钢铁热处理
- 格式:pptx
- 大小:3.92 MB
- 文档页数:86
热处理是指金属材料在固态下,通过加热、保温、冷却的手段,改变金属材料内部的组织状态,从而获得所需性能的一种热加工工艺。
常见的热处理的方法请参考下表。
名称热处理过程热处理目的1.退火将钢件加热到一定温度,保温一定时间,然后缓慢冷却到室温①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工②细化晶粒,均匀钢的组织,改善钢的性能及为以后的热处理作准备③消除钢中的内应力。
防止零件加工后变形及开裂退火类别(1)完全退火将钢件加热到临界温度(不同钢材临界温度也不同,一般是710-750℃,个别合金钢的临界温度可达800—900ºC)以上30—50ºC,保温一定时间,然后随炉缓慢冷却(或埋在沙中冷却)细化晶粒,均匀组织,降低硬度,充分消除内应力完全退火适用于含碳量(质量分数)在O.8%以下的锻件或铸钢件(2)球化退火将钢件加热到临界温度以上20~30ºC,经过保温以后,缓慢冷却至500℃以下再出炉空冷降低钢的硬度,改善切削性能,并为以后淬火作好准备,以减少淬火后变形和开裂,球化退火适用于含碳量(质量分数)大于O.8%的碳素钢和合金工具钢(3)去应力退火将钢件加热到500~650ºC,保温一定时间,然后缓慢冷却(一般采用随炉冷却)消除钢件焊接和冷校直时产生的内应力,消除精密零件切削加工时产生的内应力,以防止以后加工和用过程中发生变形去应力退火适用于各种铸件、锻件、焊接件和冷挤压件等2.正火将钢件加热到临界温度以上40~60ºC,保温一定时间,然后在空气中冷却①改善组织结构和切削加工性能②对机械性能要求不高的零件,常用正火作为最终热处理③消除内应力3.淬火将钢件加热到淬火温度,保温一段时间,然后在水、盐水或油(个别材料在空气中)中急速冷却①使钢件获得较高的硬度和耐磨性②使钢件在回火以后得到某种特殊性能,如较高的强度、弹性和韧性等淬火类别(1)单液淬火将钢件加热到淬火温度,经过保温以后,在一种淬火剂中冷却单液淬火只适用于形状比较简单,技术要求不太高的碳素钢及合金钢件。
钢材热处理的四种方法
钢材热处理是钢铁制造业中的一项重要工艺,它能够改变钢材的组织结构和性能,增强钢材的强度、韧性和耐磨性。
现在,我们将介绍热处理钢材的四种方法。
1. 火焰淬火
火焰淬火是一种常见的钢材热处理方法,它通过在钢材表面加热的同时,使用水、油或空气急冷的方式来迅速冷却钢材。
这种方法可以提高钢材的硬度和韧性,适用于生产高强度、高韧性的组件。
2. 淬火加回火
淬火加回火是一种将淬火和加回火结合起来的热处理方法。
首先,在高温下进行淬火,然后在适当的温度下进行回火,可以使钢材获得较高的强度和韧性。
这种方法适用于制造高强度和高耐磨性的零件。
3. 退火
退火是一种将钢材加热至一定温度,然后缓慢冷却的热处理方法。
这种方法可以使钢材改善韧性和可塑性,较好地适用于制造需要弯曲、拉伸和冲压的钢材产品。
4. 软化处理
软化处理是一种将钢材加热至高温,然后缓慢冷却的热处理方法。
这种方法可以使钢材获得较高的可塑性和韧性,具有优良的加工和成形
性能。
总的来说,这四种方法是钢材热处理中较为基础和常见的方法。
每种方法都有其特定的优缺点和适用范围,因此在选择热处理方法时,需要结合不同的钢材类型和使用条件来进行选择。
钢的五种热处理工艺热处理工艺——表面淬火、退火、正火、回火、调质工艺:1、把金属材料加热到相变温度(700度)以下,保温一段时间后再在空气中冷却叫回火。
2、把金属材料加热到相变温度(800度)以上,保温一段时间后再在炉中缓慢冷却叫退火。
3、把金属材料加热到相变温度(800度)以上,保温一段时间后再在特定介质中(水或油)快速冷却叫淬火.◆表面淬火•钢的表面淬火有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。
在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。
由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。
