大学数学2试卷答案
- 格式:docx
- 大小:268.37 KB
- 文档页数:9
华南农业大学期末考试试卷(A 卷)2009学年第2学期 考试科目: 高等数学B Ⅱ 考试类型:(闭卷)考试 考试时间:120分钟学号 姓名 年级专业一、 填空题(本大题共5小题,每小题3分,共15分)1. 试定义函数在点的值的 ,使得函数在该点连续。
2.函数在点处可微分的必要条件是函数在该点处连续或可偏导;充分条件是函数的偏导数在该点处连续。
3.设函数在闭区域上连续,且,则。
4. 判断敛散性:已知且,则是收敛的。
5. 已知某二阶常系数非齐次线性微分方程的通解为,则该微分方程为。
二、选择题(本大题共5小题,每小题3分,共15分) 1. 直线与平面的交点是(B )。
(A )(9,2,-3)。
(B )(2,9,11)。
(C )(2,11,13)。
(D )(11,9,2)。
2. 若级数在处收敛,则此级数在处(A )。
(A )绝对收敛。
(B )条件收敛。
(C )发散。
(D )收敛性不能确定。
3.二元函数 在点处 (C )(A )连续,偏导数存在。
(B )连续,偏导数不存在。
(C )不连续,偏导数存在。
(D )不连续,偏导数不存在。
4. 设是连续的奇函数,是连续的偶函数, ,则以下结论正确的是( A )。
(A ) 。
(B ) 。
(C ) 。
(A ) 。
5. 微分方程的一个特解应具有形式(A,B,C 是待定常数)( B )。
(A )。
(B )。
(C )。
(D )。
三、计算题(本大题共5小题,每小题6分,共30分) (1)设,其中和具有连续导数,求。
【解】(2)求由方程所确定的函数的全微分。
【解】方程两边求微分得 整理得(3)交换积分次序。
【解】(4)求差分方程在给定初始条件下的特解。
【解】特征方程为,所以对应的齐次方程的通解为。
又不是特征根,故可令特解为,代入原方程,得比较系数可得,,故非齐次方程的一个特解为,于是非齐次方程的通解为,由所给初始条件,可得,所以方程满足给定初始条件下的特解为。
2011-2012学年第 2 学期 考试科目: 大学数学Ⅱ一、填空题(本大题共6小题,每小题3分,共18分)1. 设A 、B 为两个随机事件,已知()0.3,()0.4,()0.5P A P B P A B ===U ,则()P A B =U ______________.2. 设随机变量X 服从参数为3的泊松分布,则(1)P X ≥= ______________.3. 设二维离散型随机变量),(Y X 的联合分布律为:),(Y X 的联合分布函数为),(y x F ,则(1,3)F =______________.4. 设随机变量X 表示100次独立重复射击命中目标的次数,每次命中目标的概率为0.2, 则2X 的数学期望是______________.5. 设X 、Y相互独立,且都服从标准正态分布,则~Z =______________. (要求写出分布及其参数).6. 设由来自总体~(,0.81)X N μ,容量为9的样本得到样本均值5=X ,则未知参数μ的置信度为95%的置信区间为___________________.( 0.025 1.96u =) 二、单项选择题(本大题共6小题,每小题3分,共18分)1. 某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的, 中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱, 则此人赚钱的概率约为( ). A. 0.05B. 0.06C. 0.07D. 0.082. 设A 、B 为两个随机事件,且B A ⊂,()0>B P ,则下列选项必然正确的是( ). A. ()()B A P A P < B. ()()B A P A P >C. ()()B A P A P ≤D. ()()B A P A P ≥3. 下列各函数中可以作为某个随机变量X 的分布函数的是( ).A. 21,0()11,0x F x x x ⎧≤⎪=+⎨⎪>⎩ B. 0,0() 1.1,011,1x F x x x <⎧⎪=≤≤⎨⎪>⎩14. 设随机变量()2~2,3X N ,随机变量25Y X =-+, 则~Y ( ). A. (1,41)N B. (1,36)N C. (1,18)N - D. (1,13)N -5. 设某地区成年男子的身高()100,173~N X ,现从该地区随机选出20名男子,则这20名男子身高平均值的方差为( ).A. 100B. 10C. 5D. 0.56. 设12,,,n X X X ⋅⋅⋅是取自总体X 的一个样本, X 为样本均值,则不是总体期望μ的无偏估计量的是( ).A. XB. 123X X X +-C. 1230.20.30.5X X X ++D. 1nii X=∑三、计算题(本大题共4小题,共40分)1.(本题8分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求: (1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.2.(本题8分)设离散型随机变量X 只取1,2,3三个可能值,取各相应值的概率分别是21,,4a a -,求:(1) 常数a ; (2) 随机变量X 的分布律; (3) 随机变量X 的分布函数()F x .3.