线性规划问题综合练习题
- 格式:ppt
- 大小:69.50 KB
- 文档页数:5
线性规划练习题含答案(总7页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--线性规划练习题含答案一、选择题A .45- B .1 C .2 D .无法确定【答案】B 【解析】解:如图所示要是目标函数取得最小值的最优解有无穷多个,则令ax+y=0,并平移过点C 24(,)33,(可行域最左侧的点)的边界重合即可。
注意到a>0,只能与AC 重合,所以a=18.已知点集{}22(,)48160A x y x y x y =+--+≤,{}(,)4,B x y y x m m 是常数=≥-+,点集A 所表示的平面区域与点集B 所表示的平面区域的边界的交点为,M N .若点(,4)D m 在点集A 所表示的平面区域内(不在边界上),则△DMN 的面积的最大值是A. 1B. 2C. 22D. 4【答案】B 【解析】解:因为点集A 表示的为圆心为(2,4),半径为2的圆,而点集B 表示为绝对值函数表示的区域则利用数形结合思想,我们可以求解得到。
【题型】选择题9.在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a 的值为( )A . -5 B .1 C . 2 D . 3 【答案】D 【解析】解:当a<0时,不等式表示的平满区域如图中的M ,一个无限的角形区域,面积不可能为2,故只能a 0≥,此时不等式表示的区域为如图中的N ,区域为三角形区域,若这个三角形的面积为2,则AB=4,即点B (1,4),代入y=ax+1,得a=310.已知方程:220x ax b ++= (,)a R b R ∈∈,其一根在区间(0,1)内,另一根在区间(1,2)内,则22(3)z a b =++的取值范围为 A. B. 1(,4)2 C. (1,2) D. (1,4)【答案】B 【解析】解:2(,2)2222f (x)x ax 2b,f (0)0f (1)0,f (3)0b 0,a 2b 10,2a 2b 40a b z (a 3)b -1z 2解:设由图像可知,三者同时成立,求解得到由线性规划知识画出可行域,以为横轴,为纵轴,再以为目标,几何意义为区域内的点到(3,0)的距离的平方,当a=-1,b=0时,z 最大为4,当点到直线a+2b+1=02的距离为,最小为,由题目,不能去边界2=++><>>++<++>=++11.的取值范围是则满足约束条件变量122,012430,++=≤-+≥≥⎪⎩⎪⎨⎧x y s y x x y x y x ( )A .[1,4]B .[2,8]C .[2,10]D .[3,9]【答案】B 【解析】约束条件034120x y x x y ≥≥+-≤⎧⎪⎨⎪⎩表示的区域如图,221112y y s x x ++=++=⨯,11y x ++表示点(x ,y )与点(-1,-1)的斜率,PB 的斜率为最小值,PA 的斜率为最大值,斜率的取值范围是[1,4],112y x ++⨯的取值范围是[2,8]。
线性规划练习题一、选择题1. 线性规划问题中,目标函数的最优值是:A. 最大化B. 最小化C. 既可能最大化也可能最小化D. 不确定2. 下列哪个不是线性规划的基本假设?A. 目标函数是线性的B. 约束条件是线性的C. 约束条件是连续的D. 约束条件是不等式的3. 线性规划问题的图形解法中,可行域的边界条件是:A. 等式B. 不等式C. 既可能是等式也可能是不等式D. 无法确定4. 单纯形法是解决线性规划问题的哪种算法?A. 图形解法B. 枚举法C. 迭代法D. 直接法5. 以下哪个条件不是线性规划问题的基本假设?A. 目标函数是线性的B. 约束条件是线性的C. 目标函数和约束条件都是线性的D. 约束条件是确定的二、填空题6. 线性规划问题中,目标函数的最优解可能位于可行域的_________。
7. 单纯形法中,如果目标函数的系数在所有基变量上的系数都是_________,则该基可行解是最优解。
8. 线性规划问题中,如果目标函数是最大化问题,当可行域是无界的,则最优解是_________。
9. 线性规划问题中,如果约束条件中存在_________,则该问题可能没有可行解。
10. 单纯形法中,如果某一非基变量的系数在目标函数中为_________,则该变量在当前基可行解中为零。
三、简答题11. 解释线性规划问题中,为什么需要引入松弛变量?12. 描述单纯形法的基本步骤,并说明每一步的目的。
13. 线性规划问题中,如果目标函数是最大化问题,当可行域有界时,最优解可能出现在哪些位置?14. 解释线性规划问题中的对偶问题,并说明对偶问题与原问题之间的关系。
15. 什么是退化现象?在单纯形法中如何避免退化现象?四、计算题16. 考虑以下线性规划问题:Max Z = 3x + 4ys.t.2x + y ≤ 10x + 2y ≤ 8x, y ≥ 0求该问题的最优解,并给出最优值。
17. 假设你有一个生产问题,需要决定生产两种产品A和B的数量,以最大化利润。
线性规划综合练习1、不等式3|2|<++m y x 表示的平面区域包含点(0,0)和点(1,1),-则m 的取值范围是( A )A .23m -<<B .06m <<C .36m -<<D .03m <<2、已知平面区域如右图所示,)0(>+=m y mx z 在平面区域内取得最大值的最优解有无数多个,则m 的值为 ( A )A .207B .207-C .21D .不存在3、已知x ,y 满足250,1,0,230.x y x y x y +-≤⎧⎪≥≥⎨⎪+-≥⎩则x y的最大值为. 4、在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A .-5B .1C .2D .3解析:由⎩⎪⎨⎪⎧y =ax +1,x =1得A (1,a +1),由⎩⎪⎨⎪⎧ x =1,x +y -1=0得B (1,0),由⎩⎪⎨⎪⎧y =ax +1,x +y -1=0得C (0,1). ∵△ABC 的面积为2,且a >-1, ∴S △ABC =12|a +1|=2,∴a =3.答案:D5、已知点P (x ,y )满足⎩⎪⎨⎪⎧x -1≤0,2x +3y -5≤0,4x +3y -1≥0,点Q (x ,y )在圆(x +2)2+(y +2)2=1上,则|PQ |的最大值与最小值为( )A .6,3B .6,2C .5,3D .5,2解析:可行域如图阴影部分,设|PQ |=d ,则由图中圆心C (-2,-2)到直线4x +3y -1=0的距离最小,则到点A 距离最大.由⎩⎪⎨⎪⎧2x +3y -5=0,4x +3y -1=0,得A (-2,3). ∴d max =|CA |+1=5+1=6, d min =|-8-6-1|5-1=2. 答案:B6、若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0,且x +y 的最大值为9,则实数m =( )A .-2B .-1C .1D .2解析:由x +y 有最大值可知m >0,画出可行域如图. 目标函数z =x +y ,即y =-x +z .作出直线y =-x ,平移得A (3m +12m -1,52m -1)为最优解,所以当x =3m +12m -1,y =52m -1时,x +y 取最大值9,即3m +12m -1+52m -1=9,解得m =1.答案:C7、已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则OA →·OM →的取值范围是( )A .[-1,0]B .[0,1]C .[0,2]D .[-1,2]解析:画出不等式组表示的平面区域(如图1-2),又OA →·OM →=-x +y ,取目标函数z =-x +y ,即y =x +z ,作斜率为1的一组平行线,图1-2当它经过点C (1,1)时,z 有最小值,即z min =-1+1=0; 当它经过点B (0,2)时,z 有最大值,即z max =-0+2=2.