根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。
感应表面淬火后的性能:1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3单位(HRC)。
2。
耐磨性:高频淬火后的工件耐磨性比普通淬火要高.这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果.3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。
对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。
一般硬化层深δ=(10~20)%D。
较为合适,其中D。
为工件的有效直径.◆退火工艺退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。
退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。
总之退火组织是接近平衡状态的组织。
•退火的目的①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。
②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备.③消除钢中的内应力,以防止变形和开裂。
钢铁热处理的四种基本工艺什么是退火钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。
退火是将金属或合金加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。
退火的目的:退火所能达到的目的主在是:消除锻件及焊接结构的应力,消除冷加工后的加工应力,避免零件在加热和使用过程中产生变形及开裂;消除铸件和锻件的不均匀组织和粗大晶粒,消除合金钢硬而脆的特性,改善其切削加工的性能,胀管时的管头,胀接前也要进行退火。
(1) 降低硬度,改善切削加工性;(2)消除残余应力,稳定尺寸,减少变形与裂纹倾向;(3)细化晶粒,调整组织,消除组织缺陷。
在生产中,退火工艺应用很广泛。
根据工件要求退火的目的不同,退火的工艺规范有多种,常用的有完全退火、球化退火、和去应力退火等。
正火与退火的区别,处理温度正火的冷却速度比退火快,得到的组织较细,工件的强度和硬度比退火高。
对于高碳钢的工件,正火后硬度偏高,切削加工性能变差,故宜采用退火工艺。
从经济方面考虑,正火比退火的生产周期短,设备利用率高,生产效率高,节约能源、降低成本以及操作简便,所以在满足工作性能及加工要求的条件下,应尽量以正火代替退火。
退火和正火可在电阻炉或煤、油、煤气炉中进行,最常用的是电阻炉。
电阻炉是利用电流通过电阻丝产生的热量来加热工件,同时用热电偶等电热仪表控制温度,操作简单、温度准确。
在加热过程中,由于工件与外界介质在高温下发生化学反应,当加热温度和加热速度控制不当或装炉不合适时,会造成工件氧化、脱碳、过热、过烧及变形等缺陷。
因此要严格控制加热温度和加热速度等。
图2-2为退火和正火的加热温度范围。
什么样叫金属冷加工硬化现象?在工程中,有时需用对钢件进行冷加工,如锻打、压延、弯曲、冲压等。
当冷加工产生塑性变形时,不但其外形发生了变化,其内部的晶粒形状也会发生变化,晶粒沿受力方向被拉长。
冷加工塑性变形较大时,还会产生较大内应力。
这种现象称为冷加工硬化。
利用冷加工硬化对钢材使用强度的提高是有限的,而冷加工硬化引起的塑性降低及残存的内应力则是有害的。
钢铁热处理安全操作手册钢铁热处理是一项重要的工业生产工艺,旨在改变钢铁材料的组织结构和性能,以满足各种工程应用的需求。
然而,由于涉及高温、高压、化学物质等危险因素,钢铁热处理操作必须严格遵循安全规程,以保障操作人员的生命安全和设备的正常运行。
一、钢铁热处理的基本原理和工艺钢铁热处理主要包括退火、正火、淬火、回火等工艺。
退火是将钢加热到一定温度,保温一段时间后缓慢冷却,以降低硬度、改善切削加工性能、消除内应力。
正火则是将钢加热到较高温度后在空气中冷却,其效果与退火相似,但冷却速度较快,能获得更细的晶粒。