(本题10分)设随机变量X 的密度函数为:()1()2x f x e x -=-∞<<+∞.(1) 求{1}P X <; (2) 求2Y X =的密度函数.4.(本题14分)设随机变量X 与Y 相互独立,它们的密度函数分别为1,03()30,X x f x ⎧≤≤⎪=⎨⎪⎩其他, 33,0()0,0y Y e y f y y -⎧>=⎨≤⎩ 试求:(1) (,)X Y 的联合密度函数; (2) ()P Y X <; (3)()D X Y -.四、解答题(本大题共3小题,每小题8分,共24分)1. 从一台车床加工的一批轴料中抽取15件测量其椭圆度,计算得样本方差220.025s =,已知椭圆度服从正态分布,问该批轴料椭圆度的总体方差与规定的方差200.0004σ=有无显著差异(取检验水平0.05α=)?(20.025(14)26.1χ=, 20.975(14) 5.63χ=, 20.025(15)27.5χ=,20.975(15) 6.26χ=)2. 某粮食加工厂用4种不同的方法贮藏粮食,一段时间后,分别抽样化验其含水率,每种方法重复试验次数均为5次,所得粮食含水率的方差分析表的部分数据如下. (0.05(4,19) 5.01F=,0.01(4,16) 4.77F=,0.01(3,16) 5.29F=) (1) 完成下面的方差分析表.(2) 给出分析结果.3. 有人认为企业的利润水平和它的研究费用间存在着近似的线性关系. 下面是某10个企业的利润水平(x )与研究费用(y )的调查资料:102101=∑=i ix,2390101=∑=i i y ,10661012=∑=i ix ,6243001012=∑=i iy ,25040101=∑=i i i y x建立研究费用y 与企业利润水平x 的回归直线方程.2011-2012学年第 2 学期 大学数学Ⅱ 华南农业大学期末考试试卷(A 卷)-参考答案 一、1. 0.8; 2. 31e --; 3.518; 4. 416 ; 5. )1(t ; 6. (4.412,5.588) 二、1. B 2. C 3. A 4. B 5. C 6. D 三、1. 解 设A =“任取一产品,经检验认为是合格品” B =“任取一产品确是合格品” 依题意()0.9,()0.1,()0.95,()0.02P B P B P A B P A B ==== (2分)则(1)()()(|)()(|)P A P B P A B P B P A B =+0.90.950.10.020.857.=⨯+⨯=(5分) (2) ()(|)0.90.95(|)0.9977()0.857P B P A B P B A P A ⨯===. (8分)2. 解 (1) 由2114a a -+=得1231().22舍去或a a ==- (3分) (2) X 的分布律为(5分)(3) X 的分布函数为 0,10,111,12,1244()113,23,234241111,3,3424x x x x F x x x x x <⎧<⎧⎪⎪⎪≤<⎪≤<⎪⎪⎪==⎨⎨+≤<⎪⎪≤<⎪⎪⎪⎪≥++≥⎩⎪⎩ (8分) 3. 解(1)111011{1}{11}12x x P X P X e dx e dx e---<=-<<===-⎰⎰. (3分)(2)当0y ≤时,()()()20F y P Y y P X y =<=<=; (5分) 当0y >时,()()(20xx F y P X y P X dx dx --=<=<<== (8分) 所以2Y X =的密度函数为0,0()()0y f y F y y ≤⎧⎪'==>. (10分) 4. 解 (1)因为随机变量X 与Y 相互独立, ( 1分)所以它们的联合密度函数为:3,03,0(,)()()0,y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他 (3分)(2){}(,)y xP Y X f x y dxdy <<=⎰⎰330[]xy e dy dx -=⎰⎰ (6分)330(1)x e dx -=-⎰3390181()333x x e e --=+=+()9183e -=+ (8分) (3)解:由密度函数可知~(0,3),~(3)X U Y E (10分)所以,22(30)311(),(),12439D X D Y -==== (12分) 由X 与Y 相互独立,得3131()()()4936D X Y D X D Y -=+=+=(14分) 四、1. 解 检验假设 20:0.0004H σ=,21:0.0004H σ≠. (1分)依题意,取统计量:2222(1)~(1)n S n χχσ-=-,15n =. (3分)查表得临界值:220.0252(1)(14)26.1n αχχ-==,220.97512(1)(14) 5.63n αχχ--==, (5分)计算统计量的观测值得: 22140.02521.8750.0004χ⨯==. (6分)因2220.9750.025(14)(14)χχχ<<,故接受原假设0H ,即认为总体方差与规定的方差无显著差异.(8分) 2. 解 (1)(2) 解 因为F =5.6681>0.01(3,16) 5.29F =,所以拒绝0H ,即认为不同的贮藏方法对粮食含水率的影响在检验水平0.01α=下有统计意义. (8分)3. 解 2.10=x ,239=y (2分)6.252.10101066221012=⨯-=-=∑=x n x l i i xx (3分)6622392.101025040101=⨯⨯-=-=∑=y x n y x l i i i xy (4分)故1662ˆ25.8625.6xy xx l l β==≈;01ˆˆ23925.8610.224.77y x ββ=-=-⨯=- (6分) 因此所求回归直线方程为 ˆ24.7725.86yx =-+ (8分)。
