高中数学第三章概率2.2建立概率模型教案北师大版
- 格式:doc
- 大小:198.88 KB
- 文档页数:7
2.2建立概率模型●三维目标1.知识与技能(1)使学生进一步掌握古典概型的概率计算公式.(2)能建立概率模型解决实际问题.2.过程与方法根据本节课的内容和学生的实际水平,通过两个试验的观察让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比骰子试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.3.情感、态度与价值观概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神.重点:建立概率模型解决古典概型在实际生活中的应用.难点:古典概型中比较复杂的背景问题的概率求值问题.●教学建议本节课是在学生已掌握了古典概型的定义及能够解决简单的概率求值问题的基础上学习的,教师可以例题为主线,通过学生自己动手发现问题,引导学生自主解决.●教学流程创设情境,引入新课,通过掷骰子试验建立古典概率模型⇒引导学生分析探究建立概率模型后每次试验的基本事件,掌握树状图是列举基本事件的常用方法⇒通过例1及变式训练掌握“有放回”与“不放回”的古典概型的区别及相应概率的求法与技巧⇒通过例2及变式训练掌握运用树状图解决“有序”与“无序”的古典概型的方法技巧⇒通过例3及变式训练,使学生掌握运用数形结合的方法解决所建立概率模型的技巧⇒归纳整理课堂小结,整体把握本节知识⇒完成当堂双基达标,巩固本节知识并进行反馈、矫正如何观察分析试验中的等可能结果?【提示】一次试验中的“等可能结果”实际是针对特定的观察角度而言的,例如:甲、乙、丙三名同学排成一排,计算甲站在中间的概率时,若从三个同学的站位来看,共有“甲乙丙”、“甲丙乙”、“乙甲丙”、“乙丙甲”、“丙甲乙”、“丙乙甲”六种结果,若仅从甲的站位来看,则只有三种结果,即站左边、中间或右边.1.一般来说,在建立概率模型时,把什么看作是一个基本事件是人为规定的.如果每次试验有一个并且只有一个基本事件出现,只要基本事件的个数是有限的,并且它们的发生是等可能的,就是一个古典概型.2.从不同的角度去考虑一个实际问题,可以将问题转化为不同的古典概型来解决,而所得到的古典概型的所有可能的结果数越少,问题的解决就变得越简单. 3.树状图是进行列举的一种常用方法.121 (1)若每次取出后不放回,连续取两次,求取出的产品中恰有一件是次品的概率; (2)若每次取出后又放回,求取出的两件产品中恰有一件是次品的概率.【思路探究】 分别利用列举法列举出可能出现的条件,找到符合要求的事件,利用概率公式求概率.【自主解答】 (1)每次取一件,取后不放回地连续取两次,其一切可能的结果为(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2),其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.由6个基本事件组成,而且可以认为这些基本事件的出现是等可能的.用A 表示“取出的两件中恰好有一件次品”这一事件,则A ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件A 由4个基本事件组成.因而P (A )=46=23.(2)有放回地连续取出两件,其一切可能的结果为(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 1),(b 1,a 2),(b 1,b 1)共9个基本事件.由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B 表示“恰有一件次品”这一事件,则B ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件B 由4个基本事件组成,因而P (B )=49.1.“有放回”与“无放回”问题的区别在于:对于某一试验,若采用“有放回”抽样,则同一个个体可能被重复抽取,而采用“不放回”抽样,则同一个个体不可能被重复抽取.2.无论是“有放回”还是“无放回”抽取,每一件产品被取出的机会都是均等的.一个盒子里装有完全相同的十个小球,分别标上1,2,3,…,10这10个数字,今随机地抽取两个小球,如果:(1)小球是不放回的; (2)小球是有放回的.求两个小球上的数字为相邻整数的概率.【解】 设事件A :两个小球上的数字为相邻整数.则事件A 包括的基本事件有(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10),(10,9),(9,8),(8,7),(7,6),(6,5),(5,4),(4,3),(3,2),(2,1)共18个.(1)不放回取球时,总的基本事件数为90,故P (A )=1890=945=15.(2)有放回取球时,总的基本事件为100,故P (A )=18100=950.图3-2-1用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率.【思路探究】由涂色的有序性可画出树状图解题.【自主解答】所有可能的基本事件共有27个,如图所示:红红红蓝黄蓝红蓝黄黄红蓝黄黄红红蓝黄蓝红蓝黄黄红蓝黄蓝红红蓝黄蓝红蓝黄黄红蓝黄(1)记“3个矩形都涂同一颜色”为事件A,由图知,事件A的基本事件有3个,故P(A)=327=19.(2)记“3个矩形颜色都不同”为事件B,由图知,事件B的基本事件有6个,故P(B)=627=29.1.本题列出全部可能的结果采用的是树状图,对于试验结果不太多的情况,都可采用此法.2.列出基本事件时要注意问题是否与顺序有关.将甲、乙两枚骰子先后各抛掷一次,a,b分别表示抛掷甲、乙两枚骰子所得的点数,若把点P(a,b)落在不等式组{x>0, y>0, x+y≤4所表示的平面区域的事件记为A,求P(A).【解】利用直角坐标系表示基本事件数及不等式组所表示的平面区域如图所示(阴影部分).由图可知基本事件数为36个,落在不等式组所表示的平面区域的点共有6个,所以P(A)=636=16.(1)求点数之和出现7点的概率;(2)求出现两个4点的概率;(3)求点数之和能被3整除的概率.【思路探究】明确先后掷两枚骰子的基本事件总数,然后用古典概型概率计算公式求出,可借图来确定基本事件总数.【自主解答】如图所示,从图中容易看出基本事件与所描点一一对应,共36种.(1)记“点数之和出现7点”为事件A ,从图中可以看出事件A 包含的基本事件共6个,(6,1),(5,2),(4,3),(3,4),(2,5),(1,6),故P (A )=636=16.(2)记“出现两个4点”为事件B .从图中可以看出事件B 包含的基本事件只有1个,即(4,4),故P (B )=136.(3)记“点数之和能被3整除”为事件C ,则事件C 包含的基本事件共12个,(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6),故P (C )=1236=13.1.求概率时,若事件可以表示成有序数对的形式,则可以把全体基本事件用平面直角坐标系中的点表示,以便准确地找出某事件所包含的基本事件总数.2.数形结合能使解决问题的过程变得形象直观,给问题的解决带来方便.某乒乓球队有男乒乓球运动员4名、女乒乓球运动员3名,现要选一男一女两名运动员组成混合双打组合参加某项比赛,试列出全部可能的结果,若某女乒乓球运动员为国家一级运动员,则她参赛的概率是多少?【解】 由于男运动员从4人中任意选取,女运动员从3人中任意选取,为了得到试验的全部结果,我们设男运动员为A ,B ,C ,D ,女运动员为1,2,3,我们可以用一个“有序数对”来表示随机选取的结果.如(A,1)表示:第一次随机选取从男运动员中选取的是男运动员A ,从女运动员中选取的是女运动员1,可用列举法列出所有可能的结果.如下表所示,设“国家一级运动员参赛”为事件E .由上表可知,可能结果总数是12个.设女运动员1为国家一级运动员,她参赛的可能事件有4个,故她参赛的概率为P (E )=412=13.知识性错误致误设袋中有4只白球和2只黑球,现从袋中无放回地摸出2只球. (1)求这2只球都是白球的概率;(2)求这2只球中1只是白球1只是黑球的概率.