常见化学发光免疫分析技术比较
- 格式:doc
- 大小:46.50 KB
- 文档页数:11
化学发光免疫分析与其他方法对比化学发光免疫分析(Chemiluminescent Immunoassay, CLIA)是一种高灵敏度和高特异性的分析方法,常用于检测血液中的生物标志物以及其他生物样品中的分析物。
与其他常用的分析方法相比,化学发光免疫分析具有以下特点:1. 高灵敏度:化学发光免疫分析使用化学荧光产生光信号,荧光强度较高,大大提高了检测灵敏度。
正常情况下,化学发光免疫分析的灵敏度可达到ng/mL或pg/mL级别。
2.高特异性:化学发光免疫分析使用特异性的抗体或配体与待测物结合,能够准确地检测目标物质,避免了其他背景物质的干扰,保证了结果的准确性和可靠性。
3. 宽线性范围:化学发光免疫分析可在一个较宽的浓度范围内进行定量分析,通常可以在pg/mL到μg/mL范围内准确测量待测物质的浓度。
4.快速:化学发光免疫分析的反应速度较快,通常只需要几分钟到几十分钟就可获得结果。
这使得化学发光免疫分析在临床医学等领域中得到广泛应用。
5.自动化程度高:化学发光免疫分析通常使用酶标仪或化学发光仪进行测量,并且具备连续连续、多重测量和自动分析等功能,可适应高通量、多样品同时处理的需求。
除了化学发光免疫分析,目前常用的其他方法包括酶联免疫吸附试验(Enzyme-Linked Immunosorbent Assay, ELISA)、放射免疫分析(Radioimmunoassay, RIA)和免疫荧光分析(Immunofluorescence Assay, IFA)等。
与这些方法相比,化学发光免疫分析具有以下优势:1.安全性高:化学发光免疫分析不需要使用放射性物质,相比放射免疫分析更为安全,没有放射性污染的风险。
2.操作简便:化学发光免疫分析的操作相对简单,只需将样本和试剂添加到试验板中,并通过酶标仪或化学发光仪进行测量,不需要繁琐的实验步骤和长时间的操作。
3.灵敏度更高:相对于常规的ELISA方法,化学发光免疫分析的灵敏度更高。
荧光和化学发光免疫分析方法荧光和化学发光免疫分析方法是一种常用的生物分析技术,广泛应用于生命科学研究、临床诊断和药物研发等领域。
本文将详细介绍荧光和化学发光免疫分析方法的原理、应用以及优缺点等方面。
首先,荧光免疫分析方法利用标记有荧光物质的抗体或抗原与待检测物相互作用,通过检测荧光信号来定量分析目标物。
其原理是当荧光标记物被激发后,会发射出特定波长的荧光信号,利用荧光光谱仪测量荧光强度来确定目标物的浓度。
荧光免疫分析方法具有高灵敏度、高选择性和多样性的优点,可用于检测蛋白质、核酸、细胞等生物分子。
化学发光免疫分析方法则是利用特定的化学反应产生荧光信号来检测目标物。
常用的化学发光免疫分析方法有酶免疫分析和化学发光免疫分析。
在酶免疫分析中,酶标记的抗体或抗原与待检测物相互作用后,加入底物,酶催化底物发生化学反应产生荧光信号。
而化学发光免疫分析则是通过特定的化学反应产生激发态分子,激发态分子发生无辐射跃迁产生荧光信号。
化学发光免疫分析方法具有高灵敏度、快速、稳定性好的特点,常用于临床诊断和药物研发等领域。
荧光和化学发光免疫分析方法在生命科学研究中有广泛的应用。
例如,在蛋白质研究中,可以利用荧光免疫分析方法检测蛋白质的表达水平、相互作用以及酶活性等。
在细胞研究中,荧光免疫分析方法可以用于检测细胞的分子分布、内源性蛋白质的表达和细胞信号传导等。
此外,荧光和化学发光免疫分析方法还可以用于检测病原体、药物残留和环境污染物等。
荧光和化学发光免疫分析方法具有许多优点。
首先,这些方法具有高灵敏度,可以检测到非常低浓度的目标物。