华南农业大学期末考试试卷(A 卷)答案2015-2016学年第 2 学期 考试科目: 大学数学Ⅱ一、填空题(本大题共6小题,每小题3分,共18分)1.792. 53.1/94.,5(3)N -5.2(1)n χ- 6.[10.0304,10.0696]二、单项选择题(本大题共6小题,每小题3分,共18分)1. A2. B3. C4.B5. B6.D三、解答题(本大题共5小题,共54分) 1.解 设i A 表示取出的产品为第i 台机床生产(1,2i =),B 表示取出的零件为废品,则由已知有12121()(),(|)0.03,(|)0.022P A P A P B A P B A ==== ................................................................................. 2分(1)由全概率公式得112211()()(|)()(|)0.030.020.02522P B P A P B A P A P B A =+=⨯+⨯= ................................... 5分故任意取出的一件零件为合格品的概率为()1()0.975=-=P B P B ..................................................................... 7分(2)由贝叶斯公式得22210.02()()2()0.4()0.025P A P B A P A B P B ⨯===................................................................ 10分 2.解 函数()21y g x x ==+在[0,1]内的值域为[1,3]且()20g x '=>, ......................................................... 2分其反函数1()(1)2h y y =-, 1()2h y '= ....................................................................................................................... 4分于是随机变量Y 的概率密度为[()](),13()0,Y f h y h y y f y '⎧<<=⎨⎩其他 ................................................................. 8分[]6()1()(),130,h y h y h y y '⎧-<<=⎨⎩其他23(43),13=40,y y y ⎧--+<<⎪⎨⎪⎩其他 ............................................... 10分3.解(1)(X ,Y )可能取值为(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)。
大学数学二试题及答案一、选择题(每题5分,共30分)1. 下列函数中,为奇函数的是:A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)2. 微分方程 y'' - y = 0 的通解是:A. y = C1 * cos(x) + C2 * sin(x)B. y = C1 * e^x + C2 * e^(-x)C. y = C1 * x + C2 * x^2D. y = C1 * ln(x) + C2 * x3. 矩阵 A = \[\begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}\] 的行列式是:A. 1B. 2C. -2D. 54. 极限lim(x→0) (sin(x)/x) 的值是:A. 0B. 1C. -1D. 不存在5. 积分∫(0 to π) sin(x) dx 的值是:A. 0B. πC. -2D. 26. 函数 y = ln(x) 的反函数是:A. y = e^xB. y = e^(-x)C. y = 10^xD. y = x^e二、填空题(每题5分,共20分)1. 如果函数 f(x) 在点 x=a 处可导,则 f'(a) 表示______。
2. 函数 y = x^2 - 4x + 3 的顶点坐标是(______,______)。
3. 微分方程 y' + 2y = 0 的通解形式为 y = ______。
4. 函数 y = sin(x) 的不定积分是 ______。
三、解答题(每题10分,共50分)1. 求函数 f(x) = x^2 - 6x + 9 在区间 [2, 5] 上的最大值和最小值。
2. 证明:如果一个数列 {a_n} 收敛于 L,则其子数列 {a_{2n}} 也收敛于 L。
3. 计算定积分∫(0 to 1) (3x^2 - 2x + 1) dx。