【错解】 一次摸出2只球,观察结果的颜色只能是(白,白),(白,黑),(黑,黑)3种情况.(1)用A 表示“2只球都是白球”这一事件,则A ={(白,白)},所以P (A )=13.(2)用B 表示“2只球中1只是白球1只是黑球”这一事件,则B ={(白,黑)},所以P (B )=13. 【错因分析】 在上述错解中(白,白),(白,黑),(黑,黑)3种结果的出现不是等可能的.【防范措施】 弄清基本事件总数有哪些,注意每个基本事件的出现是等可能的. 【正解】 我们不妨把4只白球标以1,2,3,4号,2只黑球标以5,6号,则基本事件有(1,2),(1,3),…,(1,6),(2,1),(2,3),…,(2,6),…,(6,1),(6,2),…,(6,5),共30个.(1)用A 表示“2只球都是白球”这一事件,则A ={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}共12个.所以P (A )=1230=25.(2)用B 表示“2只球中1只是白球1只是黑球”这一事件,则B ={(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4)},共16个.所以P (B )=1630=815.1.注意区分古典概型中有无放回及有无顺序问题.2.建立概率模型,常用列举法、列表法、树状图法求出基本事件的总数,从而解决问题.1.下列不属于古典概型的性质的是( ) A .所有基本事件的个数是有限个 B .每个基本事件发生的可能性相等 C .任两个基本事件不能同时发生D .可能有2个基本事件发生的可能性不相等【解析】 古典概型的特征之一就是每个基本事件发生的可能性相等. 【答案】 D2.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是( )A.12B.13C.14D.15【解析】 该试验共4个基本事件,所求事件包含2个基本事件,∴其概率P =12.【答案】 A3.从1,2,3,…,20中任取一个数,它恰好是3的倍数的概率是( ) A.320 B.14 C.310 D.15【解析】 从1,2,3,…,20中任取一个数共有20种基本事件,其中是3的倍数是3,6,9,12,15,18共6种基本事件,由古典概型概率公式得是3的倍数的概率是620=310.【答案】 C4.一个家庭中有两个小孩,设生男还是生女是等可能的,求此家庭中两小孩均为女孩的概率.【解】 所有的基本事件是:(男,男),(男,女),(女,男),(女,女)共4个,均为女孩的基本事件只有1个,故此家庭中两个均为女孩的概率为P =14=0.25.一、选择题1.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是( )A.15B.14C.45D.110【解析】 由古典概型的计算公式得P (A )=810=45.【答案】 C2.从{1,2,3,4,5}中随机选一个数为a ,从{1,2,3}中随机选一个数为b ,则b >a 的概率是( )A.45B.35C.25D.15【解析】 从{1,2,3,4,5}中随机选一个数a ,从{1,2,3}中随机选一个数b ,共有以下不同结果:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3)共15种.其中满足b >a 的有(1,2),(1,3),(2,3)三种,所以b >a 的概率为315=15,故选D.【答案】 D3.将一颗均匀的正方体骰子抛掷两次,若先后出现的点数分别为b 、c ,则方程x 2+bx +c =0有相等的实根的概率为( )A.112B.19C.136D.118【解析】 方程x 2+bx +c =0有相等实根,故Δ=b 2-4c =0即b 2=4c .基本事件总数为6×6=36.当b =4,c =4或b =2,c =1时,b 2=4c 成立,故P =236=118.【答案】 D4.从分别写有A ,B ,C ,D ,E 的5张卡片中任取2张,这2张卡片上的字母恰好按字母顺序相邻的概率是( )A.15B.25C.310D.710【解析】 从5张卡片中任取2张的基本事件总数为10,而恰好按字母顺序相邻的基本事件共有4个,故此事件的概率为410=25.【答案】 B 5.(2013·咸阳检测)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( )。
第三章 概率一.随机事件的概率1、基本概念:⎧⎧⎪⎨⎨⎩⎪⎩不可能事件确定事件事件必然事件随机事件(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)事件:确定事件和随机事件统称为事件,一般用大写字母A ,B ,C ……表示。
2、概率与频数、频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)= A n n为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A) 稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值A n n ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率。
二.概率的基本性质1、各种事件的关系:(1)并(和)事件(2)交(积)事件(3)互斥事件(4)对立事件2、概率的基本性质:(1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;(2)P(E)=1(E 为必然事件);(3)P(F)=0(F 为必然事件);(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);(5)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);三.古典概型(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
2017-2018学年高中数学第3章概率2 第2课时建立概率模型教学案北师大版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第3章概率 2 第2课时建立概率模型教学案北师大版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第3章概率 2 第2课时建立概率模型教学案北师大版必修3的全部内容。
第2课时建立概率模型[核心必知]建立不同的古典概型在建立概率模型时,把什么看作是一个基本事件(即一个试验结果)是人为规定的.我们只要求:每次试验有一个并且只有一个基本事件出现.只要基本事件的个数是有限的,并且它们的发生是等可能的,就是一个古典概型.[问题思考]甲、乙、丙三人站队,求甲站在最左边的概率.1.若只考虑甲的站法,基本事件的总数是多少?甲站在最左边的概率是多少?提示:3种;P=错误!。
2.若只考虑最左边位置的站法,基本事件总数是多少?甲站在最左边的概率是多少?提示:3种;P=13.3.若考虑所有人的站法,基本事件的总数是多少?甲站在最左边的概率是多少?提示:6种;P=错误!.讲一讲1.从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.[尝试解答] 每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.总的事件个数为6,而且可以认为这些基本事件是等可能的.用A表示“取出的两件中恰有一件次品",这一事件,所以A={(a1,b1),(a2,b1),(b1,a ),(b1,a2)}.1因为事件A由4个基本事件组成,所以P(A)=\f(4,6)=错误!。
