《线性代数A》教学日历
- 格式:doc
- 大小:66.50 KB
- 文档页数:3
《线性代数》 教 案编 号:教学过程:(含复习上节内容、引入新课、中间组织教学以及如何启发思维等) 导入(10分钟)本章主要内容和知识点 新授课内容(75分钟) 二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。
设二元线性方程组 ⎩⎨⎧=+=+22222211212111b x a x a b x a x a用消元法,当021122211≠-a a a a 时,解得 211222111212112211222112121221,a a a a b a b a x a a a a b a b a x --=--=令2112221122211211a a a a a a a a -=,称为二阶行列式 ,则如果将D 中第一列的元素11a ,21a 换成常数项1b ,2b ,则可得到另一个行列式,用字母1D 表示,于是有2221211a b a b D =按二阶行列式的定义,它等于两项的代数和:212221a b a b -,这就是公式(2)中1x 的表达式的分子。
同理将D 中第二列的元素a 12,a 22 换成常数项b 1,b 2 ,可得到另一个行列式,用字母2D 表示,于是有2121112b a b a D =按二阶行列式的定义,它等于两项的代数和:121211b a b a -,这就是公式(2)中2x 的表达式的分子。
于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==D D x D D x 2211 其中 例1. 解线性方程组 .1212232121⎪⎩⎪⎨⎧=+=-x x x x 同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a用消元法解得0≠D定义 设有9个数排成3行3列的数表333231232221131211a a a a a a a a a 记 333231232221131211a a a a a a a a a D =322113312312332211a a a a a a a a a ++=332112322311312213a a a a a a a a a ---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆:从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2. 计算三阶行列式 243122421----=D .(-14)例3. 解线性方程组 .55730422⎪⎩⎪⎨⎧=+-=++-=++-z y x z y x z y x解 先计算系数行列式573411112--=D 069556371210≠-=----+-=《线性代数》教案编号:n n nna =n n nna =阶行列式的等价定义为:n n nna =1:《线性代数》教案编号:《线性代数》教案编号:《线性代数》教案编号:《线性代数》教案编号:其中行列式mnm m nna a a a a a a a a212222111211D =为按行列式的运算规则所得到的一个数;而n m ⨯矩阵是 n m ⨯个数的整体,不对这些数作运算。
《线性代数A》教学大纲4学分 64学时一、课程的地位、作用和任务线性代数是讨论有限维空间中线性关系经典理论的课程,它具有较强的抽象性和逻辑性,是高等学校工科本科各专业的一门重要的基础理论课。
由于线性问题广泛存在在于科学技术的各个领域,而某些非线性问题在一定条件下可以转化为线性问题,因此本课程所介绍的方法广泛地应用于各个学科。
随着计算技术和计算手段的发展和提高,本课程的地位和作用也更为重要。
通过本课程的学习,使学生掌握线性代数的基本概念,基本理论和方法。
培养学生的抽象思维和逻辑思维能力,运用线性代数的基本理论分析典型的数学问题的能力,会选用恰当的线性代数方法进行计算的能力,并为学习相关课程奠定必要的数学基础。
二、课程内容与教学基本要求(一)行列式(7学时)1. 理解n阶行列式的定义和性质。
熟悉代数余子式的定义和性质。
2. 掌握二阶、三阶行列式的计算方法。
3. 熟悉行列式按某行(列)展开的方法。
4. 会计算简单的n阶行列式。
了解行列式计算的常用方法。
5. 了解行列式的Laplace展开定理。
6. 熟悉Cramer法则,理解齐次线性方程组有非零解的条件。
(二)三维空间的直线与平面(6学时)1. 理解空间直角坐标系和R3中向量的坐标表示。
2. 掌握单位向量、方向余弦、向量的投影等概念3. 掌握向量的数量积与矢量积的运算,了解向量的混合积及其运算。
4. 掌握向量的线性运算和两向量垂直、平行的条件。
5. 熟悉R3中平面的方程和直线的方程及其求法。
6. 会利用平面、直线的相互关系解决简单问题。
(三)矩阵(7学时)1.理解矩阵的概念,熟悉常见的特殊矩阵的基本性质。