其次,这些方法具有高选择性,能够在复杂的样品中准确地检测目标物。
此外,荧光和化学发光免疫分析方法还可以实现高通量分析,节省时间和成本。
然而,荧光和化学发光免疫分析方法也存在一些缺点。
首先,荧光信号受到背景干扰的影响,可能导致误差的产生。
其次,荧光标记物的稳定性较差,容易受到光照和温度等因素的影响。
免疫学技术的迅速发展对精度的要求越来越高,一般的酶免检测技术已逐渐无法适应这种形势的需要。
现今发展的主流已不再是用放射性同位素标记的测定方法(避免污染环境及对人体损害),而是转向于能在任何地方操作的快速均相和固相测定,最终趋向于能够枪测到皮克或10负18摩尔级的、非同位素的、自动或半自动的实验室测定技术,发光免疫分析技术顺应了这一潮流,开创了免疫诊断的新纪元。
发光免疫分析是一种灵敏度高、特异性强、检测快速及无放射危害的分析技术。
70年代末以来得到了迅速发展,目前在国际上已经实现商品化和产业化的发光免疫分析产品,基本上可以分为:化学发光、时间分辨荧光(也称时间延迟光致发光)、电化学发光(也称场致发光和电致发光)几种。
1、化学发光化学发光是指在化学反应过程中发出可见光的现象。
通常是指有些化合物不经紫外光或可见光照射,通过吸收化学能(主要为氧化还原反应),从基态激发至激发态。
退激时通过跃迁(或将激发能转移至受体分子上),释放能量产生光子,以光形式放出能量从而导致的发光现象。
其主要特点为消耗发光剂。
同时量子效率相对较低。
1.1 按化学反应类型分类:可分为酶促化学发光和非酶促化学发光两类。
其中酶促化学发光主要包括辣根过氧化物酶(HRP)系统、碱性磷酸酶 (ALP)系统、黄嘌呤氧化酶系统等。
酶促发光的共同特点为发光过程中作为标记物的酶基本不被消耗,而反应体系中发光剂充分过最,因此发光信号强而稳定,且发光时间较长。
因此可采用速率法测量,故检测方式简单、成本较低。
酶促反应的主要缺点为工作曲线可能随时间漂移,而且低端斜率容易呈非线性下移。
而非酶促化学发光包括吖啶酯系统、草酸酯系统、三价铁一鲁米诺系统等。
非酶促发光的共同特点为发光过程中标记物被消耗,同时作为标记物的发光剂是发光反应的瓶颈,即含量总是相对不足,因此发光信号持续时间较短;如果直接在免疫反应杯中启动发光反应,由于发光剂被很快消耗,故只能进行一次性测量。
所以重复性较差。
酶联免疫法和化学发光法
酶联免疫法(ELISA)和化学发光法(CLIA)是两种常用的免疫分析技术,用于检测和定量生物分子,如蛋白质、抗体、激素等。
它们在实验室和临床诊断中广泛应用。
酶联免疫法是一种基于酶催化反应的免疫分析方法。
其基本原理是将待测物(抗原或抗体)与固相载体(如微孔板)上的抗体或抗原结合,然后加入酶标记的抗体或抗原,形成三明治复合物。
当加入底物时,酶会催化底物发生反应,产生可检测的信号,通常是颜色变化或荧光强度。
通过测量这些信号,可以定量待测物的浓度。
酶联免疫法具有灵敏度高、特异性好、操作简便等优点,适用于大规模样本的检测。
它可以用于检测多种生物分子,如蛋白质、激素、药物、病原体等。
常见的酶联免疫法包括间接法、夹心法和竞争法等。
化学发光法是一种基于化学发光反应的免疫分析方法。
其基本原理是将待测物与固相载体上的抗体或抗原结合,然后加入标记有发光物质的抗体或抗原,形成三明治复合物。
当加入触发剂时,发光物质会被激发并产生光信号。
通过测量光信号的强度,可以定量待测物的浓度。
化学发光法具有灵敏度高、线性范围宽、快速等优点,适用于微量和痕量分析。
它可以用于检测多种生物分子,如蛋白质、激素、药物、病原体等。
常见的化学发光法包括间接法、夹心法和竞争法等。