淬火是将钢加热到临界温度以上,保温后迅速冷却,以提高硬度和耐磨性。
回火是将淬火后的钢重新加热到一定温度,保温后冷却,以降低淬火钢的脆性,提高韧性和稳定性。
二、钢铁热处理操作前的准备工作1、人员培训操作人员必须经过专业的培训,熟悉热处理工艺和安全操作规程,了解设备的性能和操作方法,掌握应急处理措施。
未经培训的人员严禁操作热处理设备。
2、设备检查在操作前,应对热处理设备进行全面检查,包括加热炉、冷却装置、测温仪表、通风系统等。
确保设备完好无损,各部件运行正常,安全防护装置齐全有效。
3、材料准备根据工艺要求,准备好所需的钢铁材料,并检查材料的质量和规格是否符合要求。
避免使用有缺陷或变质的材料。
4、工作环境清理清理工作现场的杂物和易燃易爆物品,保持工作环境整洁、通风良好。
在操作区域设置明显的安全警示标志。
三、钢铁热处理过程中的安全操作要点1、加热过程(1)严格按照工艺要求控制加热温度和升温速度,避免温度过高或过快导致材料变形、开裂或设备损坏。
(2)使用测温仪表准确测量炉温,并定期校准仪表,确保温度显示准确可靠。
(3)在加热过程中,操作人员应密切关注设备运行情况,如有异常声音、气味或烟雾,应立即停止加热,进行检查和处理。
2、保温过程(1)保温时间应严格按照工艺要求执行,确保材料组织转变充分。
(2)在保温过程中,不得随意打开炉门,以免影响炉内温度均匀性和保温效果。
钢材的热处理有以下几个方法※均质退火处理简称均质化处理(Homogenization),系利用在高温进行长时间加热,使内部的化学成分充分扩散,因此又称为『扩散退火』。
加热温度会因钢材种类有所差异,大钢锭通常在1200℃至1300℃之间进行均质化处理,高碳钢在1100℃至1200℃之间,而一般锻造或轧延之钢材则在1000℃至1200℃间进行此项热处理。
※完全退火处理完全退火处理系将亚共析钢加热至Ac3温度以上30~50℃、过共析钢加热至Ac1温度以上50℃左右的温度范围,在该温度保持足够时间,使成为沃斯田体单相组织(亚共析钢)或沃斯田体加上雪明碳体混合组织后,在进行炉冷使钢材软化,以得到钢材最佳之延展性及微细晶粒组织。
※球化退火处理球化退火主要的目的,是希望藉由热处理使钢铁材料内部的层状或网状碳化物凝聚成为球状,使改善钢材之切削性能及加工塑性,特别是高碳的工具钢更是需要此种退火处理。
常见的球化退火处理包括:(1)在钢材A1温度的上方、下方反复加热、冷却数次,使A1变态所析出的雪明碳铁,继续附着成长在上述球化的碳化物上;(2)加热至钢材A3或Acm温度上方,始碳化物完全固溶于沃斯田体后急冷,再依上述方法进行球化处理。
使碳化物球化,尚可增加钢材的淬火后韧性、防止淬裂,亦可改善钢材的淬火回火后机械性质、提高钢材的使用寿命。
※软化退火处理软化退火热处理的热处理程序是将工件加热到600℃至650℃范围内(A1温度下方),维持一段时间之后空冷,其主要目的在于使以加工硬化的工件再度软化、回复原先之韧性,以便能再进一步加工。
此种热处理方法常在冷加工过程反复实施,故又称之为制程退火。
大部分金属在冷加工后,材料强度、硬度会随着加工量渐增而变大,也因此导致材料延性降低、材质变脆,若需要再进一步加工时,须先经软化退火热处理才能继续加工。
※弛力退火处理弛力退火热处理主要的目的,在于清除因锻造、铸造、机械加工或焊接所产生的残留应力,这种残存应力常导致工件强度降低、经久变形,并对材料韧性、延展性有不良影响,因此弛力退火热处理对于尺寸经度要求严格的工件、有安全顾虑的机械构件事非常重要的。
第五章钢的热处理热处理——固态下,通过加热、保温、冷却、改变组织得到所需性能的工艺方法。
•特点:在固态下,只改变工件的组织,不改变形状和尺寸•目的:改善材料的使用、工艺性能•基本过程:加热→保温→冷却•分类:1、普通热处理——退火、正火、淬火、回火2、表面热处理——表面淬火、化学热处理第一节钢在加热时的组织转变实际加热和冷却时的相变点:平衡时—— A1 A3 Acm加热时—— Ac1 Ac3 Accm冷却时—— Ar1 Ar3 Arcm一、奥氏体的形成加热工序的目的:得到奥氏体F + Fe3C → A结构体心复杂面心含碳量 0.0218 6.69 0.77共析钢奥氏体形成过程:1、形核(在 F / Fe3C相界面上形核)2、晶核长大(F→ A晶格重构,Fe3C溶解,C→ A中扩散)3、残余Fe3C溶解4、奥氏体均匀化保温工序的目的:得到成分均匀的奥氏体,消除内应力,促进扩散对亚共析钢: P + F → A + F → A对过共析钢: P + Fe3CⅡ→ A + Fe3CⅡ→ A二、奥氏体晶粒长大及其影响因素1、奥氏体晶粒度•晶粒度——晶粒大小的尺度。