2.掌握矩阵的简单代数运算(线性运算、乘法、转置)及其运算法则。
3.理解线性变换的概念,了解线性变换与矩阵运算的联系。
4.理解逆矩阵的概念。
掌握逆矩阵存在的条件,熟悉矩阵求逆的方法。
5.掌握矩阵的初等变换。
了解初等方阵。
6.会用初等变换方法求逆矩阵。
7.理解矩阵秩的概念并掌握其求法。
课程教学日历
(2013——2014 第 1 学期)
课程名称:线性代数
任课教师:杨洁
教师所在单位:数学系
授课对象:2012级经法系会计1、2 聊城大学东昌学院教务处编印
教学日历填写说明
1.教学日历是教师组织课程教学的具体计划表,应明确规定教学进程、授课内容提要、各种教学环节、方式、课外作业的安排等;
2.实验课要写明实验名称,实验学时数;独立开设的实验课教学日历中还必须写明实验内容;习题课、课堂讨论和其它环节要注明题目和学时数;
3.公共课集体备课的课程,应在教学日历备注栏注明;
4.多名教师上同一班级同一门课程,应在教学日历中标明各个教师所讲授内容;5.国庆节、五一节假期中不应安排教学内容;要在教学内容处写国庆节或五一放假。
6、学生劳动实践周不应安排教学内容;要在教学内容处写学生劳动实践周;7.教学日历中课程名称应与教学方案中对应课程名称一致;
8.教学日历一式三份,经教务员、主管教学主任签字后,任课教师留一份,另两份交教师所在系(部)和教务处备案,并由教师所在系(部)及教务处负责检查、归档;
9.教学日历必须认真填写,在每学期第一周内交开课系(部)及教务处备查。
教学日历一经制订,不应出现大的变动,但允许主讲教师在完成课程教学大纲规定的教学要求前提下,进行必要的调整,以适应不断出现的新情况。
如有变动,须经系(部)主任审查批准,并报教务处备查。
10、教学执行情况由检查人员根据检查情况填写;检查人员每学期检查次数应不低于四次;
教务员签名:主管教学系主任签名:
年月日年月日。
---------------------------------------------------------------最新资料推荐------------------------------------------------------12-13(2)线代教学日历32(汪1)沈阳工业大学 2019~2019 学年二学期教学日历课程名称:线性代数任课教师:汪妍授课班级:计算机科学与技术1201-1202;工程管理 1201-1202 开课时间:第 1 周-第 16 周学时教研室主任签字:教学主任签字:教学院长签字(盖章):年月日总学分总学时学期学分学期学时本学期学时分配讲授学时上机学时实验课外学时上机实验练习 2 32 2 32 32 0 0 0 0 0 一、理论讲授进程表序号周次星期节次主要内容学时授课方式地点 1 1 二 3.4 第一章 1 二阶与三阶行列式 2 全排列及其逆序数 3 n 阶行列式的定义 2 2-201 2 2 二 3.4 4 对换 5 行列式的性质 2 2-201 3 3 二 3.4 6 行列式按行(列)展开 7 克拉默法则 2 2-201 4 4 二 3.4 第二章 1 矩阵 2 矩阵的运算 2 2-201 5 5 二 3.4 3 逆矩阵 2 2-201 6 6 二 3.4 4 矩阵分块法 2 2-201 7 7 二 3.4 第三章 1 矩阵的初等变换 2 2-201 8 8 二 3.4 2 矩阵的秩 2 2-201 9 9 二1 / 33.4 3 线性方程组的解 2 2-201 10 10 二 3.4 第四章 1 向量组及其线性组合 2 向量组的线性相关性 2 2-201 11 11 二 3.4 3 向量组的秩 4 线性方程组解的结构 2 2-201 12 12 二 3.4 5 向量空间 2 2-201 13 13 二 3.4 第五章 1 向量的内积、长度及正交性 22-201 14 14 二 3.4 2 方阵的特征值与特征向量 2 2-201 15 15 二3.4 3 相似矩阵 4 对称矩阵的对角化2 2-201 16 16 二 3.4 5 二次型及其标准型 6 用配方法化二次型成标准型 2 2-201 合计 32 注:周次按校历统一教学周填写,授课方式填写双语授课或 CAI 教学。
《线性代数A》教学大纲contents •课程目标与要求•教学内容与计划•线性方程组•矩阵及其运算•向量空间与线性变换•特征值与特征向量•二次型与矩阵合同•课程复习与考试指导目录01课程目标与要求010204知识与技能目标掌握线性代数的基本概念、基本理论和基本方法。
熟练掌握矩阵的运算、行列式的计算以及线性方程组的解法。
理解向量空间、线性变换以及特征值和特征向量的概念。
能够运用所学知识解决一些实际问题,如线性规划、数据分析等。
03培养学生的抽象思维能力和逻辑推理能力。
提高学生分析问题和解决问题的能力。
培养学生的自主学习能力和团队协作精神。
教授学生如何将线性代数知识应用于其他学科和实际生活中。
