4-4向量内积及正交化
- 格式:ppt
- 大小:857.50 KB
- 文档页数:23
向量的内积与施密特正交化过程向量的内积(亦称点积、内积积)是线性代数中非常重要的运算,它是将两个向量映射成一个标量的二元运算。
在内积中,有几个重要的性质和应用。
另一方面,施密特正交化过程是将线性相关的向量组转变为线性无关的正交向量组的过程。
在施密特正交化过程中,我们通过对向量组进行逐步的处理,使新的向量与之前的向量都正交。
一、向量的内积在二维欧几里得空间中,向量的内积定义为:其中,和分别为向量和的坐标。
在三维欧几里得空间中,向量的内积定义为:1.对于任何向量,都有。
2.对于任何向量,都有。
3.对于任何向量和标量,都有。
4.若向量和满足,则称向量和正交,记作。
内积具有许多应用和重要性质,其中之一是通过内积计算向量的模长,即。
内积还可以用于计算两个向量之间的夹角。
对于向量和,,当且仅当和共线时夹角为0,在此情况下,称向量和共线。
施密特正交化过程是将线性相关的向量组转化为线性无关的正交向量组的过程。
施密特正交化过程的基本思想是,通过不断减去之前所有的向量在当前向量上的投影,得到与之前向量正交的新向量。
具体步骤如下:对于给定的向量组,我们希望将其转化为正交向量组。
施密特正交化过程的步骤如下:1.令,即第一个正交向量等于第一个向量。
2.对于向量,对其进行如下处理:a.计算向量在的投影,即。
b.令为向量减去其在上的投影,即。
c.实际得到的向量与垂直,即。
得到向量的长度。
3.对于向量,继续对其进行如上处理。
经过施密特正交化过程,我们最终可以得到单位正交向量组。
如果希望得到标准正交向量组,即长度为1的正交向量组,需要将单位正交向量组进行标准化处理。
施密特正交化过程的关键思想是不断减去之前的向量在当前向量上的投影,得到与之前的向量正交的新向量。
这样可以确保每次得到的新向量都与之前向量组成的空间正交。
施密特正交化过程广泛应用于数值计算中的线性代数问题,例如最小二乘法、特征值问题等。
它的作用是简化计算,提高计算的精度和稳定性。
向量的内积与施密特正交化过程向量的内积是线性代数中重要的概念,它不仅可以表述两个向量之间的夹角关系,还可以用于正交化过程中的计算。
施密特正交化是一种将一组线性无关的向量组转化为一组正交向量组的过程。
本文将分为以下几个部分介绍向量的内积和施密特正交化过程。
一、向量的内积A·B=a1b1+a2b2+...+anbn1.交换律:A·B=B·A2.分配律:(A+B)·C=A·C+B·C3.结合律:k(A·B)=(kA)·B=A·(kB),其中k为实数4.内积为0的充要条件:当且仅当A、B正交(或垂直)时,A·B=0内积具有很多实际应用,比如:1.计算向量的模长:,A,=√(A·A)2. 计算向量之间的夹角:cosθ = (A·B)/(,A,B,)3.判断两个向量是否垂直:当且仅当A·B=0时,A与B垂直4.判断向量的正负性:当A·B>0时,夹角θ为锐角;当A·B<0时,夹角θ为钝角二、施密特正交化施密特正交化是一种将一组线性无关的向量组转化为一组正交向量组的过程。
假设有一组线性无关的向量A1,A2,...,An,施密特正交化的过程如下:1.选择一个向量a1作为正交向量组的第一个向量,令b1=a1/,a1,即单位化。
2.对于第k个向量向量Ak(k=2,3,...,n),先将它与前k-1个向量的内积计算出来,然后减去它在前k-1个向量的投影:Ak' = Ak - (Ak·b1)b1 - (Ak·b2)b2 - ... - (Ak·bk-1)bk-1其中,bk = Ak'/,Ak'3. 重复步骤2,直到计算完所有向量。
经过施密特正交化,得到一组正交向量组b1,b2,...,bn。
施密特正交化的过程可以通过内积的运算来实现,将向量投影的概念用到了正交化过程中。
§2.4 向量的内积与正交向量组定义1 在中,设向量n R ,,2121⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n b b b a a a βα令,),(2211n n b a b a b a +++= βα称为向量与的内积.),(βααβ.),(βαβαT =例如,设则与的内积.)2,1,3,2(,)0,0,1,1(T T =−−=βααβ.12010312)1(),(=⨯+⨯+⨯+⨯−=βα内积是向量的一种运算,可用矩阵记号表示为根据定义1,不难验证内积具有下述性质:,0),)(4().,(),)(3().,(),)(2().,(),)(1(≥++=+==ααγβγαγβαβαβααββαk k 当且仅当时,有其中为中的向量,为常数.0=α.0),(=ααγβα,,n R k n R 定义2 对中的向量其长度向量长度也称为向量的范数.,),,,(21Tn a a a =α.),(22221n a a a +++== ααα例如,向量的长度T )2,1,1(=α.6211),(222=++==ααα向量长度具有下面的性质:当且仅当时,有.0α≥(1),0=α0=α.k k αα=•(2)(3)对任意向量,有βα,)1(.),(βαβα•≤如果上面不等式可写成这一等式称为柯西-施瓦次不等式.,),,,(,),,,(2121Tn T n b b b a a a ==βα.12121∑•∑≤∑===n i i n i i n i i i b a b a 证:当时,(1)式显然成立,以下. 