2011-2012学年第 2 学期 考试科目: 大学数学Ⅱ一、填空题(本大题共6小题,每小题3分,共18分)1. 设A 、B 为两个随机事件,已知()0.3,()0.4,()0.5P A P B P A B ===,则()P AB =______________.2. 设随机变量X 服从参数为3的泊松分布,则(1)P X ≥= ______________. 3. 设二维离散型随机变量),(Y X 的联合分布律为:),(Y X 的联合分布函数为),(y x F ,则(1,3)F =______________.4. 设随机变量X 表示100次独立重复射击命中目标的次数,每次命中目标的概率为0.2, 则2X 的数学期望是______________.5. 设X 、Y相互独立,且都服从标准正态分布,则~Z =______________. (要求写出分布及其参数).6. 设由来自总体~(,0.81)X N μ,容量为9的样本得到样本均值5=X ,则未知参数μ的置信度为95%的置信区间为___________________.( 0.025 1.96u =) 二、单项选择题(本大题共6小题,每小题3分,共18分)1. 某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的, 中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱, 则此人赚钱的概率约为( ). ﻩ A. 0.05ﻩB . 0.06ﻩC. 0.07ﻩﻩD . 0.082. 设A 、B 为两个随机事件,且B A ⊂,()0>B P ,则下列选项必然正确的是( ). A. ()()B A P A P < B. ()()B A P A P >C. ()()B A P A P ≤ D. ()()B A P A P ≥ 3. 下列各函数中可以作为某个随机变量X 的分布函数的是( ).1,0x ⎧≤⎪0,0x <⎧⎪C . x x F sin )(= D. 211)(x x F +=4. 设随机变量()2~2,3X N ,随机变量25Y X =-+, 则~Y ( ).A. (1,41)N B . (1,36)N C. (1,18)N - D. (1,13)N -5. 设某地区成年男子的身高()100,173~N X ,现从该地区随机选出20名男子,则这20名男子身高平均值的方差为( ).A . 100 B. 10 C. 5 D . 0.56. 设12,,,n X X X ⋅⋅⋅是取自总体X 的一个样本, X 为样本均值,则不是总体期望μ的无偏估计量的是( ).A . X B. 123X X X +- C. 1230.20.30.5X X X ++ D. 1nii X=∑三、计算题(本大题共4小题,共40分)1.(本题8分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求: (1)一个产品经检查后被认为是合格品的概率; (2)一个经检查后被认为是合格品的产品确是合格品的概率.2.(本题8分)设离散型随机变量X 只取1,2,3三个可能值,取各相应值的概率分别是21,,4a a -,求:(1)常数a ; (2) 随机变量X 的分布律; (3) 随机变量X 的分布函数()F x .3.(本题10分)设随机变量X 的密度函数为:()1()2x f x e x -=-∞<<+∞.(1) 求{1}P X <; (2) 求2Y X =的密度函数.4.(本题14分)设随机变量X 与Y 相互独立,它们的密度函数分别为1,03()30,X x f x ⎧≤≤⎪=⎨⎪⎩其他, 33,0()0,0y Y e y f y y -⎧>=⎨≤⎩ 试求:(1) (,)X Y 的联合密度函数; (2) ()P Y X <; (3)()D X Y -.四、解答题(本大题共3小题,每小题8分,共24分)1. 从一台车床加工的一批轴料中抽取15件测量其椭圆度,计算得样本方差220.025s =,已知椭圆度服从正态分布,问该批轴料椭圆度的总体方差与规定的方差200.0004σ=有无显著差异(取检验水平0.05α=)?(20.025(14)26.1χ=, 20.975(14) 5.63χ=, 20.025(15)27.5χ=,20.975(15) 6.26χ=)2. 某粮食加工厂用4种不同的方法贮藏粮食,一段时间后,分别抽样化验其含水率,每种方法重复试验次数均为5次,所得粮食含水率的方差分析表的部分数据如下. (0.05(4,19) 5.01F=,0.01(4,16) 4.77F=,0.01(3,16) 5.29F=) (1) 完成下面的方差分析表.(2) 给出分析结果.3. 有人认为企业的利润水平和它的研究费用间存在着近似的线性关系. 下面是某10个企业的利润水平(x )与研究费用(y )的调查资料:102101=∑=i ix,2390101=∑=i i y ,10661012=∑=i ix ,6243001012=∑=i iy ,25040101=∑=i i i y x建立研究费用y 与企业利润水平x 的回归直线方程.2011-2012学年第 2 学期 大学数学Ⅱ 华南农业大学期末考试试卷(A 卷)-参考答案 一、1. 0.8; 2. 31e --; 3.518; 4. 