•本质粗晶粒钢——长大倾向较大(Al脱氧)•本质粗晶粒钢——长大倾向较小(Mn,Si脱氧)2、影响奥氏体晶粒长大的因素(1)加热温度↑,保温时间↑→ A晶粒长大快(2)加热速度↑→ A晶粒细(3)加入合金元素→ A晶粒细(4)原始组织细→ A晶粒细第二节钢在冷却时的组织转变冷却方式:等温冷却和连续冷却。
45钢加热后,随冷却速度的增加,强度、硬度增加,但塑性、韧性降低。
冷却是热处理的关键,故必须研究奥氏体冷却过程的变化规律。
一、过冷奥氏体等温转变1、共析钢过冷奥氏体等温转变曲线(C曲线或TTT线)的建立•过冷奥氏体:在A1以下,未发生转变的不稳定奥氏体。
•孕育期——表示过冷A 的稳定程度•四个区域——奥氏体稳定区、过冷奥氏体区、转变产物区、转变区•三种转变类型:高温转变(A1~550℃):A → P中温转变(550~230℃):A → B低温转变(230℃以下):A → M2、过冷奥氏体等温转变产物的组织和性能(1)珠光体转变•珠光体组成:F 和 Fe3C 的机械混合物•形成特点:在固态下形核、长大是扩散型相变•形态:A1~650℃:珠光体 P 20HRc 片状650~600℃:索氏体 S(细P)…600~550℃:托氏体 T(极细P又称屈氏体)40HRc 球状—— Fe3C 呈球状•珠光体性能珠光体片越细→ HB↑,σb↑且δ↑,αk↑C%相同时,球状 P 比片状 P 相界面少→HB↓,σb↓,δ↑,αk↑(2)贝氏体转变•贝氏体组成:过饱和F 和碳化物的机械混合物•形成特点:在固态下形核、长大是半扩散型相变•形态:550~350℃:上贝氏体(B上)羽毛状组织塑性差40-45HRc 350℃~ Ms:下贝氏体(B下)针片状组织综合性能好45-50HRc过冷奥氏体在Ms点以下,A→M属连续冷却转变。
Q420热处理工艺一、概述Q420是一种低合金高强度结构钢,具有优良的力学性能和焊接性能。
通过合理的热处理工艺,可以进一步改善Q420钢的组织结构,提高其机械性能和耐腐蚀性能,以满足不同领域的工程应用需求。
本文将对Q420热处理工艺进行详细介绍,包括热处理的重要性、工艺种类、工艺参数和质量控制等方面。
二、热处理的重要性热处理是钢铁材料制备过程中的重要环节,通过控制加热、保温和冷却等工艺条件,实现对材料内部组织结构的改变,从而改善其机械性能和物理性能。
对于Q420钢而言,热处理能够细化基体组织,提高钢的强度、韧性和耐腐蚀性等关键性能指标。
因此,合理选择和制定热处理工艺对于Q420钢的应用和发展具有重要意义。
三、Q420热处理工艺种类1.退火处理:退火处理的目的是消除钢在轧制或锻造过程中产生的应力,改善组织结构,提高塑性和韧性。
常用的退火工艺有等温退火和普通退火等。
2.淬火处理:淬火处理是将钢加热至临界温度以上,保温一定时间后快速冷却,以获得马氏体或贝氏体组织的工艺方法。
淬火可以提高钢的硬度和强度,但对塑性和韧性有一定影响。
3.回火处理:回火处理的目的是调整淬火钢的组织和性能,消除淬火应力,提高韧性和塑性。
根据回火温度的不同,回火可分为低温回火、中温回火和高温回火。
4.表面处理:表面处理是指通过化学、物理或热处理方法对Q420钢的表面进行强化或改性,以提高其耐磨性、耐腐蚀性和抗疲劳性能等。
常见的表面处理方法有喷丸强化、渗碳、渗氮等。
四、Q420热处理工艺参数1.加热温度:加热温度是热处理工艺中的重要参数之一。
对于Q420钢,不同的热处理工艺需要不同的加热温度。
加热温度的选择应根据具体的热处理工艺和所需的组织性能要求而定。
如果加热温度过低,可能无法达到预期的组织转变;如果加热温度过高,则可能导致奥氏体晶粒粗大,降低钢的性能。
2.保温时间:保温时间的确定与加热温度、钢材的成分和截面尺寸等因素有关。
在达到要求的加热温度后,需要保持一定的时间以完成组织转变。