∴ z 的取值范围是[0,2],即OA →·OM →的取值范围是[0,2],故选C. 答案:C8、设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +2≥0,8x -y -4≤0,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为8,则a +b 的最小值为________.解析:约束条件表示的平面区域为如图所示的阴影部分.当直线z =abx +y (a >0,b >0)过直线2x -y +2=0与直线8x -y -4=0的交点(1,4)时,目标函数z =abx +y (a >0,b >0)取得最大值8,即8=ab +4,ab =4,∴a +b ≥2ab =4. 答案:49、实系数方程x 2+ax +2b =0的一根大于0小于1,另一根大于1且小于2,则b -2a -1的取值范围是( ). A.⎝⎛⎭⎫14,1 B.⎝⎛⎭⎫12,1 C.⎝⎛⎭⎫-12,14D.⎝⎛⎭⎫-12,12 解析 令f (x )=x 2+ax +2b ,则⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧b >0,a +2b +1<0,a +b +2>0.画出区域,如图.令k =b -2a -1,则14<k <1.答案 A10、设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +4n (n ∈N *),所表示的平面区域D n 的整点个数为a n ,则12 010(a 2+a 4+…+a 2 010)=________. 解析 直线y =-nx +4n =-n (x -4)恒过(4,0)点, 又∵⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +4n ,∴x 取1、2、3.当x =1时,y ≤3n 即y 可取1,2,3,…,3n , 当x =2时,y ≤2n 即y 可取1,2,3,…,2n , 当x =3时,y ≤n 即y 可取1,2,3,…,n . 故平面区域D n 的整点个数a n =6n . ∵a 2=6×2,a 2 010=6×2 010, ∴12 010(a 2+a 4+…+a 2 010)= 12 010×1 005(2×6+6×2 010)2=3 018. 答案 3 018。
作业1.第7题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.02.第8题下列不满足线性规划问题的典式要求的是()。
A. 线性规划模型必须是标准形B. 基必须是单位矩阵。
C. 基变量可以出现在目标函数中D. 非基变量可以出现在目标函数中。
A.AB.BC.CD.D答案:C标准答案:C您的答案:题目分数:1.0此题得分:0.03.第13题A.AB.BC.CD.D答案:B标准答案:B 您的答案:题目分数:1.0 此题得分:0.04.第14题A.AB.BC.CD.D答案:D标准答案:D 您的答案:题目分数:1.0此题得分:0.05.第15题A.AB.BC.CD.D答案:A标准答案:A 您的答案:题目分数:1.0 此题得分:0.06.第16题A.AB.BC.CD.D答案:B标准答案:B 您的答案:题目分数:1.0 此题得分:0.07.第17题A.AB.BC.CD.D答案:A标准答案:A您的答案:题目分数:1.0此题得分:0.08.第18题若用二阶段法求没有可行解的线性规划问题,则在最后一张单纯表上()。
A. 人工变量的检验数没有正数B. 人工变量的检验数没有负数C. 非基变量中有人工变量D. 基变量中有人工变量A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.09.第19题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.010.第20题若目标函数求极小值的线性规划问题没有最优解,则在最后一张单纯表上()。
A. 对应非基变量的列上的系数没有正数B. 基变量的取值有负数C. 检验数没有负数D. 检验数为负的非基变量对应的列上的系数没有正数A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.011.第21题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0 此题得分:0.012.第26题A.AB.BC.CD.D答案:B标准答案:B您的答案:题目分数:1.0 此题得分:0.013.第28题A.AB.BC.CD.D答案:A标准答案:A您的答案:题目分数:1.0 此题得分:0.014.第33题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0 此题得分:0.015.第34题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0 此题得分:0.016.第35题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.017.第36题A.AB.BC.CD.D答案:A标准答案:A您的答案:题目分数:1.0此题得分:0.018.第46题检验有无迂回时,必须对()进行。
线性规划习题及答案线性规划是运筹学中的一个重要分支,它主要用于解决资源分配问题,以达到最大化或最小化目标函数。
下面是一个线性规划的习题及答案:习题:某工厂生产两种产品A和B,每种产品都需要使用机器时间和劳动力。
产品A每件需要3小时的机器时间和2小时的劳动力,产品B每件需要2小时的机器时间和3小时的劳动力。
工厂每天有24小时的机器时间和18小时的劳动力。
设生产产品A的数量为x,生产产品B的数量为y。
1. 建立目标函数和约束条件。
2. 求解线性规划问题,找出最优生产计划。
答案:1. 目标函数:设目标是最大化利润,产品A的利润为40元/件,产品B的利润为30元/件。
因此,目标函数为:\[ \text{Maximize } P = 40x + 30y \]2. 约束条件:- 机器时间约束:\[ 3x + 2y \leq 24 \]- 劳动力时间约束:\[ 2x + 3y \leq 18 \]- 非负约束:\[ x \geq 0, y \geq 0 \]3. 图解法求解:- 首先在坐标系中画出约束条件所形成的可行域。
- 可行域的顶点坐标为:(0,0), (0,6), (4,2), (8,0)。
- 将这些点代入目标函数计算利润:- P(0,0) = 40*0 + 30*0 = 0- P(0,6) = 40*0 + 30*6 = 180- P(4,2) = 40*4 + 30*2 = 200- P(8,0) = 40*8 + 30*0 = 3204. 最优解:- 通过比较各点的利润,发现当生产8件产品A和0件产品B时,利润最大,为320元。
5. 结论:- 工厂应该生产8件产品A和0件产品B,以实现最大利润320元。
注意:本题答案仅为示例,实际解题时需要根据具体题目条件进行分析和计算。
线性规划练习题线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
通过线性规划,我们可以在有限的资源条件下,实现最优的决策和资源分配。
下面让我们一起来看看一些线性规划练习题。
例题 1:某工厂生产甲、乙两种产品,已知生产甲产品 1 件需要 A原料 3 千克,B 原料 2 千克;生产乙产品 1 件需要 A 原料 2 千克,B原料 4 千克。
现有 A 原料 120 千克,B 原料 100 千克。
甲产品每件利润为 20 元,乙产品每件利润为 30 元。
问工厂应如何安排生产,才能使利润最大?首先,设生产甲产品 x 件,生产乙产品 y 件。