第1课时 古典概型的特征和概率计算公式[核心必知]1.古典概型具有以下两个特征的随机试验的数学模型称为古典概型(古典的概率模型).(1)有限性:即试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;(2)等可能性:即每一个试验结果出现的可能性相同.2.古典概型概率公式对于古典概型,通常试验中的某一事件A 是由几个基本事件组成的.如果试验的所有可能结果(基本事件)数为n ,随机事件A 包含的基本事件数为m ,那么事件A 的概率规定为P (A )=事件A 包含的可能结果数试验的所有可能结果数=m n. [问题思考]1.掷一枚骰子共有多少种不同的结果?提示:6种.2.以下试验中,是古典概型的有( )A .放飞一只信鸽观察其能否飞回B .从规格直径为(250±0.6)mm 的一批合格产品中任意取一件,测量其直径C .抛掷一枚硬币,观察其出现正面或反面D .某人射击中靶或不中靶提示:只有选项C 具有:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.讲一讲1.以下试验中是古典概型的是( )A.在适宜的条件下,种下一粒种子,观察它是否发芽B.口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球C.向正方形ABCD内随机抛掷一点,该点落在正方形内任意一点都是等可能的D.在区间[0,6]上任取一点,求此点小于2的概率[尝试解答][答案] B判断一个试验是否为古典概型,关键是看该试验是否具有有限性和等可能性两个特征.练一练1.以下概率模型:①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点;②某射手射击一次,可能命中0环,1环,2环,…,10环;③某小组有男生5人,女生3人,从中任选1人作演讲;④一只使用中的灯泡寿命长短;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优〞或“差〞.其中属于古典概型的有________.解析:①不属于,原因:所有横坐标和纵坐标都是整数的点有无限多个,不满足有限性;②不属于,原因:命中0环,1环,…,10环的概率不一定相同,不满足等可能性;③属于,原因:显然满足有限性,且任选1人与学生的性别无关,是等可能的;④不属于,原因:灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;⑤不属于,原因:该品牌月饼评为“优〞与评为“差〞的概率不一定相同,不满足等可能性.答案:③讲一讲2.先后抛掷两枚大小相同的骰子,求点数之和能被3整除的概率.[尝试解答] 先后抛掷两枚大小相同的骰子,结果如下:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)共有36种不同的结果.记“点数之和能被3整除〞为事件A ,那么事件A 包含的基本事件共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P (A )=1236=13.求解古典概型问题的一般步骤:(1)计算所有可能的基本事件数n ;(2)计算事件A 包含的基本事件数m ;(3)计算事件A 的概率P (A )=事件A 包含的基本事件数试验的所有可能的基本事件数=m n. 运用公式的关键在于求出m 、n .在求n 时,必须确定所有可能的基本事件是等可能发生的. 练一练2.袋中装有除颜色外其他均相同的6个球,其中4个白球、2个红球,从袋中任取两球,求以下事件的概率:(1)A :取出的两球都是白球;(2)B :取出的两球一个是白球,另一个是红球.解:设4个白球的编号为1,2,3,4,2个红球的编号为5、6.从袋中的6个球中任取两球的取法有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种取法,且每种取法都是等可能发生的.(1)从袋中的6个球中任取两球,所取的两球全是白球的取法总数,即为从4个白球中任取两球的方法总数,共有6种,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).所以P (A )=615=25; (2)从袋中的6个球中任取两球,其中一个是白球,另一个是红球的取法有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种.所以P (B )=815. [解题高手][易错题]有1号、2号、3号3个信箱和A 、B 、C 、D 4封信,假设4封信可以任意投入信箱,投完为止,其中A 恰好投入1号或2号信箱的概率是多少?[错解] 每封信投入1号信箱的机会均等,而且所有结果数为4,故A 投入1号或2号信箱的概率为24=12. [错因] 应该考虑A 投入各个信箱的概率,而不能考虑成四封信投入某一信箱的概率.[正解] 由于每封信可以任意投入信箱,对于A 投入各个信箱的可能性是相等的,一共有3种不同的结果,投入1号信箱或2号信箱有2种结果,所以所求概率为23.1.抛掷一枚均匀的正方体骰子,向上的点数是5或6的概率是( )A.16B.13C.12D .1 解析:选B 掷一枚骰子出现向上的点数为1,2,3,4,5,6,共6种情况.P =m n =26=13. 2.有100X 卡片(从1号到100号),从中任取一X 卡片,那么取得的卡片是7的倍数的概率是( )A.320B.750C.13100D.325解析:选B ∵n =100,m =14,∴P =m n =14100=750. 3.一枚硬币连掷2次,恰好出现一次正面的概率是( )A.12B.14C.34D .0 解析:选 A 列举出所有基本事件,找出“只有一次正面〞包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有一次出现正面的包括(正,反),(反,正)2个,故其概率为24=12. 4.以下试验是古典概型的为________.①从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小②同时掷两颗骰子,点数和为7的概率③近三天中有一天降雨的概率④10人站成一排,其中甲、乙相邻的概率解析:①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,受多方面因素影响.答案:①②④5.(某某高考)假设甲、乙、丙三人随机地站成一排,那么甲、乙两人相邻而站的概率为________.解析:三人站成一排有:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共6种排法,其中甲、乙相邻有4种排法,所以甲、乙两人相邻而站的概率为46=23. 答案:236.设有关于x 的一元二次方程x 2+2ax +b 2=0,假设a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.解:设事件A 为“方程x 2+2ax +b 2=0有实根〞.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根意味着Δ=(2a )2-4b 2≥0,即a ≥b .基本事件有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),共12个,其中第1个数表示a 的取值,第2个数表示b 的取值.而事件A 包含9个基本事件,故事件A 发生的概率为P (A )=912=34.一、选择题1.下面是古典概型的是( )A .任意抛掷两粒骰子,所得的点数之和作为基本事件B .为求任取一个正整数,该正整数平方值的个位数字是1的概率,将取出的正整数作为基本事件C .从甲地到乙地共有n 条路线,求某人正好选中最短路线的概率D .抛掷一枚均匀硬币至首次出现正面为止解析:选C 对于A ,所得点数之和为基本事件,个数虽有限但不是等可能发生的;对于B ,D ,基本事件的个数都是无限的;只有C 是古典概型.2.以下对古典概型的说法中正确的选项是( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件总数为n ,随机事件A 假设包含k 个基本事件,那么P (A )=k n.A .②④B .①③④C .①④D .③④解析:选B ②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.3.在5X 卡片上分别写上数字1,2,3,4,5,然后将它们混合后,再任意排成一行,那么得到的五位数能被2或5整除的概率是( )A .0.2B .0.4C .0.6D .0.8解析:选C 一个五位数能否被5整除关键看其个位数字,而由1,2,3,4,5组成的五位数中,1,2,3,4,5出现在个位是等可能的.