4因素5水平正交试验设计
- 格式:docx
- 大小:12.77 KB
- 文档页数:1
正交试验设计正交实验设计法对于单因素或两因素试验,因其因素少,试验的设计、实施与分析都比较简单。
但在实际工作中,常常需要同时考察 3个或3个以上的试验因素,若进行全面试验,则试验的规模将很大,往往因试验条件的限制而难于实施。
正交试验设计就是安排多因素试验、寻求最优水平组合的一种高效率试验设计方法。
1.正交试验设计的概念及原理1.1 正交试验设计的基本概念正交试验设计是利用正交表来安排与分析多因素试验的一种设计方法。
它是由试验因素的全部水平组合中,挑选部分有代表性的水平组合进行试验的,通过对这部分试验结果的分析来了解全面试验的情况,找出最优的水平组合。
例如,要考察增稠剂用量、pH值和杀菌温度对豆奶稳定性的影响。
每个因素设置3个水平进行试验。
A因素是增稠剂用量,设A1、A2、A3 3个水平;B因素是pH值,设B1、B2、B3 3个水平;C因素为杀菌温度,设C1、C2、C3 3个水平。
这是一个3因素3水平的试验,各因素的水平之间全部可能组合有27种。
全面试验:可以分析各因素的效应,交互作用,也可选出最优水平组合。
但全面试验包含的水平组合数较多,工作量大,在有些情况下无法完成。
若试验的主要目的是寻求最优水平组合,则可利用正交表来设计安排试验。
正交试验设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。
正因为正交试验是用部分试验来代替全面试验的,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能出现交互作用的混杂。
虽然正交试验设计有上述不足,但它能通过部分试验找到最优水平组合,因而很受实际工作者青睐。
如对于上述3因素3水平试验,若不考虑交互作用,可利用正交表L9(34)安排,试验方案仅包含9个水平组合,就能反映试验方案包含27个水平组合的全面试验的情况,找出最佳的生产条件。
1.2 正交试验设计的基本原理在试验安排中,每个因素在研究的范围内选几个水平,就好比在选优区内打上网格,如果网上的每个点都做试验,就是全面试验。
正交试验设计多因素交互作用研究正交试验设计是一种常用的多因素试验设计方法,其主要用于研究多个因素对实验结果的影响以及因素之间的交互作用。
本文将介绍正交试验设计的基本概念、步骤以及其在多因素交互作用研究中的应用。
一、正交试验设计的基本概念正交试验设计,也称为正交表设计或正交数组设计,是一种通过有效地组合和安排试验因素,来获取尽可能多的信息和结论的统计设计方法。
与传统的单因素试验设计相比,正交试验设计能够在较少实验次数的情况下,获得更全面和准确的实验数据。
二、正交试验设计的步骤1. 确定试验因素:首先确定需要研究的试验因素和水平。
试验因素是影响实验结果的各个变量,而水平则是每个变量的具体取值。
2. 构建正交表:根据试验因素的数量和水平,选择适当的正交表。
正交表是一种特殊的矩阵,用于确定试验条件的组合。
3. 规划试验方案:根据正交表,确定每个试验条件的组合和重复次数。
试验条件的组合是试验因素水平的排列组合,而重复次数则是每个条件的重复实验次数。
4. 进行试验:按照试验方案进行实验,并记录实验结果。
5. 进行数据分析:使用合适的统计方法对实验数据进行分析,以获取对试验因素及其交互作用的准确评估。
6. 得出结论:根据数据分析结果,得出试验因素及其交互作用的结论,并进行解释和推断。
三、正交试验设计在多因素交互作用研究中的应用正交试验设计在多因素交互作用研究中具有广泛的应用。
通过正交试验设计,可以系统地研究多个因素之间的相互影响及其对实验结果的综合影响。
以某电子产品的设计为例,假设需要研究三个因素对电池续航时间的影响:A因素为屏幕亮度,有三个水平;B因素为手机信号强度,有三个水平;C因素为使用时间,有三个水平。
使用正交试验设计,根据3^3的正交表,可以得到27个试验条件的组合。
对每个试验条件进行一次实验,记录续航时间数据。
通过数据分析,可以得到各因素及其交互作用对电池续航时间的影响程度。
例如,可以得出屏幕亮度对续航时间的影响较大,而使用时间的影响较小。
实验一正交实验设计1为了提高某种产品的质量,研究A(温度,℃),B(压力,kg),C(配比,%),D(时间,h)四个因素对质量指标的影响。
每个因素各取3个水平(见表1.1)进行实验。
请根据实验方案选择合适的正交表安排实验,并用直观分析方法寻找最优实验方案。
9实验数据分析表:效应曲线图:结果分析:极差越大,影响越大;虚拟值越大,条件越优对质量指标的影响:温度>压力>时间>配比极值最大为:A3,B2 ,C2 ,D3选取最优方案为:温度470℃,压力20 kg ,配比5% ,时间3h2为了提高铸件的精铸性能指标,确定最优的工艺条件,研究以下5个具有2水平的因素。
见表1.2,且A与B、B与C之间存在交互作用,见表1.3,试用L8(27)设计实验,并做直观分析。
表1.2实验数据分析表:结果分析:极差越大,影响越大;虚拟值越大,条件越优对性能指标的影响:A(硬化剂相对密度)>A×B>E(脱蜡条件)>B(硬化时间)=D(晾干时间)>B×C>C(硬化剂温度)所以,最优工艺条件为:硬化剂密度1.48, 硬化时间2min, 硬化剂温度(根据BC交互判定)25℃,晾干时间15h,脱蜡条件HCl3、试用正交表方差分析方法,确定T8钢的最优热处理工艺方案,因素与水平见表1.4。
表1.4注,其中A与B有交互作用,测试淬火后钢的硬度,硬度越大越好。
选L8(27)设计,实验结果如下:方差分析表1.对T8钢的影响因素大小如下:A×B(或者C)>A>B(或者D)>E>e2.由于测试淬火后钢的硬度,硬度越大越好。
则由实验结果可知:实验2的结果最优!即在淬火温度为800℃,淬火时间为15 min,A×B为1,冷却液为水,e为2,E为2,操作方法为D2时得到的钢是最硬的!。