根据题目条件,可以列出以下不等式组:3x +2y ≤ 120 (A 原料限制)2x +4y ≤ 100 (B 原料限制)x ≥ 0 ,y ≥ 0 (产品数量非负)目标函数为:Z = 20x + 30y (总利润)接下来,我们通过画图来找到可行域。
将不等式组转化为等式方程,画出直线,然后根据不等式确定可行域的范围。
然后,在可行域内找到目标函数的最优解。
通常可以通过顶点法,计算可行域顶点处的目标函数值,比较得出最大值。
经过计算,当 x = 20,y = 20 时,利润最大,最大利润为 1000 元。
例题 2:某运输公司有 A、B 两种型号的货车,A 型货车每辆可载货 5 吨,B 型货车每辆可载货 8 吨。
现要运输 100 吨货物,且 A 型货车的数量不少于 B 型货车数量的 2 倍。
已知 A 型货车每辆运费 500 元,B 型货车每辆运费 800 元。
问如何安排车辆,能使运费最少?设安排 A 型货车 x 辆,B 型货车 y 辆。
则有:5x + 8y = 100 (货物总量)x ≥ 2y (车辆数量限制)x ≥ 0 ,y ≥ 0 (车辆数量非负)目标函数为:C = 500x + 800y (总运费)同样地,通过画图找到可行域,再计算顶点处的运费,找到最小值。
一、思考题1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征?3. 建立一个实际问题的数学模型一般要几步?4. 两个变量的线性规划问题的图解法的一般步骤是什么?5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误?6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。
7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。
8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。
9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法?10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。
1. 线性规划问题的最优解一定在可行域的顶点达到。
2. 线性规划的可行解集是凸集。
3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。
4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。
5. 线性规划问题的每一个基本解对应可行域的一个顶点。
6. 如果一个线性规划问题有可行解,那么它必有最优解。
7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。
8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。
9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x作为换入变量,可使目 标函数值得到最快的减少。
10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。
高中线性规划试题及答案一、选择题1. 线性规划问题中,目标函数的最优解一定在可行域的()。
A. 边界上B. 内部C. 边界上或内部D. 边界上和内部答案:A2. 线性规划问题中,如果一个线性规划问题有最优解,则其最优解一定在()。
A. 可行域的边界上B. 可行域的内部C. 可行域的边界上或内部D. 可行域的边界上和内部答案:A3. 线性规划问题中,如果一个线性规划问题有多个最优解,则其最优解一定在()。
A. 可行域的边界上B. 可行域的内部C. 可行域的边界上或内部D. 可行域的边界上和内部答案:A4. 线性规划问题中,如果一个线性规划问题无最优解,则其可行域一定()。
A. 是空集B. 不是空集C. 是空集或不是空集D. 不能确定答案:A5. 线性规划问题中,如果一个线性规划问题有无穷多个解,则其可行域一定()。
A. 是空集B. 不是空集C. 是空集或不是空集D. 不能确定答案:B二、填空题1. 线性规划问题中,目标函数的最优解一定在可行域的____上。
答案:边界2. 线性规划问题中,如果一个线性规划问题有最优解,则其最优解一定在可行域的____上。
答案:边界3. 线性规划问题中,如果一个线性规划问题有多个最优解,则其最优解一定在可行域的____上。
答案:边界4. 线性规划问题中,如果一个线性规划问题无最优解,则其可行域一定____。
答案:是空集5. 线性规划问题中,如果一个线性规划问题有无穷多个解,则其可行域一定____。
答案:不是空集三、解答题1. 某工厂生产两种产品A和B,生产1单位产品A需要3小时的机器时间和2小时的人工时间,生产1单位产品B需要2小时的机器时间和3小时的人工时间。
工厂每天有18小时的机器时间和24小时的人工时间。
每单位产品A的利润是100元,每单位产品B的利润是120元。
如何安排生产计划以最大化利润?答案:设生产产品A的数量为x,生产产品B的数量为y。
则有以下线性规划问题:目标函数:最大化 Z = 100x + 120y约束条件:3x + 2y ≤ 18 (机器时间)2x + 3y ≤ 24 (人工时间)x ≥ 0y ≥ 0通过求解该线性规划问题,可以得到最优解为x=6,y=4,此时最大利润为Z=100*6+120*4=1200元。
线性规划练习题一、选择题1. 设变量、满足约束条件,则目标函数的最小值为 ()A. B. C. D.2. 在约束条件下,当时,目标函数的最大值的变化范围是 ()ABCD3. 已知点的坐标满足条件 则的最大值为 ().A. B. 8 C. 16 D. 10二、填空题4. 不等式表示的平面区域的面积等于__________;5. 已知点的坐标满足条件,点为坐标原点,那么的最小值等于_______,最大值等于____________.6. 某厂生产甲产品每千克需用原料A和原料B分别为千克,生产乙产品每千克需用原料A和原料B分别为千克甲、乙产品每千克可获利润分别为元. 月初一次性购进本月用原料A、B各千克. 要计划本月生产甲、乙两种产品各多少千克才能使月利润总额达到最大. 在这个问题中,设全月生产甲、乙两种产品分别为千克、千克,月利润总额为元,那么,用于求使总利润最大的数学模型中,约束条件为__________;7. 设实数x, y满足8. 不等式组表示的平面区域的面积等于________三、解答题9. 某校伙食长期以面粉和大米为主食,面食每100 g含蛋白质6个单位,含淀粉4个单位,售价05元,米食每100 g含蛋白质3个单位,含淀粉7个单位,售价04元,学校要求给学生配制盒饭,每盒盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少?10. 设,式中变量满足条件,求的最大值和最小值.答案:1.B 2.D 3.D 4.85.,; 6. 7.; 8.129. 解:设每盒盒饭需要面食x(百克),米食y(百克),所需费用为S=05x+04y,且x、y满足6x+3y≥8,4x+7y≥10,x≥0,y≥0,由图可知,直线y=-x+S过A(,)时,纵截距S最小,即S最小故每盒盒饭为面食百克,米食百克时既科学又费用最少10. 作出可行域如图所示,作直线:上,作一组平行于的直线:,,可知:直线往右平移时,随之增大。