416 ; 5. )1(t ; 6. (4.412,5.588) 二、1. B 2. C 3. A 4. B 5. C 6. D 三、1. 解 设A =“任取一产品,经检验认为是合格品” B =“任取一产品确是合格品” 依题意()0.9,()0.1,()0.95,()0.02P B P B P A B P A B ==== (2分)则(1)()()(|)()(|)P A P B P A B P B P A B =+0.90.950.10.020.857.=⨯+⨯=(5分) (2) ()(|)0.90.95(|)0.9977()0.857P B P A B P B A P A ⨯===. (8分)2. 解 (1) 由2114a a -+=得1231().22舍去或a a ==- (3分) (2) X 的分布律为(5分)(3) X 的分布函数为0,10,111,12,1244()113,23,234241111,3,3424x x x x F x x x x x <⎧<⎧⎪⎪⎪≤<⎪≤<⎪⎪⎪==⎨⎨+≤<⎪⎪≤<⎪⎪⎪⎪≥++≥⎩⎪⎩ (8分) 3. 解(1)111011{1}{11}12x x P X P X e dx e dx e---<=-<<===-⎰⎰. (3分)(2)当0y ≤时,()()()20F y P Y y P X y =<=<=; (5分) 当0y >时,()()(2xx F y P X y P X dx dx --=<=<<== (8分) 所以2Y X =的密度函数为0,0()()0y f y F y y ≤⎧⎪'==>. (10分)4. 解 (1)因为随机变量X 与Y 相互独立, ( 1分)所以它们的联合密度函数为:3,03,0(,)()()0,y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他 (3分)330(1)x e dx -=-⎰3390181()333x x e e --=+=+()9183e -=+ (8分) (3)解:由密度函数可知~(0,3),~(3)X U Y E (10分)所以,22(30)311(),(),12439D X D Y -==== (12分) 由X 与Y 相互独立,得3131()()()4936D X Y D X D Y -=+=+=(14分) 四、1. 解 检验假设 20:0.0004H σ=,21:0.0004H σ≠. (1分)依题意,取统计量:2222(1)~(1)n S n χχσ-=-,15n =. (3分)查表得临界值:220.0252(1)(14)26.1n αχχ-==,220.97512(1)(14) 5.63n αχχ--==, (5分)计算统计量的观测值得: 22140.02521.8750.0004χ⨯==. (6分) 因2220.9750.025(14)(14)χχχ<<,故接受原假设0H ,即认为总体方差与规定的方差无显著差异. (8分) 2. 解 (1)(2) 解 因为F =5.6681>0.01(3,16) 5.29F =,所以拒绝0H ,即认为不同的贮藏方法对粮食含水率的影响在检验水平0.01α=下有统计意义. (8分)3. 解 2.10=x ,239=y (2分)6.252.10101066221012=⨯-=-=∑=x n x l i i xx (3分)6622392.101025040101=⨯⨯-=-=∑=y x n y x l i i i xy (4分)故1662ˆ25.8625.6xy xx l l β==≈;01ˆˆ23925.8610.224.77y x ββ=-=-⨯=- (6分)。
湖南大学大学数学2第三版答案1、18.下列关系式正确的是(? ) [单选题] *A.-√3∈NB.-√3∈3C.-√3∈QD.-√3∈R(正确答案)2、3.课间操时,小华、小军、小刚的位置如图.小华对小刚说:“如果我的位置用表示,小军的位置用表示,那么你的位置可以表示成()[单选题] *A.(5,4)B(4,5)C(3,4)D(4,3)(正确答案)3、6.下列各图中,数轴画法正确的是()[单选题] *A.B.C.D.(正确答案)4、2、在轴上的点的纵坐标是()[单选题] *A.正数B.负数C.零(正确答案)D.实数5、10.(2020·北京,1,4分)已知集合A={-1,0,1,2},B={x|0<x<3},则A∩B=( ) [单选题] * A.{-1,0,1}B.{0,1}C.{-1,1,2}D.{1,2}(正确答案)6、8.数轴上一个数到原点距离是8,则这个数表示为多少()[单选题] *A.8或﹣8(正确答案)B.4或﹣4C.8D.﹣47、f(x)=-2x+5在x=1处的函数值为()[单选题] *A、-3B、-4C、5D、3(正确答案)8、9.如果向东走记为,则向西走可记为() [单选题] *A+3mB+2mC-3m(正确答案)D-2m9、直线2x-y=1的斜率为()[单选题] *A、1B、2(正确答案)C、3D、410、以A(3,2),B(6,5),C(1,10)为顶点的三角形是()[单选题] *A、锐角三角形B、锐角三角形C、直角三角形(正确答案)D、无法判断11、5.如果某商场盈利万元,记作万元,那么亏损万元,应记作(??)[单选题] * A-8B-8万元(正确答案)C.8万元D.812、4.点(-3,-5)关于x 轴的对称点的坐标为()[单选题] *A(-3,5)(正确答案)B(-3,-5)C(3,5)D(3,-5)13、19.