所以个位数字的基本事件有1,2,3,4,5,“能被2或5整除〞这一事件中含有基本事件2,4,5,概率为35=0.6. 4.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,那么这个两位数大于30的概率为( )A.12B.13C.14D.15解析:选 A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P =612=12. 5.4X 卡片上分别写有数字1,2,3,4,从这4X 卡片中随机抽取2X ,那么取出的2X 卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34解析:选C 从4X 卡片中随机抽取2X ,对应的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故基本事件总数n =6.且每个基本事件发生的可能性相等.设事件A =“取出的2X 卡片上的数字之和为奇数〞,那么A 中所含的基本事件为:(1,2),(1,4),(2,3),(3,4),故m =4,综上可知所求事件的概率P (A )=m n =23. 二、填空题6.三X 卡片上分别写上字母E ,E ,B ,将三X 卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.解析:三X 卡片的排列方法有EEB ,EBE ,BEE ,共3种.且等可能出现,那么恰好排成英文单词BEE 的概率为13. 答案:137.(某某高考)从1,2,3,4这四个数中一次随机地取两个数,那么其中一个数是另一个数的两倍的概率是________.解析:采用枚举法:从1,2,3,4这四个数中一次随机取两个数,基本事件为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,符合“一个数是另一个数的两倍〞的基本事件有{1,2},{2,4},共2个,所以所求的概率为13. 答案:138.将一枚质地均匀的硬币先后抛掷三次,恰好出现一次正面向上的概率是________.解析:所有的基本事件为(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共8组.设“恰好出现1次正面向上〞为事件A ,那么A 包含(正,反,反),(反,正,反),(反,反,正),共3个基本事件,所以P (A )=38.答案:38三、解答题9.设b 和c 分别是先后抛掷一枚骰子得到的点数,求方程x 2+bx +c =0有实根的概率. 解:设事件A 为“方程x 2+bx +c =0有实根〞,那么 A ={(b ,c )|b 2-4c ≥0,b ,c =1,2,…,6}.而(b ,c )共有(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),共36组.其中,可使事件A 成立的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共19组.故事件A 的概率为P (A )=1936. 10.(某某高考)袋中有五X 卡片,其中红色卡片三X ,标号分别为1,2,3;蓝色卡片两X ,标号分别为1,2.(1)从以上五X 卡片中任取两X ,求这两X 卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一X 标号为0的绿色卡片,从这六X 卡片中任取两X ,求这两X 卡片颜色不同且标号之和小于4的概率.解:(1)标号为1,2,3的三X 红色卡片分别记为A ,B ,C ,标号为1,2的两X 蓝色卡片分别记为D ,E ,从五X 卡片中任取两X 的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.由于每一X 卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五X 卡片中任取两X ,这两X 卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.所以这两X 卡片颜色不同且它们的标号之和小于4的概率为310. (2)记F 为标号为0的绿色卡片,从六X 卡片中任取两X 的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.由于每一X卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六X卡片中任取两X,这两X卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种.所以这两X卡片颜色不同且它们的标号之和小于4的概率为815.。
2.2 建立概率模型整体设计教学分析本节教材通过例2的四种模型的所有可能结果数越来越少,调动起学生思考探究的兴趣;教师在教学中要注意通过引导学生体会不同模型的特点以及对各种方法进行比较,提高学生分析和解决问题的能力.三维目标1.使学生能建立概率模型来解决简单的实际问题,提高学生分析问题和解决问题的能力.2.通过学习建立概率模型,培养学生的应用能力.重点难点教学重点:建立古典概型.教学难点:建立古典概型.课时安排1课时教学过程导入新课思路1.计算事件发生概率的大小时,要建立概率模型,把什么看成一个基本事件是人为规定的.今天我们学习如何建立概率模型,教师点出课题.思路2.解决实际应用问题时,要转化为数学问题来解决,即建立数学模型,这是高中数学的重点内容之一,也是高考的必考内容,同样解决概率问题也要建立概率模型,教师点出课题.推进新课新知探究提出问题1.回顾解应用题的步骤?2.什么样的概率属于古典概型?讨论结果:1.解应用题的一般程序:①读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础.②建:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型.熟悉基本数学模型,正确进行建“模”是关键的一关.③解:求解数学模型,得到数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程.④答:将数学结论还原给实际问题的结果.2.同时满足以下两个条件的概率属于古典概型:①试验的所有基本事件只有有限个,每次试验只出现其中一个基本事件;②每一次试验中,每个基本事件出现的可能性相等.应用示例思路1例1 口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,4个人按顺序依次从中摸出一球.试计算第二个人摸到白球的概率.分析:我们只需找出4个人按顺序依次摸球的所有可能结果数和第二个人摸到白球的可能结果数.为此考虑用列举法列出所有可能结果.解法一:用A 表示事件“第二个人摸到白球”.把2个白球编上序号1,2;2个黑球也编上序号1,2.于是,4个人按顺序依次从袋中摸出一球的所有可能结果,可用树状图直观地表示出来(如图1).图1树状图是进行列举的一种常用方法.从上面的树状图可以看出,试验的所有可能结果数为24.由于口袋内的4个球除颜色外完全相同,因此,这24种结果的出现是等可能的,试验属于古典概型.在这24种结果中,第二个人摸到白球的结果有12种,因此“第二个人摸到白球”的概率P(A)=2412=21, 这与第一节的模拟结果是一致的.还可以建立另外的模型来计算“第二个人摸到白球”的概率.如果建立的模型能使得试验的所有可能结果数变少,那么我们计算起来就更简便.解法二:因为是计算“第二个人摸到白球”的概率,所以我们可以只考虑前两人摸球的情况.前两人依次从袋中摸出一球的所有可能结果可用树状图列举出来(如图2).图2从上面的树状图可以看出,这个模型的所有可能结果数为12,因为口袋里的4个球除颜色外完全相同,因此,这12种结果的出现是等可能的,这个模型也是古典概型.在上面12种结果中,第二个人摸到白球的结果有6种,因此“第二个人摸到白球”的概率P(A)=126=21. 这里,我们是根据事件“第二个人摸到白球”的特点,利用试验结果的对称性,只考虑前两人摸球的情况,从而简化了模型.还可以从另外一个角度来考虑这个问题.因为口袋里的4个球除颜色外完全相同,因此,可以对2个白球不加区别,对2个黑球也不加区别,这样建立的模型的所有可能结果数就会更少,由此得到例2的另一种解法.