线性规划专题(含答案)1. 设,满足约束条件则的最大值是.2. 设,满足约束条件则的最大值是.3. 设,满足约束条件则的最大值为.4. 在约束条件下,目标函数的最大值为.5. 已知实数,满足约束条件,则的最小值为.6. 若,则目标函数的取值范围是.7. 已知实数,满足不等式组那么目标函数的最大值是.8. 已知满足条件则目标函数的最大值为.9. 若实数,满足不等式组则的最小值是.10. 已知,满足约束条件则的最小值为.11. 若,满足约束条件则的最大值为.12. 已知,满足则的最大值为.13. 设、满足约束条件则的最小值为.14. 在约束条件下,目标函数的最小值是.15. 设变量、满足约束条件:则的最小值为.16. 已知实数,满足则的最大值为.17. 若,满足约束条件,则的最小值为.18. 若实数,满足条件则的最大值为.19. 已知实数,满足条件则的取值范围是.20. 设变量,满足约束条件则目标函数的最大值为.21. 已知是坐标原点,点,若点为平面区域上的一个动点,则的取值范围是.22. 若圆关于直线对称,动点在不等式组表示的平面区域内部及边界上运动,则的取值范围是.23. 若,满足约束条件则的最大值为.24. 设实数,满足,,且,则的最大值为.25. 实数,满足不等式组则的取值范围是.26. 在平面直角坐标系中,已知点,,,点为边界及内部的任意一点,则的最大值为.27. 已知实数,满足且的最大值为.28. 已知实数,满足则的取值范围是.29. 若实数,满足不等式组则目标函数的最大值为.30. 设,满足约束条件则目标函数的最大值为.31. 若变量,满足约束条件,则的最大值是.32. 已知,满足若目标函数的最大值为,则展开式的常数项为.33. 若,满足约束条件则的最小值为.34. 设,满足约束条件则的取值范围是.35. 已知实数,满足约束条件则的最大值为.36. 已知变量,满足约束条件若使取得最小值的最优解有无穷多个,则实数.37. 已知,,满足约束条件若的最大值为,则.38. 若实数,满足约束条件则的最大值为.39. 若,满足约束条件则的最大值为.40. 设实数,满足则的最大值为.41. 如果实数,满足约束条件则的最大值为.42. 已知实数满足条件则的最小值为.43. 若,满足约束条件则的最大值为.44. 已知实数,满足则的最小值为.45. 设实数,满足则的取值范围是.46. 记不等式组所表示的平面区域为,若直线与有公共点,则的取值范围是.47. 已知变量,满足约束条件则的最小值是.48. 若实数,满足条件则的最小值为.49. 设,满足约束条件,则的最大值为,则的值为.50. 若,满足约束条件则的最小值是.51. 如果实数,满足条件则的最大值为.52. 设实数,满足向量,.若,则实数的最大值为.53. 如果实数,满足约束条件那么目标函数的最小值为.54. 设,满足约束条件向量,,且,则的最小值为.55. 设,满足约束条件若目标函数的最大值为,则的最小值为.56. 设为坐标原点,点,点满足则的取值范围为.57. 若实数满足且的最小值为,则.58. 已知,满足约束条件则的最大值.59. 已知点的坐标满足条件那么点到直线的距离的最小值为.60. 已知,满足则的最小值为.61. 已知点的坐标满足条件那么的取值范围为.62. 若变量,满足约束条件则的最大值为.63. 设实数,满足则的最小值为.64. 若,满足约束条件则的取值范围是.65. 已知点,是坐标原点,点的坐标满足,则的取值范围是.66. 已知平面区域夹在两条斜率为的平行直线之间,且这两条平行直线间的最短距离为,若点,且的最小值为,的最大值为,则等于.67. 已知整数,满足不等式,则的最大值是;的最小值是.68. 设实数,满足则动点所形成区域的面积为,的取值范围是.69. 若点满足线性约束条件则的最小值是;的取值范围是.70. 已知,满足约束条件则的最小值为.71. 已知实数,满足则的最小值为.72. 若,满足且的最大值为,则.73. 已知,满足若有最大值,则实数的值为.74. 若直线上存在点满足约束条件则实数的取值范围是.75. 已知变量,满足约束条件则目标函数的取值范围是.76. 已知实数,满足则的最小值为.77. 设,满足则的最大值为.78. 若点位于曲线与所围成的封闭区域内(包含边界),则的最小值为.79. 若实数,满足则的取值范围是,的取值范围是.80. 已知,满足约束条件若的最大值为,则.81. 已知实数,满足则的最大值为.82. 已知实数,满足不等式组则的最大值为.83. 若实数,满足且的最小值为,则.84. 若,满足约束条件则的最大值为.85. 设,满足约束条件则的最大值是.86. 设实数,满足约束条件若目标函数的最大值为,则的最小值为.87. 设,满足约束条件则的最小值是.88. 若,满足条件则的最大值是.89. 设变量,满足约束条件则目标函数的最小值为.90. 已知实数,满足则的取值范围为.91. 不等式组的解集记作,实数,满足如下两个条件:①,;②,.则实数的取值范围为.92. 设为不等式表示的平面区域,直线与区域有公共点,则的取值范围是.93. 若,满足约束条件则的最小值是.94. 已知实数,满足则的最大值是.95. 设,满足不等式组若的最大值为,最小值为,则实数的取值范围为.96. 在等差数列中,已知首项,公差.若,,则的最大值为.97. 设实数,满足约束条件若目标函数的最大值为,则的最小值为.98. 已知实数,满足则的取值范围为.99. 若,满足若的最大值为,则实数.100. 已知正数满足:,,则的取值范围是.答案第一部分1.2.3.4.5.6.7.8.9.10.11.【解析】先作出不等式对应的区域,由图形可知直线过时,目标函数取得最大值,由解得即,.12.13.【解析】画出可行域:由图可知,当直线过点时,取得最小值为.14.15.【解析】不等式组对应的平面区域如图所示.平移直线,当直线经过点时,直线的截距最大,此时最小为.16.17.【解析】由图知最小值在点处取到,最小值为.18.【解析】满足约束条件的可行域如下图所示:令,由可得,直线经过时,取得最大值:;此时的最大值为.19.【解析】由约束条件作出可行域如图,联立解得.的几何意义为可行域内的动点与定点连线的斜率,因为.所以则的取值范围是.20.【解析】,画出可行域如图中阴影部分所示,的最小值为,所以.21.【解析】作出可行域,如图所示,由题意.设,作,易知,过点时有最小值,;过点时有最大值,,所以的取值范围是.22.【解析】圆关于直线对称,所以圆心在直线上,,表示的平面区域如图,表示区域内点与点连线的斜率.,,所以的取值范围是.23.【解析】由变形为,纵截距为,当直线过点时最大,所以.24.【解析】,即为,所以顶点坐标为,设目标函数,则当目标函数经过点,的值最大,即,故的最大值为.25.【解析】的取值范围是可行域中的点与点连线的斜率的取值范围.平面区域如图:所以斜率最小值为,无最大值,当区域中的点的横纵坐标都趋于无穷大时,斜率趋近于.26.27.【解析】由约束条件作出可行域如图,设,可行域内的动点,则..其几何意义为向量与向量夹角的余弦值的倍,所以当与重合时,有最大值为.28.29.【解析】画出约束条件所表示的平面区域,如图中阴影部分所示.由图可知:当直线经过点时最大,由解得,所以的最大值为.30.【解析】作出不等式组表示的平面区域,得到如图的四边形,其中,,,为原点.设为区域内一个动点,则表示点到原点的距离,所以,可得当到原点距离最远时达到最大值,因此,运动点使它与点重合时,达到最大值,.所以最大值31.【解析】变量,满足的约束条件对应的平面区域是以点,和为顶点的三角形区域(包括边界),当经过点时,取得最大值.32.【解析】由约束条件,满足作出可行域如图,联立解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最大,有最大值为.则.由.令得.所以则展开式的常数项为.33.【解析】因为线性约束条件所决定的可行域为非封闭区域且目标函数为线性的,最值一定在边界点处取得.分别将点,代入目标函数,求得:,,所以最小值为.34.35.36.37.【解析】先作出不等式组对应的区域,若的最大值为,则,直线过定点,则直线与相交于,得,同时也在直线上,即,得.38.【解析】作出所对应可行域(如图),变形目标函数可得,平移直线可得当直线经过点时,直线的截距最小,取最大值,代值计算可得最大值为:.39.【解析】画出表示的平面区域如图所示,由,得,画出,并平移经过时,.40.