一些重点包括:1.肌肉结构:骨骼肌由肌纤维束(肌细胞组成的支架)组成,每个肌纤维束又由多个肌纤维组成。
每个肌纤维由多个肌球蛋白和肌肌纤维组成,每个肌球蛋白又由多个肌肽链组成。
这些结构都对肌肉的收缩和力量产生起着关键作用。
2.肌肉收缩的类型:肌肉收缩可以分为等长收缩、等速收缩和等力收缩,肌肉能够产生的力量和速度都取决于其收缩类型以及肌纤维的结构。
3.肌肉力量的调节:肌肉力量取决于肌肉的激活程度以及神经系统的调节。
神经系统可以通过调节肌肉的激活程度以及肌肉收缩类型来控制肌肉力量和运动产生的效果。
4.肌肉的能量代谢:肌肉通过三种代谢途径来产生能量,包括磷酸肌酸系统、无氧代谢和有氧代谢。
骨骼肌为了支持不同的肌肉活动,可以在这些代谢途径之间灵活切换。
5.肌肉失调和肌肉萎缩:肌肉失调、萎缩和肌无力等问题会限制肌肉力量和运动表现,这些问题可能由于疾病、年龄、长时间的床旁休息以及缺乏运动等原因引起。
治疗这些问题需要多种方法,包括运动训练、物理治疗和药物治疗。
运动生理学一、骨骼肌机能1.肌细胞(又称肌纤维)是肌肉的基本机构和功能单位。
每个肌细胞含有数百至数千条与肌纤维长轴平行排列的肌原纤维。
肌原纤维由粗肌丝(主要由肌球蛋白组成)和细肌丝(主要由肌动蛋白组成),全长都有暗带(A带)和明带(I带)呈交替规则排列,在显微镜下呈现有规律的横纹排列。
2.一切活组织的细胞都存在生物电,细胞处于安静状态,细胞膜内外存在静息电位。
生物电现象是一种普遍存在又十分重要的生命现象。
可兴奋组织细胞在受到刺激发生兴奋时,出现一种称为动作电位的电变化。
利用适当的仪器设备可以将动作电位记录下来。
临床上和运动人体科学研究中广泛应用的心电图、脑电图和肌电图就是所记录的各相应组织细胞动作电位的综合电位变化。
膜电位的产生原理可以用“离子学说”来解释。
离子学说认为:①细胞内外各种离子的浓度分布是不均匀的;②细胞膜对各种离子通透具有选择性。
当细胞处于静息状态时,细胞膜对K+的通透性大,而对Na+的通透性较小,所以就形成在静息时K+向细胞外流动。
使细胞外因增加带正电荷的K+而电位上升。
当促使K+外流的由浓度差形成的向外扩散力与阻止K+外流的电场力相等时,细胞内外的电位差值就稳定在一定水平上,这就是静息电位。
当细胞受到刺激时,膜上的Na+通道被激活而开放,Na+顺浓度梯度瞬间大量内流,细胞内正电荷增加,导致电位急剧上升,负电位从静息电位水平减小到消失进而出现膜内为正膜外为负的电位变化,当膜内正电位所形成的电场力增大到足以对抗Na+内流时,膜电位达到一个新的平衡点,即动作电位。
3.动作电位一旦在细胞膜的某一点产生,就沿着细胞膜向各个方向传播,直到整个细胞膜都产生动作电位为止。
在无髓神经纤维上动作电位是以局部电流的形式进行传导的。
在有髓神经纤维上动作电位是越过每一段带髓鞘的神经纤维呈跳跃式传导的。
4.神经细胞与肌细胞之间的兴奋传递是通过运动终板实现的。
当动作电位沿神经纤维传到轴突末梢时,在Ca2+的作用下,突触小泡将乙酰胆碱释放到接头间隙。
绪论1生命体的生命现象主要表现以下五个方面的基本特征:新陈代谢、兴奋性、应激性。
适应性和生殖.2当运动生理的几个研究热点:【1】最大摄氧量的研究【2】对氧债学说在认识【3】关于个体乳酸阈的研究【4】关于运动性疲劳的研究【5】关于运动对自由基代谢影响的研究【6】运动对骨骼肌收缩蛋白机构和代谢的影响【7】关于肌纤维类型的研究【8】运动对心脏功能影响的研究【9】运动与控制体重【10】运动与免疫机能第一章骨骼肌机能1肌管系统P20(1)肌管系统是指包绕在每一条肌原纤维周围的膜性囊状结构。
(2)肌浆网包绕每个肌小节的中间部分,他们也相互沟通但不与细胞外液沟通(3)肌浆网和终池的作用:通过钙离子的储存释放和再聚焦,触发肌小节的收缩和舒张。