解法三:只考虑球的颜色,4个人按顺序依次从袋中摸出一球的所有可能结果可用树状图列举出来(如图3).图3试验的所有可能结果数为6,并且这6种结果的出现是等可能的,这个模型是古典概型.在这6种结果中,第二个人摸到白球的结果有3种,因此“第二个人摸到白球”的概率P(A)=63=21. 下面再给出一种更为简单的解法.解法四:只考虑第二个人摸出的球的情况,他可能摸到这4个球中的任何一个,这4种结果出现的可能性是相同的.第二个人摸到白球的结果有2种,因此“第二个人摸到白球”的概率P(A)=42=21. 点评:画树状图进行列举是计算结果个数的基本方法之一.解法一利用树状图列出了4个人依次从袋中摸出一球的所有可能结果,共有24种,其中第二个人摸到白球的结果有12种,因此算得“第二个人摸到白球”的概率为21. 解法二利用试验结果的对称性,只考虑前两人摸球的情况,所有可能结果减少为12种,简化了模型.解法三只考虑球的颜色,对2个白球不加区别,对2个黑球也不加区别,所有可能结果只有6种.解法四只考虑第二个人摸出的球的情况,所有可能结果变为4种,这个模型最简单.尽管解法二,三,四建立的模型在解决该问题时比解法一简便,但解法一也有它的优势,利用解法一可以计算出4个人顺次摸球的任何一个事件的概率,而解法二,三,四却不能做到.教师要提醒学生,本章古典概率的计算,解法一是最基本的方法.对于一个实际问题,有时从不同的角度考虑,可以建立不同的古典概型来解决.变式训练小明和小刚正在做掷骰子游戏,两人各掷一枚骰子,当两枚骰子点数之和为奇数时,小刚得1分,否则小明得1分.这个游戏公平吗?分析:计算双方获胜的概率,来判断游戏是否公平.解:设(x,y)表示小明抛掷骰子点数是x ,小刚抛掷骰子点数是y ,则该概率属于古典概型.所有的基本事件是:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3), (4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3), (6,4),(6,5),(6,6),即有36种基本事件.其中点数之和为奇数的基本事件有:(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6),(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5).即有18种.所以小刚得1分的概率是3618=21. 则小明得1分的概率是1-21=21. 则小明获胜的概率与小刚获胜的概率相同,游戏公平.思路2例1 (2007广东高考,文8)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ) A.103 B.51 C.101 D.121 分析:用(x,y)(x≠y)表示从这5个球中随机取出2个小球上数字的结果,其结果有: (1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5),即共有10种,取出的小球标注的数字之和为3或6的结果有:(1,2)、(1,5)、(2,4),共有3种,所以取出的小球标注的数字之和为3或6的概率为P(A)= 103. 答案:A点评:求古典概型的概率的步骤:①利用枚举法计算基本事件的总数;②利用枚举法计算所求事件所含基本事件的个数;③代入古典概型的概率计算公式求得.变式训练1.(2007全国高考卷Ⅰ,文13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):该自动包装机包装的食盐质量在497.5 g —501.5 g 之间的概率约为___________.分析:观察表格可得在497.5 g —501.5 g 之间的食盐有:498,501,500,501,499共5袋,则食盐质量在497.5 g —501.5 g 之间的概率P(A)=205=0.25. 答案:0.252.某校要从高一、高二、高三共2 007名学生中选取50名组成访问团,若采用下面的方法选取:先用分层抽样的方法从2 007人中剔除7人,剩下的2 000人再按简单随机抽样的方法进行,则每人入选的概率( ) A.不全相等 B.均不相等C.都相等且为200750D.都相等且为401 分析:按分层抽样抽取样本时,每个个体被抽到的概率是相等的,都等于200750. 答案:C知能训练1.袋中有4个红球,5个白球,2个黑球,从里面任意摸2个小球,不是基本事件.( )A.{正好2个红球}B.{正好2个黑球}C.{正好2个白球}D.{至少一个红球}分析:至少一个红球包含:一红一白或一红一黑或2个红球,所以{至少一个红球}不是基本事件,其他事件都是基本事件.答案:D2.抛掷一枚质地均匀的硬币,如果连续抛掷10 000次,那么第9 999次出现正面朝上的概率是( )A.99991B.100001C.100009999D.21 答案:D3.有4条线段,长度分别为1、3、5、7,从这四条线段中任取三条,则所取三条线段能够成一个三角形的概率是( )A.41B.31C.21D.52 答案:A4.(2007全国高考卷Ⅱ,文13)一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为____________.分析:按简单随机抽样抽取样本时,每个个体被抽到的概率是相等的,都等于1005,即201. 答案:201 5.某小组有5名女生,3名男生,现从这个小组中任意选出一名组长,则其中一名女生小丽当选为组长的概率是__________.答案:81 6.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)事件A :取出的两球都是白球;(2)事件B :取出1个是白球,另1个是红球.分析:首先应求出任取两球的基本事件的总数,然后需分别求出事件A 的个数和事件B 的个数,运用公式求解即可.解:设4个白球的编号为1,2,3,4,两个红球的编号为5,6.从袋中的6个小球中任取两个的基本事件有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个.(1)取出的全是白球的基本事件,共有6个,即为(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),∴取出的两个球都是白球的概率为P(A)=156. (2)取出一个红球,而另一个为白球的基本事件,共有8个,即为(1,5),(1,6), (2,5),(2,6), (3,5),(3,6), (4,5),(4,6),∴取出的两个球一个是白球,另一个是红球的概率为P(B)=158. 拓展提升1.连续掷两次骰子,以先后得到的点数m,n 为点P(m,n)的坐标,设圆Q 的方程为x 2+y 2=17.(1)求点P 在圆Q 上的概率;(2)求点P 在圆Q 外部的概率.解:m 的值的所有可能是1,2,3,4,5,6,n 的值的所有可能是1,2,3,4,5,6,所以,点P(m ,n)的所有可能情况有6×6=36种,且每一种可能出现的可能性相等,本问题属古典概型问题.(1)点P 在圆Q 上只有P(1,4),P(4,1)两种情况,根据古典概型公式,点P 在圆Q 上的概率为181362=. (2)点P 在圆Q 内的坐标是:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共有8点,所以点P 在圆Q 外部的概率为1-18133682=+. 2.将一枚质地均匀的硬币连续投掷3次,求以下事件的概率:(1)3次正面向上;(2)2次正面向上,1次反面向上.解:(1)将一枚质地均匀的硬币连续投掷3次的基本事件总数为8,又事件“3次正面向上”共有基本事件数为1,设事件“3次正面向上”为A, ∴P(A)=81. ∴事件“3次正面向上”发生的概率为81. (2)又事件“2次正面向上,1次反面向上”共有基本事件数为3,设事件“2次正面向上,1次反面向上”为B,∴P(B)=83. ∴事件“2次正面向上,一次反面向上”发生的概率为83. 课堂小结本节课学习了同一个古典概型的概率计算问题,可以建立不同的概率模型来解决. 作业习题3-2 A 组 7、8.设计感想本节教学设计过程中,注重培养学生的应用能力,以及古典概型的计算方法.在实际教学过程中,教师要根据学生的实际,重点指导学生如何建立古典概型.。