【解析】不等式组对应的平面区域如图,设,当此直线经过图中时,在轴的截距最小,即最大,所以的最大值为.41.【解析】由约束条件作出可行域如图联立解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最大,有最大值为.42.【解析】画出的可行域如图阴影区域:由得,目标函数可看做斜率为的动直线,由图数形结合可知:当过点时,最小为.43.【解析】44.【解析】由约束条件作出可行域如图,化目标函数为,由解得,由图可知,当直线过时直线在轴上的截距最大,有最小值,等于.45.【解析】由约束条件作出可行域如图,,联立解得.的几何意义为可行域内的动点与定点连线的斜率,因为,.所以的取值范围是.46.【解析】画出可行域,如图中区域.又直线恒过定点,是直线的斜率,当直线经过点与点这两个边界点时,对应的分别为与,故的范围为.47.【解析】画出约束条件表示的平面区域如图中阴影部分所示,则直线经过点时最小,由得,所以.48.【解析】根据约束条件画出可行域,如图中阴影部分所示,则当,时,取得最小值.49.【解析】由得,作出不等式组对应的平面区域如图(阴影部分):平移直线由图象可知当直线经过点时,直线的截距最大,此时也最大,由,解得,即,将代入目标函数,得.解得.50.【解析】作出不等式组对应的平面区域如图:的几何意义是平面区域内的点到原点的距离,由图象得到直线的距离最小,此时最小值,则的最小值是.51.【解析】,根据约束条件画出可行域,可判断当,时,取得最小值,则的最大值为.52.【解析】因为,所以,即.由已知,画出可行域如下图阴影部分.所以当直线过点时取到最大值.53.【解析】由已知画图如下.当目标函数经过点时,截距取到最大值,也就是取到最小值.54.【解析】由向量,,且,得,根据约束条件画出可行域,设,将最小值转化为轴上的截距的最大值,当直线经过点时,最小,最小值是:.55.【解析】由题,可行域图象如下:结合目标函数中,,可知其经过时,取得最大值,故有,即,又,所以.56.【解析】设.画出可行域,如图所示:当直线过点时,取最大值;当直线过点时,取最小值.所以的取值范围为.57.【解析】画出可行域,当目标函数表示的直线平移到经过点时,取得最小值,然后将坐标代入即可.58.【解析】由约束条件得到可行域如图:直线经过图中点时,直线在轴的截距最小,此时最大,且,所以的最大值为;59.【解析】依题意画图如下.为图中三角形(包括边界)中的点,显然点到直线的距离最小,为.60.【解析】作出不等式组对应的平面区域,如下图中三角形,将直线进行平移,可得当直线经过点时,取得最小值,由解得时,取得最小值,所以.61.【解析】表示的平面区域如图,表示区域内点与点的距离的平方,由图知:最大;到直线的距离的平方最小.由于不取等号,所以不是最小值.62.【解析】由约束条件作出可行域如图,联立解得,化目标函数为,由图可知,当直线过点时,直线在轴上的截距最小,有最大值为.63.【解析】不等式组对应的平面区域如图,设,当此直线经过图中时,在轴的截距最大,即最小,所以的最小值为.64.65.【解析】不等式组所表示的平面区域如图所示:为阴影部分中的点,其中,,所以与平面的夹角的范围为..所以的取值范围是.66.67. ,68. ,69. ,【解析】画出满足条件的平面区域,如图所示:,表示过平面区域的点由得:,当直线过时,最小,最小值与的直线的斜率,显然直线过时,,直线过时,.70.71.【解析】作出不等式组对应的平面区域如图:(阴影部分).由得,平移直线,由图象可知当直线过点时,直线的截距最大,此时最小.由解得即,代入目标函数得,即的最小值为.72.73.74.【解析】由题意,由可求得交点坐标为,要使直线上存在点满足约束条件如图所示.可得,则实数的取值范围.75.76.【解析】如图阴影部分为的可行域,平行移动直线,过点时取得最小值,.77.78.79. ,80.【解析】作出不等式组表示的平面区域如图中阴影部分所示,则,.显然直线过时不能取得最大值,若直线过点时取得最大值,则,解得,此时,目标函数为,作出直线,平移该直线,当直线经过点时,截距最小,此时,的最大值为,满足条件.81.82.【解析】作出不等式组所对应的可行域(如图阴影),变形目标函数可得,由可得平移直线可知,当直线经过点时,取最大值,代值计算可得的最大值为.83.【解析】实数,满足约束条件的可行域如图所示,的最小值为,可知目标函数的最优解过点,由解得,所以,解得.84.【解析】作出不等式组约束条件表示的平面区域,得到如图的及其内部,其中,,,设,将直线进行平移,当经过点时,目标函数达到最大值,.所以最大值85.86.【解析】由得,作出可行域如图:因为,,所以直线的斜率为负,且截距最大时,也最大.平移直线,由图象可知当经过点时,直线的截距最大,此时也最大.由解得即.此时,即,即在直线上,的几何意义为直线上点到原点的距离的平方,则原点到直线的距离,则的最小值为.87.88.89.90.【解析】作出不等式组对应的平面区域如图,的几何意义是区域内的点与原点连线的斜率,由图象知的斜率最小,的斜率最大,由得即,此时斜率,由得即,此时斜率,则的取值范围为.91.【解析】作出不等式组对应的平面区域如图,即,由图象可得,.因为①,,当时,恒成立,当时,过点时斜率最小,即,所以,综上所述的范围为.因为②,,所以直线一定在点的下方或过点,所以,综上所述的范围为.92.93.【解析】,满足约束条件的可行域如图:则的几何意义是可行域的点到坐标原点距离,由图形可知的距离最小,直线的斜率为,所以.94.【解析】实数,满足作图:易知可行域为一个三角形,平移,可知,当直线经过时,目标函数取得最大值,由解得,最大值为.95.【解析】由得,直线是斜率为,轴上的截距为的直线,作出不等式组对应的平面区域如图:则,,因为的最大值为,最小值为,所以直线过点时,取得最大值为,经过点时取得最小值为,若,则,此时满足条件,若,则目标函数斜率,要使目标函数在处取得最小值,在处取得最大值,则目标函数的斜率满足,即,若,则目标函数斜率,要使目标函数在处取得最小值,在处取得最大值,则目标函数的斜率满足,即,综上.96.【解析】由,得,将看作自变量,看作因变量,可得可行域如图所示:由图象知,在取得最大值,此最大值为.97.【解析】根据不等式组,画出平面区域如图所示.所以由平移基准线的位置可知,在处,目标函数,即.又由,,解得:,所以的最小值为.98.99.【解析】提示:如图,画出可行域.分别将、、代入验证知,只有当直线经过点时,符合题意,此时.100.【解析】根据条件得到不等式组和目标函数,利用线性规划求解.由已知,得令则问题转化为:求的取值范围.画出可行域,如图,由于,则的最大值为.设曲线在点处的切线方程为,将原点的坐标代入,解得,从而切点为.而切点在曲线上的点、之间,所以的最小值为.故的取值范围是.。
高中数学线性规划练习题及讲解线性规划是高中数学中的一个重要概念,它涉及到资源的最优分配问题。
以下是一些线性规划的练习题,以及对这些题目的简要讲解。
### 练习题1:资源分配问题某工厂生产两种产品A和B,每生产一件产品A需要3小时的机器时间和2小时的人工时间,每生产一件产品B需要2小时的机器时间和4小时的人工时间。
工厂每天有机器时间100小时和人工时间80小时。
如果产品A的利润是每件50元,产品B的利润是每件80元,工厂应该如何安排生产以获得最大利润?### 解题思路:1. 首先,确定目标函数,即利润最大化。
设生产产品A的数量为x,产品B的数量为y。
2. 目标函数为:\( P = 50x + 80y \)。
3. 根据资源限制,列出约束条件:- 机器时间:\( 3x + 2y \leq 100 \)- 人工时间:\( 2x + 4y \leq 80 \)- 非负条件:\( x \geq 0, y \geq 0 \)4. 画出可行域,找到可行域的顶点。
5. 计算每个顶点的目标函数值,选择最大的一个。
### 练习题2:成本最小化问题一家公司需要生产两种产品,产品1和产品2。
产品1的原材料成本是每单位10元,产品2的原材料成本是每单位15元。