下列函数在(0,+?? )上为增函数的是(). [单选题] *A.?(x)=-xB.?(x)=-1/X(正确答案)C.?(x)=-x2D.?(x)=1/X14、多项式x2+ax+b=(x+1)(x-3),则a、b的值分别是()[单选题] *A. a=2,b=3B. a=-2,b=-3(正确答案)C. a=-2,b=3D. a=2,b=-315、10.下列各数:5,﹣,03003,,0,﹣,12,1010010001…(每两个1之间的0依次增加1个),其中分数的个数是()[单选题] *A.3B.4(正确答案)C.5D.616、若sinα<0,则α角是在()[单选题] *A、第一、二象限B、第三、四象限(正确答案)C、第一、三象限D、第二、四象限17、46.若a+b=7,ab=10,则a2+b2的值为()[单选题] *A.17B.29(正确答案)C.25D.4918、13.如图,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,则小明走下列线路不能到达学校的是() [单选题] *A.(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)C.(0,4)→(3,4)→(4,2)→(4,0)(正确答案)D.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)19、3.如图,OC为∠AOB内的一条射线,下列条件中不能确定OC平分∠AOB的()[单选题] *A.∠AOC=∠BOCB.∠AOC+∠COB=∠AOB(正确答案)C.∠AOB=2∠BOCD.20、5.在数轴上点A,B分别表示数-2,-5,则A,B两点之间的距离可表示为()[单选题] *A.-2+(-5)B.-2-(-5)(正确答案)C.(-5)+2D(-5)-221、下列计算正确是()[单选题] *A. 3x﹣2x=1B. 3x+2x=5x2C. 3x?2x=6xD. 3x﹣2x=x(正确答案)22、二次函数y=3x2-4x+5的常数项是()。
北京邮电大学高等数学阶段作业二答案一、单项选择题(共20道小题,共100.0分)1. 设,则曲线在区间内沿X轴正向( )A. 下降且为凹B. 下降且为凸C. 上升且为凹D. 上升且为凸知识点: 第五章导数的应用学生答[A;] 案:试题分得分: [5] 5.0 值:提示:2.3. 若曲线有拐点,则一定有( )A.B.C. 不存在D. 或不存在知识点: 第五章导数的应用学生答[D;] 案:试题分得分: [5] 5.0 值:提示:4.5. 当时,;当时,,则必定是的( )A. 驻点B. 极大值点C. 极小值点D. 以上都不对知识点: 第五章导数的应用学生答[D;] 案:试题分得分: [5] 5.0 值:提示:6.7. 在区间(0,1)内为单调减少函数的是( )A.B.C.D.知识点: 第五章导数的应用学生答[D;] 案:试题分得分: [5] 5.0 值:提示:8.9. ( )A. 1B.C.D.知识点: 第五章导数的应用学生答[C;] 案:试题分得分: [5] 5.0 值:提示:10.11.若存在有穷极限,则的值为( )A. 1B. 2C. 3D. 4知识点: 第五章导数的应用学生答[C;] 案:试题分得分: [5] 5.0 值: 提示:12.13.已知,则( )A.B.C.D.知识点: 第五章导数的应用学生答[C;] 案:试题分得分: [5] 5.0 值: 提示:14.15.下列分部积分中,选择正确的是( )A. ,令B. ,令C. ,令D. ,令知识点: 第六章不定积分学生答[A;] 案:得分: [5] 试题分5.0值:提示:16.17.设是的一个原函数,则( )A.B.C.D.知识点: 第六章不定积分学生答[B;] 案:试题分得分: [5] 5.0 值:提示:18.19.若,则( )A.B.C.D.知识点: 第六章不定积分学生答[D;] 案:试题分得分: [5] 5.0 值:提示:20.21.设函数的导数是,则的全体原函数是( )A.B.C.D.知识点: 第六章不定积分学生答[C;] 案: 试题分得分: [5] 5.0 值: 提示:22.23.是( )的一个原函数.A.B.C.D.知识点: 第六章不定积分学生答[B;] 案:试题分得分: [5] 5.0 值: 提示:24.25.设,则( )A.B.C.D.知识点: 第七章定积分及其应用学生答[B;] 案: 得分: [5] 试题分值: 5.0提示:26.27.( )A. 0B.C.D.知识点: 第七章定积分及其应用学生答[C;] 案:得分: [5] 试题分值: 5.0提示:28.29.若,则常数( )A. 1B.C. 0D.知识点: 第七章定积分及其应用学生答[B;] 案:得分: [5] 试题分值: 5.0提示:30.31.极限( )A.B. 0C. 1D. 2知识点: 第七章定积分及其应用学生答[C;] 案: 得分: [5] 试题分值: 5.0提示:32.33.( )A. 0B.C.D.知识点: 第七章定积分及其应用学生答[B;] 案: 得分: [5] 试题分值: 5.0提示:34.35.(错误)设,则有( )A. .极小值B. 极小值C. 极大值D. 极大值知识点: 第七章定积分及其应用学生答[C;] 案: 得分: [0] 试题分值: 5.0 提示:36.设函数在上是连续的,下列等式中正确的是( )A.B.C.D.