总的来说,酶联免疫法和化学发光法都是常用的免疫分析技术,它们各有优缺点,适用于不同的应用场景。
选择哪种方法取决于待测物的特性、检测要求以及实验室的设备和技术水平。
化学发光免疫分析与其他方法对比化学发光免疫分析(Chemiluminescent Immunoassay,简称CLIA)是一种基于化学发光原理的免疫分析方法。
与其他传统的免疫分析方法相比,CLIA具有许多优点,使其成为当前广泛应用于生物医学领域的重要技术之一首先,CLIA具有极高的灵敏度。
由于化学发光反应产生的光信号非常强烈,因此能够检测到非常低浓度的分析物。
这使得CLIA在检测罕见疾病或者低浓度生物标志物时非常有优势。
其次,CLIA具有广泛的线性范围。
由于化学发光反应的信号强度与分析物的浓度呈线性关系,因此CLIA能够在广泛的浓度范围内准确测定分析物的浓度。
这使得CLIA成为临床实验室中常用的定量分析方法。
此外,CLIA还具有较高的特异性。
由于CLIA是基于免疫反应进行的,只有与特定抗原结合的抗体才能产生化学发光反应。
因此,CLIA能够准确地鉴定和测定特定抗原或抗体,避免了其他非特异性反应的干扰。
另一个优点是CLIA的操作简便和高效。
相对于传统的放射免疫分析(Radioimmunoassay,RIA)或酶联免疫吸附试验(Enzyme-linked immunosorbent assay,ELISA)等方法,CLIA无需使用放射性物质或底物染色等复杂步骤,操作简单、快速,并且能够实现自动化操作,提高检测效率。
此外,CLIA还具有较长的稳定性。
由于化学发光反应所需的试剂通常具有较长的保存期限,且反应条件可控,因此CLIA的试剂稳定性较高,能够长期保存并保持较好的性能。
然而,CLIA也存在一些限制。
首先,CLIA的成本较高。
由于所需试剂和设备较为昂贵,因此CLIA在一些资源匮乏的地区可能不太适用。
其次,CLIA对样本处理的要求较高。
由于CLIA的灵敏度非常高,对样品中可能存在的干扰物敏感,因此需要对样品进行特定的前处理步骤,以确保准确的分析结果。
总体而言,化学发光免疫分析是一种灵敏、特异、简便和高效的免疫分析方法,具有许多优点,使其在生物医学领域得到广泛应用。
发光免疫的种类及特点发光免疫是利用一些特定的发光物质来标记抗原、抗体,这些物质吸收能量后能使其分子进入激发态。
当处于激发态的分子退回到基态时以光子的形式释放能量,从而产生可见或不可见光,然后通过对光的强度和属性进行检测来判断被测物的量[1]。
根据发光物质的不同,发光免疫分析可分为化学发光免疫分析、化学发光酶免疫分析、生物发光酶免疫分析、微粒子化学发光免疫分析和电化学发光免疫分析。
1 化学发光免疫分析化学发光免疫分析(CLIA)是以化学发光底物直接标记抗原或抗体的免疫测定方法,常用的标记发光剂有鲁米诺、异鲁米诺及吖啶酯类。
80年代Pateln等采用吖啶酯为发光剂,改进了标记方法,在反应过程中不需催化剂,只要在碱性环境中就可进行,从而提高了测定的灵敏度[1]。
吖啶酯衍生物有几种分子结构,它们结构中都有共同的吖啶环,通过启动发光剂,在过氧化氢作用下,生成电子激发态的中间体N-甲基吖啶酮,当其回到基态时发出光子(hT),激发波长395nm,发射光波长430nm,其发光为快速闪烁发光,其检测灵敏度可以达到8×10-19mool/I,。
应用吖啶酯类化合物可以标记多抗、单抗,进一步制备固相试管或微球,可以应用于竞争法分析,也可用于夹心法进行免疫化学发光分析,这一领域里全自动分析仪发展很快,目前已有多家以吖啶酯为标志物的全自动免疫分析系统,每小时可以完成数百个测试,很快在临床得到了推广应用。