公司每月有原材料预算3000元。
如果公司希望生产的产品总价值达到最大,应该如何分配生产?### 解题思路:1. 设产品1生产x单位,产品2生产y单位。
2. 目标函数为产品总价值最大化,但题目要求成本最小化,所以实际上是求成本最小化条件下的产品组合。
3. 约束条件为原材料成本:\( 10x + 15y \leq 3000 \)4. 非负条件:\( x \geq 0, y \geq 0 \)5. 画出可行域,找到顶点。
6. 根据实际情况,可能需要考虑产品1和产品2的市场价格,以确定最大价值。
### 练习题3:运输问题一个农场有三种作物A、B和C,需要运输到三个市场X、Y和Z。
线性规划问题1、已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的取值范围是________.[]57-,2、已知实数x 、y 满足条件⎪⎩⎪⎨⎧≥≥≤--≥+-,0,0,033,042y x y x y x 则y x z 2+=的最大值为 .83、若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是___57a <≤4、如果点P 在平面区域22020210x y x y y -+⎧⎪+-⎨⎪-⎩≥≤≥上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为_____32 5. 已知x 、y R ∈,|1|20y x y x x ≥-⎧⎪≤-+⎨⎪≥⎩, 则目标函数y x S -=2的最大值是 . 25 6. 设⎪⎩⎪⎨⎧≥+-≤+-≤-+,033,042,022y x y x y x 则函数z =x 2+y 2取得最大值时,x +y =___________.答案: 511 7.实数,x y 满足430352501x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,函数z kx y =+的最大值为12,最小值为3,则实数k 为 28. 已知变量x 、y 满足条件6200x y x y x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩,若目标函数z ax y =+ (其中0a >),仅在(4,2)处取得最大值,则a 的取值范围是 _ a>19. 已知A (3,3),O 为原点,点,002303),(y y x y x y x P ⎪⎪⎩⎪⎪⎨⎧≥≥+-≤-的坐标满足是 ,此时点P 的坐标是 . 15.)3,1(;310. 已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是______.[1.8,6]; 11. 已知平面区域:M 11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,记M 关于直线y x =对称的区域为N ,点(,)P x y 满足平面区域N ,若已知OX 轴上的正向单位向量为i ,则向量OP 在向量i 上的投影的取值范围为_____________.1[1,]2-12. 设x 、y 满足条件310x y y x y +⎧⎪-⎨⎪⎩≤≤≥,则22(1)z x y =++的最小值 4 .13.若x 、y 满足,⎩⎨⎧≥+-≤+-220y x y x 则目标函数)(log 21y x C +=的最大值为 .-214、已知,M N 是11106x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所围成的区域内的不同..两点,则||MN15. 已知:点P 满足:⎪⎩⎪⎨⎧≥-≤+≤+-.01,2553,034x y x y x 及A (2,0),则||·cos ∠AOP (O 为坐标原点)的最大值是 5 .16.D 是⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+14032102y x y x y x 表示的平面区域,则D 中的点),(y x P 到直线10=+y x 距离的最大值是___217.某人上午7时,乘摩托艇以匀速v 海里/时(4≤v ≤20)从A 港出发到距50海里的B 港去,然后乘汽车以w 千米/时(30≤w ≤100)自B 港向距300千米的C 市驶去,应该在同一天下午4至9点到达C 市.设汽车、摩托艇所需的时间分别是,x y 小时.(1)写出,x y 所满足的条件,并在所给的平面直角坐标系内,作出表示,x y 范围的图形;(2)如果已知所需的经费1003(5)2(8)p x y =+-+-(元),那么,v w 分别是多少时走得最经济?此时需花费多少元?解:(1) 由题意得:v =y 50,w =x 300,4≤v ≤20,30≤w ≤100, ∴3≤x ≤10,25≤y ≤225.① 由于汽车、摩托艇所要的时间和x +y 应在9至14小时之间,即9≤x +y ≤14,② 因此满足①②的点(x ,y )的存在范围是图中阴影部分(包括边界).(2) 因为p =100+3(5-x )+2(8-y ),所以3x +2y =131-p ,设131-p =k ,那么当k 最大时,p 最小,在图中通过阴影部分区域且斜率为-23的直线3x +2y =k 中,使k 值最大的直线必通过点(10,4),即当y =4时,p 最小,此时x =10,v =12.5,w =30,p 的最小值为93元.。
线性规划练习题及解答线性规划是数学中一种常见的优化方法,它广泛应用于实际问题的解决中。
本文将提供一些线性规划的练习题及解答,以帮助读者更好地理解和运用线性规划。
练习题1:某公司生产两种产品:甲品和乙品。
每天可用于生产的原料数量分别为A和B。
已知每单位甲品所需的原料A和B的消耗量分别为a1和b1,每单位乙品所需的原料A和B的消耗量分别为a2和b2。
假设甲品和乙品的利润分别为p1和p2,求解出该公司在给定原料限制下能获得的最大利润。
解答:设甲品的生产量为x,乙品的生产量为y,则目标函数为最大化利润,即maximize p1 * x + p2 * y。
受限条件为原料A的消耗量限制 a1 * x + a2 * y <= A,原料B的消耗量限制 b1 * x + b2 * y <= B。
另外,x和y的取值范围为非负数(x >= 0,y >= 0)。
这样,我们可以得出完整的线性规划模型如下:maximize p1 * x + p2 * ysubject to:a1 * x + a2 * y <= Ab1 * x + b2 * y <= Bx >= 0y >= 0练习题2:某工厂生产三种产品:甲、乙、丙。
已知每单位甲、乙、丙产品的利润分别为p1、p2、p3,每天需要的原材料A、B的数量为a和b,每单位甲、乙、丙产品消耗的原材料A、B的数量分别为a1、b1和a2、b2以及a3、b3。
现在要求在给定的原材料数量限制下,求解出最大化利润的生产方案。
解答:设甲、乙、丙产品的生产量分别为x、y、z,则目标函数为最大化利润,即maximize p1 * x + p2 * y + p3 * z。
受限条件为原材料A和B的数量限制,分别为 a1 * x + a2 * y + a3 * z <= a 和 b1 * x + b2 * y + b3 * z <= b。
另外,x、y、z的取值范围为非负数(x >= 0,y >= 0,z >= 0)。
线性规划题及答案引言概述:线性规划是一种数学优化方法,用于在一组线性约束条件下寻觅使目标函数取得最大(最小)值的变量值。
在实际生活和工作中,线性规划往往被用于资源分配、生产计划、运输问题等方面。
本文将介绍一些常见的线性规划题目,并给出相应的答案。
一、资源分配问题1.1 问题描述:某公司有两个生产部门A和B,每天生产产品X和Y。
部门A 每天生产产品X需要消耗3个单位的资源,生产产品Y需要消耗2个单位的资源;部门B每天生产产品X需要消耗2个单位的资源,生产产品Y需要消耗4个单位的资源。