知识点: 第七章定积分及其应用学生答[C;] 案:得分: [5] 试题分值: 5.0 提示:37.38.设函数在闭区间上连续,则曲线与直线所围成的平面图形的面积等于( )A.B.C.D.知识点: 第七章定积分及其应用学生答[D;] 案:得分: [5] 试题分值: 5.0 提示:39.一、单项选择题(共20道小题,共100.0分)1. 设存在二阶导数,如果在区间内恒有( ),则在内曲线上凹.A.B.C.D.知识点: 第五章导数的应用学生答[C;] 案:试题分得分: [5] 5.0 值:提示:2.3. 若点(1,3)是曲线的拐点,则的值分别为( )A.B.C.D. 以上都不对知识点: 第五章导数的应用学生答[C;] 案:试题分得分: [5] 5.0 值:提示:4.5. 若曲线有拐点,则一定有( )A.B.C. 不存在D. 或不存在知识点: 第五章导数的应用学生答[D;] 案: 试题分得分: [5] 5.0 值: 提示:6.7. 设,则为在上的( )A. 极小值点但不是最小值点B. 极小值点也是最小值点C. 极大值点但不是最大值点D. 极大值点也是最大值点知识点: 第五章导数的应用学生答[B;] 案: 试题分得分: [5] 5.0 值: 提示:8.9. 若函数在点处可导,则它在点处得到极值的必要条件为( )A.B.C.D.知识点: 第五章导数的应用学生答[D;] 案:试题分得分: [5] 5.0 值: 提示:10.11.当时,;当时,,则必定是的( )A. 驻点B. 极大值点C. 极小值点D. 以上都不对知识点: 第五章导数的应用学生答[D;] 案:试题分得分: [5] 5.0 值:提示:12.13.函数的单调增加区间为( )A.B.C.D.知识点: 第五章导数的应用学生答[A;] 案:试题分得分: [5] 5.0 值:提示:14.15.在区间(0,1)内为单调减少函数的是( )A.B.C.D.知识点: 第五章导数的应用学生答[D;] 案:试题分得分: [5] 5.0 值: 提示:16.17.( )A. 1B.C.D.知识点: 第五章导数的应用学生答[C;] 案:试题分得分: [5] 5.0 值: 提示:18.19.若,则( )A.B.C.D.知识点: 第六章不定积分学生答[C;] 案:试题分得分: [5] 5.0 值:提示:20.21.若,则下列各式中正确的是( )A.B.C.D. 知识点: 第六章不定积分学生答[B;] 案: 试题分得分: [5] 5.0 值: 提示:22.23.设函数的导数是,则的全体原函数是( )A.B.C.D. 知识点: 第六章不定积分学生答[C;] 案: 试题分得分: [5] 5.0 值: 提示:24.25.设,则( )A.B.C.D.知识点: 第七章定积分及其应用学生答[B;] 案:得分: [5] 试题分值: 5.0提示:26.27.设函数为上连续函数,则定积分( )A. 0B.C.D.知识点: 第七章定积分及其应用学生答[D;] 案:得分: [5] 试题分值: 5.0提示:28.29.已知是的一个原函数,则( )A.B.C.D.知识点: 第七章定积分及其应用学生答[B;] 案:得分: [5] 试题分值: 5.0提示:30.31.极限( )A.B. 0C. 1D. 2知识点: 第七章定积分及其应用学生答[C;] 案:得分: [5] 试题分值: 5.0提示:32.33.设,则有( )A. .极小值B. 极小值C. 极大值D. 极大值知识点: 第七章定积分及其应用学生答[A;] 案:得分: [5] 试题分值: 5.0提示:34.35.( )A.B.C. 0D.知识点: 第七章定积分及其应用学生答[C;]案:得分: [5] 试题分值: 5.0提示:36.37.设(为常数),则( )A.B.C.D.知识点: 第七章定积分及其应用学生答[D;] 案:得分: [5] 试题分值: 5.0提示:38.39.设在闭区间上连续,( )A. 等于零B. 小于零C. 大于零D. 不能确定知识点: 第七章定积分及其应用学生答[A;] 案:得分: [5] 试题分值: 5.0提示:40.。
第一章 矩阵与行列式习题解答练习1.1 矩阵及其运算1. 已知线性变换x y y y x y y y x y y y 1123212331232235323=++=++=++⎧⎨⎪⎩⎪①②③, 求从变量x 1,x 2,x 3到变量y 1,y 2,y 3的线性变换。
解:由3x (1)–2×(2)得:4y 2–7y 3=3x 1–2x 2 ④ (3)–(2)得:y 2–2y 3=x 3–x 2 ⑤ (4)–4×(5)得:y 3=3x 1+2x 2–4x 3类似运算可得:y 1=–7x 1–4x 2+9x 3, y 2=6x 1+3x 2–7x 3 故由变量x 1,x 2,x 3到变量y 1,y 2,y 3的线性变换为y x x x y x x x y x x x112321233123749637324=--+=+-=+-⎧⎨⎪⎩⎪ 2. 已知两个线性变换x y y x y y y x y y y11321233123223245=+=-++=++⎧⎨⎪⎩⎪ y z z y z z y z z112213323323=-+=+=-+⎧⎨⎪⎩⎪ 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换。