2 生物发光酶免疫分析生物发光是化学发光的一个特殊类型,它是生命活性生物体所产生的发光现象,发光所需的激光来自生物体内的酶促反应,催化此类反应的酶称为荧光素酶。
生物发光包括萤火虫生物和细菌生物发光,前者发光反应需ATP的参与,故萤火虫生物发光又称ATP依赖性生物发光。
ATP依赖性生物发光反应中,萤火虫荧光素和荧光素酶在ATP、Mg2+和O2存在下可发光,反应式为:ATP+荧光素+荧光素酶→腺苷基荧光素。
腺苷基荧光素+O2→腺苷基氧化荧光素+光子[2]。
常见化学发光免疫分析技术比较1、化学发光免疫分析化学发光免疫分析(chemiluminescence immunoassay,CLIA),英音:[,kemi,lju:mi'nesəns] [,imju:nəuə'sei]是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。
是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。
CLIA是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。
是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。
1.1、化学发光免疫分析原理化学发光免疫分析包含两个部分, 即免疫反应系统和化学发光分析系统。
化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hv) , 利用发光信号测量仪器测量光量子产额。
免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体) 直接标记在抗原(化学发光免疫分析) 或抗体(免疫化学发光分析) 上, 或酶作用于发光底物。
1.2、化学发光免疫分析类型化学发光免疫分析法以标记方法的不同而分为两种:(1)化学发光标记免疫分析法;(2)酶标记、以化学发光底物作信号试剂的化学发光酶免疫分析法1.2.1化学发光标记免疫分析化学发光标记免疫分析又称化学发光免疫分析(CL IA ) , 是用化学发光剂直接标记抗原或抗体的免疫分析方法。
常用于标记的化学发光物质有吖啶酯类化合物-acridiniumester (AE) , 是有效的发光标记物,其通过起动发光试剂(NaOH-H2O2) 作用而发光, 强烈的直接发光在一秒钟内完成, 为快速的闪烁发光。
吖啶酯作为标记物用于免疫分析, 其化学反应简单、快速、无须催化剂; 检测小分子抗原采用竞争法, 大分子抗原则采用夹心法, 非特异性结合少, 本底低; 与大分子的结合不会减小所产生的光量, 从而增加灵敏度。
1.2.2化学发光酶免疫分析从标记免疫分析角度, 化学发光酶免疫分析(chemiluminescent enzyme immunoassay,CLEIA ) , 应属酶免疫分析, 只是酶反应的底物是发光剂, 操作步骤与酶免分析完全相同: 以酶标记生物活性物质(如酶标记的抗原或抗体) 进行免疫反应, 免疫反应复合物上的酶再作用于发光底物, 在信号试剂作用下发光, 用发光信号测定仪进行发光测定。
目前常用的标记酶为辣根过氧化物酶(HRP) 和碱性磷酸酶(AL P) , 它们有各自的发光底物。
12.2.1HRP 标记的CLEIA常用的底物为鲁米诺(3-氨基邻苯二甲酰肼,luminol) , 或其衍生物如异鲁米诺(4-氨基邻苯二甲酰肼) , 是一类重要的发光试剂。
其结构如图4 所示。
鲁米诺的氧化反应在碱性缓冲液中进行, 在过氧化物酶及活性氧[过氧化阴离子(O2-) , 单线态氧(1O2) , 羟自由基(OH·) , 过氧化氢(H2O2) ]存在下,生成激发态中间体, 当其回到基态时发光, 其波长为425nm。