公司每天有20个单位的资源可供分配,如何分配资源才干使得产出最大化?1.2 解答:设部门A每天生产产品X的数量为x,生产产品Y的数量为y;部门B每天生产产品X的数量为u,生产产品Y的数量为v。
根据题目描述,可以建立如下线性规划模型:Maximize Z = 3x + 2y + 2u + 4vSubject to:3x + 2y + 2u + 4v <= 20x, y, u, v >= 0通过线性规划求解器可以得到最优解。
二、生产计划问题2.1 问题描述:某工厂有两个生产车间,每天生产产品P和Q。
车间1每天生产产品P需要花费5个单位的时间,生产产品Q需要花费3个单位的时间;车间2每天生产产品P需要花费4个单位的时间,生产产品Q需要花费6个单位的时间。
工厂每天有40个单位的时间可供分配,如何安排生产计划才干使得产量最大化?2.2 解答:设车间1每天生产产品P的数量为x,生产产品Q的数量为y;车间2每天生产产品P的数量为u,生产产品Q的数量为v。
根据题目描述,可以建立如下线性规划模型:Maximize Z = 5x + 3y + 4u + 6vSubject to:5x + 3y + 4u + 6v <= 40x, y, u, v >= 0通过线性规划求解器可以得到最优解。
三、运输问题3.1 问题描述:某公司有两个仓库和三个销售点,每一个仓库有一定数量的产品可供销售点购买。
线性规划题及答案引言概述:线性规划是一种数学优化方法,用于在给定约束条件下寻找使目标函数最大或最小的变量值。
在实际生活和工作中,线性规划经常被应用于资源分配、生产计划、运输问题等方面。
本文将介绍一些常见的线性规划题目,并给出相应的答案。
一、资源分配问题1.1 约束条件:某公司有两种产品A和B,生产一单位产品A需要耗费2个单位的资源X和1个单位的资源Y,生产一单位产品B需要耗费1个单位的资源X和3个单位的资源Y。
公司每天可用资源X和资源Y分别为10个单位和12个单位。
假设产品A的利润为3万元,产品B的利润为4万元,问如何分配资源才能使公司利润最大化?1.2 目标函数:设生产产品A的单位数为x,生产产品B的单位数为y,则目标函数为Maximize 3x + 4y。
1.3 答案:通过线性规划计算,最优解为生产产品A 4个单位,生产产品B 2个单位,公司利润最大化为20万元。
二、生产计划问题2.1 约束条件:某工厂生产两种产品C和D,生产一单位产品C需耗费2个单位的资源M和3个单位的资源N,生产一单位产品D需耗费4个单位的资源M和2个单位的资源N。
工厂每天可用资源M和资源N分别为8个单位和10个单位。
产品C的利润为5万元,产品D的利润为6万元,问如何安排生产计划以最大化利润?2.2 目标函数:设生产产品C的单位数为x,生产产品D的单位数为y,则目标函数为Maximize 5x + 6y。
2.3 答案:经过线性规划计算,最佳生产计划为生产产品C 2个单位,生产产品D 2个单位,工厂利润最大化为22万元。
三、运输问题3.1 约束条件:某公司有三个仓库分别存储产品E、F和G,每个仓库的存储容量分别为100、150和200个单位。
产品E、F和G的单位运输成本分别为2元、3元和4元,需求量分别为80、120和150个单位。
问如何安排运输计划以最小化总成本?3.2 目标函数:设从仓库i运输产品j的单位数为xij,则目标函数为Minimize2x11 + 3x12 + 4x13 + 2x21 + 3x22 + 4x23 + 2x31 + 3x32 + 4x33。
线性规划练习1. “截距”型考题在线性约束条件下,求形如(,)z ax by a b R =+∈的线性目标函数的最值问题,通常转化为求直线在y 轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差.1.【2019年高考·广东卷 理5】已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )2. (2019年高考·辽宁卷 理8)设变量,x y 满足-100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩,则2+3x y 的最大值为A .20B .35C .45D .553.(2019年高考·全国大纲卷 理13) 若,x y 满足约束条件1030330x y x y x y -+≥⎧⎪⎪+-≤⎨⎪+-≥⎪⎩,则3z x y =-的最小值为 。
4.【2019年高考·陕西卷 理14】 设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为 .5.【2019年高考·江西卷 理8】某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表为使一年的种植总利润(总利润=总销售收入 总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,506. (2019年高考·四川卷 理9 ) 某公司生产甲、乙两种桶装产品. 已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克. 每桶甲产品的利润是300元,每桶乙产品的利润是400元. 公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克. 通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A 、1800元B 、2400元C 、2800元D 、3100元7. (2019年高考·安徽卷 理11) 若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的取值范围为_____.8.(2019年高考·山东卷 理5)的约束条件2441x y x y +≤⎧⎨-≥-⎩,则目标函数z=3x-y 的取值范围是A . [32-,6]B .[32-,-1]C .[-1,6]D .[-6,32] 9.(2019年高考·新课标卷 理14) 设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的取值范围为 .2 . “距离”型考题10.【2019年高考·福建卷 理8】 设不等式组x 1x-2y+30y x ≥⎧⎪≥⎨⎪≥⎩所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于( )A.285 B.4 C. 125D.2 11.( 2019年高考·北京卷 理2) 设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是A 4πB22π- C 6π D44π- 3. “斜率”型考题12.【2019年高考·福建卷 理8】 若实数x 、y 满足10,0x y x -+≤⎧⎨>⎩则y x 的取值范围是 ( )A.(0,1)B.(]0,1C.(1,+∞)D.[)1,+∞13.(2019年高考·江苏卷 14)已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则b a的取值范围是 .4. “平面区域的面积”型考题14.【2019年高考·重庆卷 理10】设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x yB x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则AB 所表示的平面图形的面积为A 34π B 35π C 47π D2π 15.(2019年高考·江苏卷 理10)在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域{(,)|(,)}B x y x y x y A =+-∈的面积为 ( )A .2B .1C .12D .1416.