§2古典概型2.1 古典概型的特征和概率计算公式(1)①试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;②每一个试验结果出现的可能性相同.我们把具有这样两个特征的随机试验的数学模型称为古典概型.(2)试验的每一个可能结果称为基本事件.2.古典概型的概率公式对于古典概型,通常试验中的某一事件A是由几个基本事件组成的.如果试验的所有可能结果(基本事件)数为n,随机事件A包含的基本事件数为m,那么事件A的概率规定为P(A)=事件A包含的可能结果数试验的所有可能结果数=m n.思考:若一次试验的结果所包含的基本事件的个数是有限个,则该试验是古典概型吗?[提示] 不一定是,还要看每个事件发生的可能性是否相同,若相同才是,否则不是.1.下列关于古典概型的说法中正确的是( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n ,随机事件A 若包含k 个基本事件,则P (A )=k n. A .②④ B .①③④C .①④D .③④B [根据古典概型的特征与公式进行判断,①③④正确,②不正确,故选B.]2.某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则基本事件共有( )A .1个B .2个C .3个D .4个C [基本事件共有{计算机,数学}、{计算机,航空模型}、{数学,航空模型}三个.]3.在国庆阅兵中,某兵种A ,B ,C 三个方阵按一定次序通过主席台,若先后次序是随机排定的,则B 先于A ,C 通过的概率为( )A.16B.13C.12D.23B [用(A ,B ,C )表示A ,B ,C 通过主席台的次序,则所有可能的次序有:(A ,B ,C ),(A ,C ,B ),(B ,A ,C ),(B ,C ,A ),(C ,A ,B ),(C ,B ,A ),共6种,其中B 先于A ,C 通过的有:(B ,C ,A )和(B ,A ,C ),共2种,故所求概率P =26=13.] 4.下列试验是古典概型的为 ________(填序号).①从6名同学中选出4人参加数学竞赛,每人被选中的可能性的大小;②同时掷两枚骰子,点数和为7的概率;③近三天中有一天降雨的概率;④10人站成一排,其中甲、乙相邻的概率.①②④ [①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,三天中是否降雨受多方面因素影响.]基本事件的计数问题个数.(1)从字母a ,b ,c 中任意取出两个字母的试验;(2)从装有形状、大小完全一样且分别标有1,2,3,4,5号的5个球的袋中任意取出两个球的试验.[解] (1)从三个字母中任取两个字母的所有等可能结果即基本事件.分别是A={a,b},B={a,c},C={b,c},共3个.(2)从袋中取两个球的等可能结果为球1和球2,球1和球3,球1和球4,球1和球5,球2和球3,球2和球4,球2和球5,球3和球4,球3和球5,球4和球5.故共有10个基本事件.确定基本事件空间的方法随机事件的结果是相对于条件而言的,要确定基本事件空间必须明确事件发生的条件,根据题意,按一定的次序列出问题的答案.求基本事件时,一定要注意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.[跟进训练]1.(1)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的所有基本事件数为________.(2)袋中有2个标号分别为1,2的白球和2个标号分别为3,4的黑球.这4个球除颜色、标号外完全相同,4个人按顺序依次从中摸出1个球,求基本事件的个数.(1)4[用列举法列举出“数字之和为奇数”的可能结果为:(1,2),(1,4),(2,3),(3,4),共4种结果.故填4.](2)4个人按顺序依次从袋中摸出1个球的所有可能结果用树状图表示如图所示:共24个基本事件.古典概型的判定【例2】下列概率模型是古典概型吗?为什么?(1)从区间[1,10]内任意取出一个实数,求取到实数2的概率;(2)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;(3)从1,2,3,…,100这100个整数中任意取出一个整数,求取得偶数的概率.[思路探究] 根据直观印象判断两个试验的基本事件数是否有限,每个基本事件是否等可能发生即可.[解] (1)不是古典概型,因为区间[1,10]中有无限多个实数,取出的那个实数有无限多种结果,与古典概型定义中“所有可能结果只有有限个”矛盾.(2)不是古典概型,因为硬币不均匀导致“正面向上”与“反面向上”的概率不相等,与古典概型定义中“每一个试验结果出现的可能性相同”矛盾.(3)是古典概型,因为在试验中所有可能出现的结果是有限的,而且每个整数被抽到的可能性相等.判断一个事件是否是古典概型,关键看该事件是否具备古典概型的两大特征1.有限性:在一次试验中,所有可能出现的基本事件只有有限个.2.等可能性:每个基本事件出现的可能性相等.[跟进训练]2.(1)在数轴上0~3之间任取一点,求此点的坐标小于1的概率.此试验是否为古典概型?为什么?(2)从1,2,3,4四个数中任意取出两个数,求所取两数之一是2的概率,此试验是古典概型吗?试说明理由.[解] (1)在数轴上0~3之间任取一点,此点可以在0~3之间的任一位置,且在每个位置上的可能性是相同的,具备等可能性.但试验结果有无限多个,不满足古典概型试验结果的有限性.因此不属于古典概型.(2)此试验是古典概型,因为此试验的所有基本事件共有6个:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),且每个事件的出现是等可能的,因此属于古典概型. 古典概型概率的求法1.掷一枚骰子共有多少种不同的结果?提示:共有6种不同的结果.2.掷一枚骰子,落地时向上的点数为偶数,包含几种结果? 提示:2,4,6共三种结果.3.掷一枚均匀的骰子,落地时向上的点数为偶数的概率怎样求?提示:记事件A 为落地时向上的点数为偶数,则P (A )=A 中包含的基本事件数基本事件总数.【例3】 现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.[思路探究] 用列举法列出试验的所有可能结果以及事件所包含的可能结果,然后利用公式求解.[解] (1)将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6,任取2道题,基本事件为{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A 表示“都是甲类题”这一事件,则A 包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P (A )=615=25. (2)基本事件同(1).用B 表示“不是同一类题”这一事件,则B 包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P (B )=815. 古典概型问题的解题方法与步骤1.判断所求概率的问题是否属于古典概型;2.利用列举法、列表法或树状图法列举出所有可能出现的基本事件,计算其总数n ;3.从所列出的基本事件中查出所求概率的事件A 包含的基本事件数m ;4.利用公式P (A )=m n求解. [跟进训练]3.(1)一个不透明的盒子里有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.那么甲赢的概率是( )A.1325B.1225C.12 D .以上均不对(2)用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色.求:①3个矩形颜色都相同的概率;②3个矩形颜色都不同的概率.(1)A [选A.甲先摸出一个球,放回后乙再摸一个球,结果共有25种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5).