早期用鲁米诺直接标记抗原(或抗体) , 但标记后发光强度降低而使灵敏度受到影响。
近来用过氧化物酶标记抗体, 进行免疫反应后利用鲁米诺作为发光底物, 在过氧化物酶和起动发光试剂(N aOH-H2O2) 作用下, 鲁米诺发光, 发光强度依赖于酶免疫反应物中酶的浓度。
Kodak AmerliteTM 半自动分析系统就是利用这一体系专门设计的。
1.2.2.2增强发光酶免疫分析(enhanced luminescence enzyme immunoassay, ELEIA )在发光系统中加入增强发光剂, 如对2碘苯酚等, 以增强发光信号, 并在较长时间内保持稳定, 便于重复测量, 从而提高分析灵敏度和准确性。
在全自动分析仪上, 还可通过计算机严密控制, 进行自动操作, 如加试剂, 混合, 温育, 洗涤, 加发光试剂, 发光计数, 数据处理, 绘制标准曲线, 直至完成病人血清样品的分析并打印出结果。
Am erliteTM 发光增强酶免分析系统用荧光素、噻唑等增强剂, 其发光时间可持续长达20min, 试剂盒有甲状腺功能检测的促甲状腺素、三碘甲腺原氨酸、甲状腺素、甲状腺素结合球蛋白、游离甲状腺素, 与性激素有关的有促黄体激素、促卵泡激素、人绒毛膜促性腺激素、甲胎蛋白、雌二醇、睾酮, 以及其他方面的如癌胚抗原、铁蛋白、地高辛等。
1.2.2.3ALP标记的CLEIA所用发光底物为环1, 2-二氧乙烷衍生物,,用于化学发光酶免分析底物而设计的分子结构中包含起稳定作用的金刚烷基, 其分子中发光基团为芳香基团和酶作用的基团, 在酶及起动发光试剂作用下引起化学发光。
最常使用的底物AMPPD 3-[2-spiroadamatane]-4-methoxy -4-[3-phosphoryloxy]-phenyl-1,2-dioxetane) Dioxetane中文名为: 3-(2-螺旋金刚烷)-4-甲氧基-4-(3-磷氧酰)-苯基-1,2-二氧环乙烷。
在碱性磷酸酶(ALP) 作用下, 磷酸酯基发生水解而脱去一个磷酸基, 得到一个中等稳定的中间体AMPD (半寿期为2-30min) , 此中间体经分子内电子转移裂解为一分子的金刚烷酮和一分子处于激发态的间氧苯甲酸甲酯阴离子, 当其回到基态时产生470nm 的光, 可持续几十分钟(如图5)。
AMPPD 为磷酸酯酶的直接化学发光底物, 可用来检测碱性磷酸酯酶或酶和抗体、核酸探针及其它配基的结合物。
可检测到碱性磷酸酯酶的浓度为10-15mol/L 。
美国DPC公司的Immulite全自动酶放大发光免疫分析仪, 以碱性磷酸酶为标记物, 以金刚烷作发光底物, 测定灵敏度相当于10- 21mol/mL的酶, 采用聚苯乙烯珠作载体, 其检测水平已能达到10- 12g/mL。
AMPPD是一种生物化学领域中最新的超灵敏的碱性磷酸酶底物,其特点:反应速度快,在很短时间内提供正确可靠的结果。
在它的分子结构中有两个重要部分,一个是联接苯环和金刚烷的二氧四节环,它可以断裂并发射光子;另一个是磷酸根基团,它维持着整个分子结构的稳定。
在通常情况下,这种化合物很稳定。
但是当有碱性磷酸酶存在时,DioxetanePhosphate作为酶的底物会在酶的催化一脱去磷酸根基团,形成一个不稳定的中间体。
这个中间体随即自行分解(二氧四节环断裂),同时发射光子。
该试剂采用微粒子化学发光技术,采用最新磁性微粒,用以包被抗体。
用碱性磷酸酶(ALP)标记抗原(抗体)。
经过普通抗原抗体反应,碱性磷酸酶结合在微粒子上,碱性磷酸酶的结合量同病人血清中的待测物质成比例。