(2019年高考·安徽卷 理15) 若A 为不等式组02x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 . 17.(2009年高考·安徽卷 理7) 若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是(A )73(B ) 37(C )43(D ) 34高18.(2019年高考·浙江卷 理17)若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b为坐标点(,)P a b 所形成的平面区域的面积等于__________.5. “求约束条件中的参数”型考题规律方法:当参数在线性规划问题的约束条件中时,作可行域,要注意应用“过定点的直线系”知识,使直线“初步稳定”,再结合题中的条件进行全方面分析才能准确获得答案.19.(2009年高考·福建卷 文9)在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a 的值为A. - 5B. 1C. 2D. 320.【2019年高考·福建卷 理9】若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( ) A .21 B .1 C .23 D .221.(2019年高考·山东卷 理12)设二元一次不等式组2190802140x y x y x y ⎧+-⎪-+⎨⎪+-⎩,,≥≥≤所表示的平面区域为M ,使函数(01)x y a a a =>≠,的图象过区域M 的a 的取值范围是( )A .[1,3]B .[2,10] C .[2,9] D .[10,9]22.(2019年高考·北京卷 理7)设不等式组 110330530x y x y x y 9+-≥⎧⎪-+≥⎨⎪-+≤⎩表示的平面区域为D ,若指数函数y=x a 的图像上存在区域D 上的点,则a 的取值范围是A (1,3]B [2,3]C (1,2]D [ 3,+∞]23.(2019年高考·浙江卷 理17)设m 为实数,若{250(,)300x y x y x mx y -+≥⎧⎪-≥⎨⎪+≥⎩}22{(,)|25}x y x y ⊆+≤,则m 的取值范围是___________.24.(2019年高考·浙江卷 理7) 若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩且x y +的最大值为9,则实数m =( )A 2-B 1-C 1D 26. “求目标函数中的参数”型考题规律方法:目标函数中含有参数时,要根据问题的意义,转化成“直线的斜率”、“点到直线的距离”等模型进行讨论与研究. 25.(2009年高考·陕西卷 理11)若x ,y满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,目标函数2z ax y =+仅在点(1,0)处取得最小值,则a 的取值范围是 ( )A .(1-,2)B .(4-,2)C .(4,0]-D . (2,4)- 26.(2019年高考·湖南卷 理7)设m >1,在约束条件下,⎪⎩⎪⎨⎧≤+≤≥1y x mx y xy 目标函数z=x+my 的最大值小于2,则m 的取值范围为 A .)21,1(+B .),21(+∞+C .(1,3)D .),3(+∞7. 其它型考题27. (2009年高考·山东卷 理12) 设x ,y满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数(0,0)z ax by a b =+>> 的值是最大值为12,则23a b+的最小值为( )A.625 B. 38 C. 311D. 4 28. (2019年高考·安徽卷 理13)设,x y 满足约束条件2208400 , 0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z abx y a b =+>> 的最大值为8,则a b +的最小值为________.线性规划问题 答案解析1. “截距”型考题在线性约束条件下,求形如(,)z ax by a b R =+∈的线性目标函数的最值问题,通常转化为求直线在y 轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差.1、选B 【解析】约束条件对应ABC ∆内的区域(含边界),其中53(2,2),(3,2),(,)22A B C 画出可行域,结合图形和z的几何意义易得3[8,11]z x y =+∈2、选D ; 【解析】作出可行域如图中阴影部分所示,由图知目标函数过点()5,15A 时,2+3x y 的最大值为55,故选D.3、答案:1-【解析】利用不等式组,作出可行域,可知区域表示的为三角形,当目标函数过点(3,0)时,目标函数最大,当目标函数过点(0,1)时最小为1-.] 4、答案2; 【解析】当x > 0时,()xx f 1'=,()11'=f ,∴曲线在点(1,0)处的切线为1-=x y ,则根据题意可画出可行域D 如右图:目标函数z x y 2121-=, ∴当0=x ,1-=y 时,z 取得最大值25、选B ;【解析】本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力. 设黄瓜和韭菜的种植面积分别为x 、y 亩,总利润为z 万元, 则目标函数为(0.554 1.2)(0.360.9)0.9z x x y y x y =⨯-+⨯-=+. 线性约束条件为50,1.20.954,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩即50,43180,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩作出不等式组表示的可行域,易求得点()()()0,50,30,20, 0,45A B C . 平移直线0.9z x y =+,可知当直线0.9z x y =+,经过点()30,20B ,即30,20x y ==时 z 取得最大值,且max 48z =(万元). 故选B. 点评:解答线性规划应用题的一般步骤可归纳为:(1)审题——仔细阅读,明确有哪些限制条件,目标函数是什么? (2)转化——设元.写出约束条件和目标函数;(3)求解——关键是明确目标函数所表示的直线与可行域边界直线斜率间的关系;(4)作答——就应用题提出的问题作出回答.6、答案C 【解析]】 设公司每天生产甲种产品X 桶,乙种产品Y 桶,公司共可获得利润为Z 元/天,则由已知,得 Z=300X+400Y ,且⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00122122Y X Y X Y X,画可行域如图所示,目标函数Z=300X+400Y 可变形为Y=400z x 43+- 这是随Z 变化的一族平行直线,解方程组⎩⎨⎧=+=+12y 2x 12y x 2 ,⎩⎨⎧==∴4y 4x ,即A (4,4)280016001200max =+=∴Z7、答案[3,0]-; 【解析】约束条件对应ABC ∆内的区域(含边界),其中3(0,3),(0,),(1,1)2A B C ,画出可行域,结合图形和t 的几何意义易得[3,0]t x y =-∈-8、选A ; 【解析】 作出可行域和直线l :03=-y x ,将直线l 平移至点)0,2(处有最大值,点)3,21(处有最小值,即623≤≤-z . ∴应选A.9、答案[-3,3];【解析】约束条件对应区域为四边形OABC 内及边界,其中(0,0),(0,1),(1,2),(3,0)O A B C ,则2[3,3]z x y =-∈-2 . “距离”型考题10、选B ;【命题意图】本题考查不等式中的线性规划以及两个图形间最小距离的求解、基本公式(点到直线的距离公式等)的应用,考查了转化与化归能力。