01020304过程与方法目标02030401情感态度与价值观目标激发学生对线性代数学习的兴趣和热情。
培养学生的数学素养和严谨的科学态度。
帮助学生认识到线性代数在现代科技和社会发展中的重要作用。
培养学生的创新思维和实践精神。
学生需要按时完成作业和练习,积极参与课堂讨论。
平时成绩主要包括作业完成情况、课堂表现、小组讨论等。
考核方式包括平时成绩、期中考试和期末考试,其中平时成绩占总评的30%,期中考试占总评的30%,期末考试占总评的40%。
期中和期末考试主要考察学生对课程内容的掌握程度和应用能力。
课程要求与考核方式02教学内容与计划教学内容概述向量空间与线性变换特征值与特征向量线性方程组矩阵与行列式介绍向量空间的基本概念、线性变换及其性质,为后续的线性方程组、特征值与特征向量等内容打下基础。
讲解线性方程组的解法,包括高斯消元法、矩阵的秩与线性方程组解的关系等,培养学生解决实际问题的能力。
系统介绍矩阵的基本运算、矩阵的逆、转置以及行列式的定义和性质,为后续的线性代数知识提供必要的数学工具。
深入讲解特征值与特征向量的概念、性质以及计算方法,为理解线性变换的几何意义和应用奠定基础。
教学重点与难点教学重点向量空间的基本概念、线性变换及其性质、线性方程组的解法、矩阵的基本运算以及特征值与特征向量的概念和应用。
(三)《线性代数》课程简介及教学大纲一、课程简介1.课程编号:JA01032.课程名称:线性代数3.开课学院:数学课程组4.学时:345.类别:必修6.先修课程:无7.课程简介:《线性代数》课程是高等学校经济管理类和理工类本科各专业学生的一门必修的重要基础理论课,属于基础数学类课程。
是大部分经济管理类和理工类课程的必备基础。
通过本课程的学习,要使学生掌握行列式、矩阵、线性方程组、向量空间、矩阵特征值特征向量及二次型等基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
在课程的教学过程中,要通过各个教学环节培养学生具有比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力。
Course Code:JA0103Name of Course:Linear AlgebraFaculty: Mathematics Course GroupCredit Hours: 34Classification: Compulsory coursePrerequisite:NoneCourse Outline:Linear Algebra is a compulsory basic theory course for undergraduate students who are major in Economic Management or Science and Engineering. It is a part of fundamental mathematic courses and is a necessary foundation for most Economic Management and Science and Engineering courses.Through studying this course, the students will gain basic concepts, basic theories, and basic computing ability on determination, matrix, linear algebraic equations, vector space, the eigenvalue and eigenvector of matrix, quadratic etc. These are key to understanding the subsequent courses and further study in mathematics.In the process of teaching the course, we will gradually train the students through various teaching methods to gain skilled operational capability and the ability to analyze and solve problems through comprehensive use of the learned knowledge.二、课程教学大纲1. 课程编号:JA0103 5. 先修课程:无2. 课程类别:基础数学类,必修 6. 课内总学时:343. 开课学期:第一学年二学期 7. 实验/上机学时:4. 适用专业:各工科、管理类专业 8. 执笔人:柳金甫,安玉冉1.课程教学目的《线性代数》课程是高等学校经济管理类和理工类本科各专业学生的一门必修的重要基础理论课,属于基础数学类课程。