令t 是一个实数,作向量. 由内积的性质(4)可知,不论t 取何值,一定有0=β0≠ββαγt +=,0),(),(≥++=βαβαγγt t对于不等式(1)当且仅当线性相关时,等号才成立.这由上述证明过程可以看出.用向量的长度去除向量,就得到一个单位向量,通常称为把向量单位化.即0),(),(2),(2≥++t t βββααα取代入上式,得),(),(βββα−=t ,0),(),(),(2≥−βββααα即),,)(,(),(2ββααβα≤两边开方得βαβα•≤),(βα,长度为1的向量称为单位向量,对于中的任一非零nR 向量,向量是一个单位向量.ααα1)0(≠ααα例1零向量与任意向量的内积为0,因此零向量与任意向量正交.定义3 如果两个向量与的内积等于0,即则称向量与互相正交. 记为.αβ,0),(=βααββα⊥例2 中的单位坐标向量组是两两正交的.n R n εεε,,,21 ⎩⎨⎧≠==)(0)(1),(j i j i j i εε定义4如果中的非零向量组两两正交,即则称该向量组为正交向量组.n R s ααα,,,21 ),,,2,1,;(0),(s j i j i j i =≠=αα定理4.1中的正交向量组线性无关.nR 证设为中的正交向量组,且有数,s ααα,,,21 n R s k k k ,,,21 .02211=+++s s k k k ααα 使得上式两边与向量组中的任意向量求内积,得i α,0)0,(),(2211==+++i s s i k k k ααααα 即,0),(),(),(2211=+++s i s i i k k k αααααα 由于,所以上式可化简为)(0),(j i j i ≠=αα,0),(1=i i k αα而为非零向量,于是得,从而线性无关.i α,0),(≠i i αα),,2,1(0s i k i ==s ααα,,,21.),(),(),(),(),(),(,),(),(),(),(,),(),(,111122221111222231111333111122211−−−−−−−−=−−=−==s s s ss s s s s ββββαββββαββββααβββββαββββααβββββααβαβ如果已知中的线性无关的向量组则可以生成正交向量组使这两个向量组等价.由一个线性无关向量组生成满足上述性质的正交向量组的过程,一般称为将该向量组正交化,将一个向量组正交化可以应用施密特正交化方法,其步骤如下:n R 12,,,,s ααα12,,,,s βββ对于中的线性无关向量组,令n R s ααα,,,21解.)21,21,1()1,1,0(21)1,1,1(30)0,1,1(),(),(),(),(,)1,1,0()1,1,1(33)2,0,1(),(),(,)1,1,1(222231111333111122211T T T T T T T T−=−−−−−=−−=−=−=−===ββββαββββααβββββααβαβ例3已知线性无关向量组将其化为正交向量组.,)0,1,1(,)2,0,1(,)1,1,1(321T T T −===ααα定义5设n 阶实矩阵Q ,满足则称Q 为正交矩阵.例如,单位矩阵E 为正交矩阵;在平面解析几何中,两直角坐标系间的坐标变换矩阵,是正交矩阵.正交矩阵具有下述性质:(1)若Q 为正交矩阵,则其行列式的值为1或-1.(2)若Q 为正交矩阵,则Q 可逆,且(3)若P , Q 都是正交矩阵,则它们的积PQ 也是正交矩阵.,E Q Q T =⎪⎭⎫⎝⎛−θθθθcos sin sin cos .1T Q Q =−定理4.2设Q 为n 阶实矩阵,则Q 为在正交矩阵的充分必要条件是其列(行)向量组是单位正交向量组.即Q 为正交矩阵的充分必要条件是其列向量组是单位正交向量组.类似可证,Q 的正交矩阵的充分必要条件是其行向量组是单位正证设,其中为Q 的列向量组.Q 是正交矩阵等价于而),,,(21n Q ααα =n ααα,,,21 ,E Q Q T =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n T n T n T n n T T T n T T T n T n T T T Q Q αααααααααααααααααααααααα 2122212121112121),,,(由此可知等价于E Q Q T =⎩⎨⎧=≠===),,2,1,;(0),,,2,1(1n j i j i n i j T i i T i αααα11例4正交阵的例子:定义6若Q 为正交矩阵,则线性变换y =Qx 为正交变换.由正交变换的定义可知这表明正交变换不改变向量的长度,这正是正交变换的优良特性..31313161616221210)2(;010100001)1(⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛−−⎪⎪⎪⎭⎫⎝⎛−−.x x x Qx Q x y y y T T T T ====。