其中和为偶数的有13种,所以甲赢的概率是1325.] (2)解:由题意知,所有可能的基本事件共有27个,如图所示: ①记“3个矩形都涂同一颜色”为事件A ,由图知,事件A 所包含的基本事件有3个,故P (A )=327=19. ②记“3个矩形颜色都不同”为事件B ,由图知,事件B 所包含的基本事件有6个,故P (B )=627=29. 1.古典概型是一种最基本的概型.解题时要紧紧抓住古典概型的两个基本特征,即有限性和等可能性.在应用公式P (A )=m n时,关键是正确理解基本事件与事件A 的关系,从而求出m ,n .2.求某个随机事件A 包含的基本事件的个数和试验中基本事件的总数,常用的方法是列举法(画树状图和列表),注意做到不重不漏.3.对于用直接方法难以解决的问题,可以先求其对立事件的概率,再求所求概率.1.思考辨析(1)从[0,10]上任取一个不大于5的实数的试验为古典概型.( )(2)在古典概型中,试验中的基本事件都是有限的,且事件的发生都是等可能的.( )[解析] (1)×,可能结果有无限个.(2)√,根据古典概型的特征知正确.[答案] (1)×(2)√2.甲、乙、丙三名同学站成一排,甲站在中间的概率为____.13[基本事件为甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共6个,其中甲站在中间的为乙甲丙、丙甲乙,共2个,所以甲站在中间的概率为26=13.]3.广州亚运会要在某高校的8名懂外文的志愿者中选1名,其中有3人懂日文,则选到懂日文的志愿者的概率为________.38[8名懂外文的志愿者中随机选1名有8个基本事件,“选到懂日文的志愿者”包含3个基本事件,因此所求概率为38 .]4.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是多少?[解] 总的事件数为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种,其中和为5的一共有(1,4),(2,3),所以P=210=0.2.。
北师大版九年级上第三章《概率的进一步认识》《用树状图或表格求概率》第三课时教案【教学目标】1.知识与技能经历利用树状图和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯。
2.过程与方法鼓励学生思维的多样性,提高应用所学知识解决问题的能力。
3.情感态度和价值观经历自主探究、合作交流等学习方式的学习及激励评价,让学生在学习中锻炼能力.【教学重点】借助于树状图、列表法计算随机事件的概率。
【教学难点】在利用树状图或者列表法求概率时,各种情况出现可能性不同时的情况处理。
【教学方法】合作、探究【课前准备】多媒体课件【教学过程】一、复习回顾1.求概率的一般方法:树状图和列表法2.若某游戏不计得分情况,当双方获胜的概率___相等_____,则游戏公平;当双方获胜的概率____不相等____,则游戏不公平.3.用树状图和列表的方法求概率时应注意各种结果出现的可能性相同.二、探究新知探究:游戏1小颖为学校联欢会设计了一个“配紫色”游戏:下面的几个扇形,游戏规则是:游戏者同时转动两个转盘,如果转盘A转出红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)利用树状图或列表方法表示游戏所有可能出现的结果.(2)游戏者获胜的概率是多少?三、例题讲解:例1.已知△ABC 和 △DEF,根据下列条件判断它们是否相似. (1)AB=3, BC=4, AC =6.DE =6, EF =8, DF =9. ( 否) (2)AB=4, BC=8, AC =10.解:树状图可以是:游戏者获胜的概率是61. 利用表格可以是:红 白黄A盘B 盘游戏者获胜的概率是61. 游戏2:若将A,B 盘进行以下修改.其他条件不变,请求出获胜概率?小颖和小亮分别对A 盘、B 盘进行了分析,都计算出获胜概率是21,请你根据所学的知识认为谁做的正确,说说你的理由。
小颖制作下图:B 盘A 盘配成紫色的情况有:(红,蓝),(蓝,红)2种.总共有4种结果. 所以配成紫色的概率P =21. 小亮制作下表:小亮将A 盘中红色区域等分成2份,分别记“红1”,“红2”,配成紫色的情况有:(红1,蓝),(红2,蓝),(蓝,红)3种. 所以配成紫色的概率P =21. 总结:小颖的做法不正确.因为右边的转盘中红色部分和蓝色部分的面积不相同,因而指针落在这两个区域的可能性不同.小亮的做法是解决这类问题的一种常用方法. 问题2:用树状图和列表的方法求概率时应注意些什么?用树状图和列表的方法求概率时应注意各种结果出现的可能性务必相同. 三、例题讲解例1: 一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。
2.2 建立概率模型整体设计教学分析本节教材通过例2的四种模型的所有可能结果数越来越少,调动起学生思考探究的兴趣;教师在教学中要注意通过引导学生体会不同模型的特点以及对各种方法进行比较,提高学生分析和解决问题的能力.三维目标1.使学生能建立概率模型来解决简单的实际问题,提高学生分析问题和解决问题的能力.2.通过学习建立概率模型,培养学生的应用能力.重点难点教学重点:建立古典概型.教学难点:建立古典概型.课时安排1课时教学过程导入新课思路1.计算事件发生概率的大小时,要建立概率模型,把什么看成一个基本事件是人为规定的.今天我们学习如何建立概率模型,教师点出课题.思路2.解决实际应用问题时,要转化为数学问题来解决,即建立数学模型,这是高中数学的重点内容之一,也是高考的必考内容,同样解决概率问题也要建立概率模型,教师点出课题.推进新课新知探究提出问题1.回顾解应用题的步骤?2.什么样的概率属于古典概型?讨论结果:1.解应用题的一般程序:①读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础.②建:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型.熟悉基本数学模型,正确进行建“模”是关键的一关.③解:求解数学模型,得到数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程.④答:将数学结论还原给实际问题的结果.2.同时满足以下两个条件的概率属于古典概型:①试验的所有基本事件只有有限个,每次试验只出现其中一个基本事件;②每一次试验中,每个基本事件出现的可能性相等.应用示例思路1例1 口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,4个人按顺序依次从中摸出一球.试计算第二个人摸到白球的概率.分析:我们只需找出4个人按顺序依次摸球的所有可能结果数和第二个人摸到白球的可能结果数.为此考虑用列举法列出所有可能结果.解法一:用A 表示事件“第二个人摸到白球”.把2个白球编上序号1,2;2个黑球也编上序号1,2.于是,4个人按顺序依次从袋中摸出一球的所有可能结果,可用树状图直观地表示出来(如图1).图1树状图是进行列举的一种常用方法.从上面的树状图可以看出,试验的所有可能结果数为24.由于口袋内的4个球除颜色外完全相同,因此,这24种结果的出现是等可能的,试验属于古典概型.在这24种结果中,第二个人摸到白球的结果有12种,因此“第二个人摸到白球”的概率P(A)=2412=21, 这与第一节的模拟结果是一致的.还可以建立另外的模型来计算“第二个人摸到白球”的概率.如果建立的模型能使得试验的所有可能结果数变少,那么我们计算起来就更简便.解法二:因为是计算“第二个人摸到白球”的概率,所以我们可以只考虑前两人摸球的情况.前两人依次从袋中摸出一球的所有可能结果可用树状图列举出来(如图2).图2从上面的树状图可以看出,这个模型的所有可能结果数为12,因为口袋里的4个球除颜色外完全相同,因此,这12种结果的出现是等可能的,这个模型也是古典概型.在上面12种结果中,第二个人摸到白球的结果有6种,因此“第二个人摸到白球”的概率P(A)=126=21. 这里,我们是根据事件“第二个人摸到白球”的特点,利用试验结果的对称性,只考虑前两人摸球的情况,从而简化了模型.还可以从另外一个角度来考虑这个问题.因为口袋里的4个球除颜色外完全相同,因此,可以对2个白球不加区别,对2个黑球也不加区别,这样建立的模型的所有可能结果数就会更少,由此得到例2的另一种解法.