经过洗涤(反应管两边有磁场,磁性微粒包被的抗原抗体结合物被吸附在管子两边,其余游离部分被抽吸掉),最后加入发光底物DioxetanePhosphate,5分钟后,仪器通过光电倍增管检测反应的发光强度。
AMPPD是碱性磷酸酶的化学发光底物,在适宜的缓冲液中,随着酶的催化水解作用,AMPPD分解成AMP-D,后者发出强度很高的光信号,其发光的速度取决于碱磷酶的浓度。
当碱磷酶偶合到杂交的探针时,便可以通过此系统检测到杂交分子的存在量。
2微粒体发光免疫分析微粒体发光免疫分析(microparticle luminescence enzyme immunoassay,MLEIA ),该免疫分析技术有两种方法:一种是小分子抗原物质的测定采用竞争法。
另一种是大分子的抗原物质测定采用双抗体夹心法。
该仪器所用固相磁粉颗粒极微小,其直径仅 1.0μm,这样大大增加了包被表面积,增加抗原或抗体的吸附量,使反应速度加快,也使清洗和分离更简便,从而减少污染,降低交叉污染概率。
反应中使用碱性磷酸酶(ALP)标记抗原或抗体,作用于其底物二氧乙烷磷酸酯,由其在激发态与基态的动力学变化中发生发光反应。
2.1、竞争反应其原理是:用过量包被磁颗粒的抗体,与待测的抗原和定量的标记吖啶酯抗原同时加入反应杯温育,其免疫反应的结合形式有两种,一是标记抗原与抗体结合成复合物;二是测定抗原与抗体的结合形式。
如受检标本中含有待测抗原,则与标记抗原以同样的机会与磁颗粒包被的抗体结合,竞争性地占去了吖啶酯标记抗原与磁颗粒包被的抗体结合的机会,使吖啶酯标记抗原与磁颗粒包被的抗体的结合量减少。
由于磁颗粒包被的抗体是过量的,足以与待测抗原结合。
2.2、双抗体夹心法:其原理是:标记抗体与被测抗原同时与包被抗体结合成一种反应形式,即包被抗体-测定抗原-发光抗体的复合物。
具体讲是以顺磁性微珠作为载体包被抗体,利用磁性微珠能被磁场吸引,在磁场的作用下发生力学移动的特性,迅速捕捉到被测抗原,当加入标本后,标本中的抗原与磁性抗体形成复合物,在磁力的作用下,协助该复合物快速地与其他非特异性物质分离,使抗原-抗体结合反应的时间缩短,测定时间减少,降低了交叉污染的几率,此时再加入碱性磷酸酶标记的第二抗体,形成磁珠包被抗体-抗原-酶标记抗体复合物,经洗涤去掉未结合的抗体后,加入ALP的发光底物环1,2-二氧乙烷衍生物AMPPD 。
AMPPD被复合物上ALP催化,迅速地去磷酸基团,生成不稳定的中间体AMPD。
AMPD的快速分解,从高能激发态回到低能量的稳定态时,持续稳定地发射出光子(hv),发射光所释放的光子能量被光量子阅读系统记录,通过计算机处理系统将光能量强度在标准曲线上转换为待测抗原的浓度,并报告结果。
其检测水平可达pg/ml水平,重复性好。
3、电化学发光免疫分析(Electrochemiluminescence immunoassay, ECLIA )ECLIA是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定以后的新一代标记免疫测定技术,是电化学发光(ECL)和免疫测定相结合的产物。
它的标记物的发光原理与一般的化学发光(CLA)不同,是一种在电极表面由电化学引发的特异性化学发光反应,实际上包括了电化学和化学发光二个过程。
ECL与CLA的差异在于ECLA 是电启动发光反应,而CLA是通过化合物混合启动发光反应。
ECLA 不仅可以应用于所有的免疫测定,而且还可用于DNA/RNA探针检测。
其检测原理(以TSH检测为例):第一步:结合了活化的三联吡啶钌衍生物即[Ru(bpy)3]2+ +N羟基琥珀酰胺酯(NHS)的TSH抗体和结合了生物素的TSH抗体与待测血清同时加入一个反应杯中孵育9分钟。