(4)横管系统的作用:当肌细胞膜兴奋时出现的电位变化沿T管膜传入细胞内部。
2粗肌丝主要由肌球蛋白组成,细肌丝主要由肌动蛋白,肌钙蛋白,原肌球蛋白组成3细胞间的兴奋传递一种是神经细胞之间的兴奋传递另一种是神经细胞与肌细胞之间的兴奋传递。
4肌丝滑行学说:当肌肉收缩时,由Z线发出的细肌丝在某种力量的作用下向A带中央滑行,结果相邻的各Z线相互靠近,肌小节的长度变短,从而导致肌原纤维以致整条肌纤维和整块肌肉的缩短。
5肌纤维的兴奋——收缩耦联:通常把以肌细胞膜的电变化为特征的兴奋过程和以肌丝滑行为基础的收缩过程之间的中介过程称为兴奋——收缩耦联。
6骨骼肌的物理特性:伸展性:骨骼肌在受到外力牵拉或负重时可被拉长。
弹性:当外力或负重取消后,肌肉的长度又可恢复。
粘滞性:由于肌浆内各分子之间的相互摩擦作用所产生的。
7骨骼肌的收缩形式:向心收缩、等长收缩、离心收缩、等动收缩8绝对力量:在整体情况下,一个人所能举起的最大的重量成为该人的绝对力量9相对力量:某人的绝对力量被他的体重除。
10运动单位:一个α-运动神经元和受其支配的肌纤维所组成的最基本的肌肉收缩单位称为运动单位。
11肌肉类型的划分:【1】根据收缩速度,可将肌纤维划分为快肌纤维和慢肌纤维。
第二节骨骼肌机能·一、肌纤维的结构肌细胞(又称肌纤维)是肌肉的基本结构和功能单位。
每个肌细胞含有数百至数千条与肌纤维长轴平行排列的肌原纤维。
每一肌纤维包含上千条肌原纤维,每一肌原纤维又分为许多相互连续的节段,即肌小节,肌小节是肌肉实现收缩与舒张的最基本的功能单位。
每一肌小节包括两端比较透明的明带和中间部分的暗带,在暗带中间有一较亮的线带称H带,在H带中央有一条M线,也称中线,肌节和肌节之间以Z线分界。
两条Z线之间的结构是肌纤维最基本的结构和功能单位,称为肌小节。
当肌肉收缩时,暗带的长度不变,仍和收缩前一样,明带的长度即明显减小,当肌肉舒张时,细肌丝沿粗丝向暗带外侧滑动,故明带及H带均加宽。
二、肌丝的分子组成(一)粗肌丝1.粗肌丝的分子组成:由肌球蛋白(又称肌凝蛋白)组成。
分子形态成杆状,有头,肌球蛋白分子排列有规则,分成两束相对排列,分子杆状部朝向M线构成粗丝的主干,头部朝向两侧的Z线,形成等距离的横突,称横桥。
2.横桥的特点:能与ATP结合;具有ATP酶的活性;在一定条件下能与细肌丝上相应的位点结合,从而带动细肌丝向肌节中央滑行。
(二)细肌丝细肌丝的分子组成:肌动蛋白、原肌球蛋白、肌钙蛋白1.肌动蛋白(又称肌纤蛋白):分子单体成圆球型,许多单位象念珠似的连成链,两条链拧成双螺旋结构,成为细肌丝的主体,在肌动蛋白上有能与横桥做可逆结合的位点,直接与肌球蛋白一道实现肌丝的滑行,肌动蛋白和肌球蛋白被称为收缩蛋白。
2.原肌球蛋白(原肌凝蛋白):呈线带型,也相互连接拧成双螺旋结构,和肌动蛋白的双螺旋并行,位于肌动蛋白和粗丝的横桥之间,将肌动蛋白上的位点掩盖,阻止横桥与肌动蛋白结合。
3.肌钙蛋白(原宁蛋白):含有三个亚单位的复合体。
亚单位I、C、T分别对肌动蛋白、原肌球蛋白和Ca2+具有高亲和力。
当细胞内Ca2+浓度增高时,肌钙蛋白亚单位C与Ca2+结合,引起整个肌钙蛋白分子结构改变,进而引起原肌球蛋白分子构变,暴露肌动蛋白分子上的活性位点使肌动蛋白与横桥结合,最终导致肌纤维收缩。
运动与生理机能的关系一、运动对肌肉的影响人体肌肉根据形态,可划分为心肌、平滑肌和骨骼肌三种。
我们平常说的“肌肉男”“肌肉发达”,所指代的都是骨骼肌。
而人体在中年(一般为50岁)之后,骨骼肌会开始以每年4%的速度萎缩,这就是所谓的增龄骨骼肌萎缩。