解法三:只考虑球的颜色,4个人按顺序依次从袋中摸出一球的所有可能结果可用树状图列举出来(如图3).图3试验的所有可能结果数为6,并且这6种结果的出现是等可能的,这个模型是古典概型.在这6种结果中,第二个人摸到白球的结果有3种,因此“第二个人摸到白球”的概率P(A)=63=21. 下面再给出一种更为简单的解法.解法四:只考虑第二个人摸出的球的情况,他可能摸到这4个球中的任何一个,这4种结果出现的可能性是相同的.第二个人摸到白球的结果有2种,因此“第二个人摸到白球”的概率P(A)=42=21. 点评:画树状图进行列举是计算结果个数的基本方法之一.解法一利用树状图列出了4个人依次从袋中摸出一球的所有可能结果,共有24种,其中第二个人摸到白球的结果有12种,因此算得“第二个人摸到白球”的概率为21. 解法二利用试验结果的对称性,只考虑前两人摸球的情况,所有可能结果减少为12种,简化了模型.解法三只考虑球的颜色,对2个白球不加区别,对2个黑球也不加区别,所有可能结果只有6种.解法四只考虑第二个人摸出的球的情况,所有可能结果变为4种,这个模型最简单.尽管解法二,三,四建立的模型在解决该问题时比解法一简便,但解法一也有它的优势,利用解法一可以计算出4个人顺次摸球的任何一个事件的概率,而解法二,三,四却不能做到.教师要提醒学生,本章古典概率的计算,解法一是最基本的方法.对于一个实际问题,有时从不同的角度考虑,可以建立不同的古典概型来解决.变式训练小明和小刚正在做掷骰子游戏,两人各掷一枚骰子,当两枚骰子点数之和为奇数时,小刚得1分,否则小明得1分.这个游戏公平吗?分析:计算双方获胜的概率,来判断游戏是否公平.解:设(x,y)表示小明抛掷骰子点数是x ,小刚抛掷骰子点数是y ,则该概率属于古典概型.所有的基本事件是:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3), (4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3), (6,4),(6,5),(6,6),即有36种基本事件.其中点数之和为奇数的基本事件有:(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6),(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5).即有18种. 所以小刚得1分的概率是3618=21. 则小明得1分的概率是1-21=21. 则小明获胜的概率与小刚获胜的概率相同,游戏公平.思路2例1 (2007广东高考,文8)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ) A.103 B.51 C.101 D.121 分析:用(x,y)(x≠y)表示从这5个球中随机取出2个小球上数字的结果,其结果有: (1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5),即共有10种,取出的小球标注的数字之和为3或6的结果有:(1,2)、(1,5)、(2,4),共有3种,所以取出的小球标注的数字之和为3或6的概率为P(A)= 103. 答案:A点评:求古典概型的概率的步骤:①利用枚举法计算基本事件的总数;②利用枚举法计算所求事件所含基本事件的个数;③代入古典概型的概率计算公式求得.变式训练1.(2007全国高考卷Ⅰ,文13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):该自动包装机包装的食盐质量在497.5 g —501.5 g 之间的概率约为___________.分析:观察表格可得在497.5 g —501.5 g 之间的食盐有:498,501,500,501,499共5袋,则食盐质量在497.5 g —501.5 g 之间的概率P(A)=205=0.25. 答案:0.252.某校要从高一、高二、高三共2 007名学生中选取50名组成访问团,若采用下面的方法选取:先用分层抽样的方法从2 007人中剔除7人,剩下的2 000人再按简单随机抽样的方法进行,则每人入选的概率( )A.不全相等B.均不相等C.都相等且为200750D.都相等且为401分析:按分层抽样抽取样本时,每个个体被抽到的概率是相等的,都等于200750. 答案:C知能训练1.袋中有4个红球,5个白球,2个黑球,从里面任意摸2个小球,不是基本事件.( )A.{正好2个红球}B.{正好2个黑球}C.{正好2个白球}D.{至少一个红球}分析:至少一个红球包含:一红一白或一红一黑或2个红球,所以{至少一个红球}不是基本事件,其他事件都是基本事件.答案:D2.抛掷一枚质地均匀的硬币,如果连续抛掷10 000次,那么第9 999次出现正面朝上的概率是( ) A.99991 B.100001 C.100009999 D.21 答案:D3.有4条线段,长度分别为1、3、5、7,从这四条线段中任取三条,则所取三条线段能够成一个三角形的概率是( ) A.41 B.31 C.21 D.52 答案:A4.(2007全国高考卷Ⅱ,文13)一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为____________.分析:按简单随机抽样抽取样本时,每个个体被抽到的概率是相等的,都等于1005,即201. 答案:201 5.某小组有5名女生,3名男生,现从这个小组中任意选出一名组长,则其中一名女生小丽当选为组长的概率是__________. 答案:81 6.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)事件A :取出的两球都是白球;(2)事件B :取出1个是白球,另1个是红球.分析:首先应求出任取两球的基本事件的总数,然后需分别求出事件A 的个数和事件B 的个数,运用公式求解即可.解:设4个白球的编号为1,2,3,4,两个红球的编号为5,6.从袋中的6个小球中任取两个的基本事件有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个.(1)取出的全是白球的基本事件,共有6个,即为(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),∴取出的两个球都是白球的概率为P(A)=156. (2)取出一个红球,而另一个为白球的基本事件,共有8个,即为(1,5),(1,6), (2,5),(2,6), (3,5),(3,6), (4,5),(4,6),∴取出的两个球一个是白球,另一个是红球的概率为P(B)=158. 拓展提升1.连续掷两次骰子,以先后得到的点数m,n 为点P(m,n)的坐标,设圆Q 的方程为x 2+y 2=17.(1)求点P 在圆Q 上的概率;(2)求点P 在圆Q 外部的概率.解:m 的值的所有可能是1,2,3,4,5,6,n 的值的所有可能是1,2,3,4,5,6,所以,点P(m ,n)的所有可能情况有6×6=36种,且每一种可能出现的可能性相等,本问题属古典概型问题.(1)点P 在圆Q 上只有P(1,4),P(4,1)两种情况,根据古典概型公式,点P 在圆Q 上的概率为181362=. (2)点P 在圆Q 内的坐标是:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共有8点,所以点P 在圆Q 外部的概率为1-18133682=+. 2.将一枚质地均匀的硬币连续投掷3次,求以下事件的概率:(1)3次正面向上;(2)2次正面向上,1次反面向上.解:(1)将一枚质地均匀的硬币连续投掷3次的基本事件总数为8,又事件“3次正面向上”共有基本事件数为1,设事件“3次正面向上”为A, ∴P(A)=81. ∴事件“3次正面向上”发生的概率为81. (2)又事件“2次正面向上,1次反面向上”共有基本事件数为3,设事件“2次正面向上,1次反面向上”为B, ∴P(B)=83. ∴事件“2次正面向上,一次反面向上”发生的概率为83. 课堂小结本节课学习了同一个古典概型的概率计算问题,可以建立不同的概率模型来解决. 作业习题3-2 A 组 7、8.设计感想本节教学设计过程中,注重培养学生的应用能力,以及古典概型的计算方法.在实际教学过程中,教师要根据学生的实际,重点指导学生如何建立古典概型.。