经研究表明,运动,特别是力量训练/抗阻训练对肌肉有以下三个方面的影响:1. 运动对骨骼肌肌力的提高有明显促进作用2.运动对增龄骨骼肌萎缩(即老年后肌肉萎缩)有明显的延缓作用。
3.运动可提高肌纤维蛋白的基因表达水平,增加肌纤维蛋白的合成能力。
北京体育大学和中国国家体育总局有研究者拿成年组(2月龄)和老年组(20月龄)的小白鼠做过实验。
将2月龄成年小鼠分组,成年鼠对照组(18只),成年鼠运动组(17只)。
将20月龄老龄鼠随机分为两组:老龄鼠对照组(15只),老龄鼠运动组( 2 1只)。
运动组每天游泳1小时,每周6天。
12周后发现,运动后增龄骨骼肌快肌纤维横截面积增加,老龄运动组快肌肌纤维横截面积大于老龄对照组,且具有显著性差异(P <001)。
运动后成年鼠快肌肌纤维横截面积增加,成年对照组快肌肌纤维横截面积与成年运动组相比具有显著性差异(P <001)。
最后的结论是:运动可提高肌纤维蛋白的基因表达水平,来增加肌纤维的蛋白合成能力,增大CAS,从而减轻机体增龄或衰老后肌肉的萎缩程度。
(注1)Neil McCarteny曾经对1 4 2名60-80岁的老人2年力量健身训练的研究发现:上下肢肌力分别增加32%- 9 0%,膝关节伸肌横截面面积增加37土0.9%).每个阶段( 1年) 力量的增加都伴随肌肉肥大现象的发生,通过训练肌肉的耐力也显著增加。
(注2)上面这样的实验全世界已经进行了成千上万次,韦德的健美训练体系也已经在世界流行半个世纪了,其理论基础就是抗阻力力量训练可以破坏肌纤维使肌肉超量恢复,促进肌肉生长。
运动可以增强肌力是常识中的常识了。
二、运动对心肺功能的影响所谓的心肺功能就是人体心脏泵血及肺部吸入氧气的能力,呼吸系统和血液循环系统的能力对心肺功能有较大影响。
骨骼肌纤维的类型与运动的关系(一)运动员的肌纤维类型1、时间短、强度大的运动项目的运动员:快肌纤维百分比大;2、耐力性运动项目的运动员:慢肌纤维百分比大;3、对有氧能力和无氧能力需求均较高的运动员其两类肌纤维分布接近。
(二)训练对肌纤维的影响1、运动训练对肌纤维类型的转变的影响:“遗传学派”,“训练—适应学派”。
2、运动训练对肌纤维的面积和数量的影响:肌纤维增粗,即肥大;肌纤维数目增多。
3、训练对肌纤维代谢特征的影响(1)训练对肌纤维有氧能力的影响;(2)训练对肌纤维无氧能力的影响;(3)训练对肌纤维影响的专一性,即训练所引起的肌纤维的适应性变化。
血液的组成(一)血浆(无形成分):占血液总量50%~60%。
(二)血细胞(有形成分):占血液总量40%~50%。
包括红细胞、白细胞和血小板。
(三)红细胞比容(或称为压积):红细胞占全血容积的百分比,健康成年男子红细胞比容约为40%~50%,女子约为37%~48%四、血液的机能(一)维持内环境的相对稳定(二)运输机能1、运输气体;2、运输营养;3、运输代谢产物;4、运输热量。
(三)参与调节激素随血液循环运送到相应的靶细胞,以调节其机能活动。
(四)防御与保护机能1、白细胞→吞噬分解作用→细胞防御;2、血浆中免疫物质→免疫→化学防御;3、血小板→凝血和止血→保护作用。
心脏泵功能的评定(一)心输出量1、每搏输出量:左心室每次收缩所射出的血量,简称搏出量。
2、射血分数:每搏输出量占心室舒张末期的容积百分比。
3、每分输出量:左心室每分钟射出的血量,通常所说的心输出量是指每分输出量。
4、心指数:空腹、安静状态下每平方米体表面积计算的心输出量。
5、心力贮备:心输出量随机体代谢需要而增长的能力,包括心率贮备和搏出量贮备。
6、心脏作功量(二)影响心输出量的因素1、影响搏出量(1)前负荷(心室充盈量);(2)后负荷(动脉血压);(3)心肌收缩能力。
2、心率的影响在一定的范围内,心率与心输出量呈正变关系。