解:将变换2代入变换1可得:x z z z x z z z x z z z1123212331236312491016=-++=-+=--+⎧⎨⎪⎩⎪3. 设A =111111111--⎛⎝⎫⎭⎪⎪⎪,B =123124051--⎛⎝ ⎫⎭⎪⎪⎪,求3AB –2A 及A T B 解:3AB –2A =3111111111--⎛⎝⎫⎭⎪⎪⎪123124051--⎛⎝ ⎫⎭⎪⎪⎪–2111111111--⎛⎝ ⎫⎭⎪⎪⎪ =3058056290-⎛⎝⎫⎭⎪⎪⎪–2111111111--⎛⎝ ⎫⎭⎪⎪⎪=----⎛⎝ ⎫⎭⎪⎪⎪21322217204292 A T B =111111111--⎛⎝⎫⎭⎪⎪⎪123124051--⎛⎝ ⎫⎭⎪⎪⎪=058056290-⎛⎝ ⎫⎭⎪⎪⎪ 4. 解:(1) (35, 6, 49)T , (2) (10) (3) ---⎛⎝⎫⎭⎪⎪⎪241236 (4) 6782056---⎛⎝ ⎫⎭⎪ (5) a x a x a x a x x a x x a x x 111222223332121213132323222+++++5. 设A =1213⎛⎝⎫⎭⎪,B =1012⎛⎝ ⎫⎭⎪,问 (1) AB =BA 吗? (2) (A +B )2=A 2+2AB +B 2吗? (3) (A +B )(A –B )=A 2–B 2吗? 解:AB =1213⎛⎝⎫⎭⎪1012⎛⎝ ⎫⎭⎪=3446⎛⎝ ⎫⎭⎪, BA =1012⎛⎝ ⎫⎭⎪1213⎛⎝ ⎫⎭⎪=1238⎛⎝ ⎫⎭⎪故 AB ≠BA 。
重庆大学《高等数学(工学类)》课程试卷第1页共1页重庆大学《高等数学(工学类)》课程试卷A卷B卷20 —20 学年第学期开课学院: 数统学院课程号: 考试日期:考试方式:开卷闭卷 其他考试时间: 120 分题号一二三四五六七八九十总分得分一、选择题(每小题3分,共18分)1. 设向量a与三轴正向夹角依次为,,,αβγ则当cos0β=时有().(A) a⊥xoy面(B) a//xoz面(C) a⊥yoz面(D) a xoz⊥面知识点:向量与坐标的位置关系,难度等级:1.答案: (B)分析:cos0,β=,2πβ=a垂直于y轴,a//xoz面.2. 若某个三阶常系数线性齐次微分方程的通解为212323,y C C x C x=++其中123,,C C C为独立的任意常数,则该方程为().(A)0y y'''+=(B) 30yy'''+'=(C)0y y'''-=(D) 0y'''=知识点:通过微分方程的通解求微分方程,难度等级:2.答案: (D)分析:由通解中的三个独立解21,,x x知,方程对应的特征方程的特征根为1230.λλλ===因此对应的特征方程是30.λ=于是对应的微分方程应是0.y'''=故应选(D).3. 设D由14122≤+≤yx确定.若1221,DI dx yσ=+⎰⎰222(),DI x y dσ=+⎰⎰223ln(),DI x y dσ=+⎰⎰则1,I2,I3I之间的大小顺序为().(A)321III<<(B)231III<<(C)132III<<(D)123III<<知识点:二重积分比较大小,难度等级:1.答案:(D)分析:积分区域D由22114x y≤+≤确定.在D内,2222221ln(),x y x yx y+<+<+故321.I I I<<只有D符合.4.设曲线L是由(,0)A a到(0,0)O的上半圆周22,x y ax+=则曲线积分命题人:组题人:审题人:命题时间:教务处制学院专业、班年级学号姓名考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密考试提示1.严禁随身携带通讯工具等电子设备参加考试;2.考试作弊,留校察看,毕业当年不授学位;请人代考、替他人考试、两次及以上作弊等,属严重作弊,开除学籍.(sin )(cos )().xx Ley my dx e y m dy -+-=⎰(A)0 (B)22m a π (C)28m a π (D)24m a π知识点:对坐标的曲线积分,格林公式,难度等级:2. 答案:(B)分析:补充直线段1:0(:0),L y x a =→则1L L +为封闭曲线在上使用格林公式可得12,2L L Dm mdxdy a π+==⎰⎰⎰而10.L =⎰选B.5. 已知向量23,a m n =+则垂直于a 且同时垂直于y 轴的单位向量().e =(A))i j k ++ (B))i j k -+ (C))2i k ±- (D)()2i k ±+知识点:向量垂直,单位向量,难度等级:1. 答案:(C) 分析:向量111010i j ki k =-+垂直于a 且同时垂直于y 轴,其模为6. 设∑为球面2222,x y z R ++=则22()().84x y I dS ∑=+=⎰⎰(A)24R π (B)545R π (C)24R π (D)R π4知识点:对面积的曲面积分,对称性,难度等级:2. 答案:(C)分析: 由于积分曲面关于三个坐标面对称,且满足轮换,故有2222224114()4.333x dS x y z dS R R R ππ∑∑=++=⋅=⎰⎰⎰⎰利用上述结论所求I 为23.8x dS ∑⎰⎰故选C.二、填空题(每小题3分,共18分)7. 幂级数21!n nn n x n ∞=∑的收敛半径为__________.知识点:幂级数收敛半径,难度等级:1. 答案分析:1`22222(1)(1)(1)!lim lim 1!n n n n n n n n n xn n x ex x n n x n ++→∞→∞+++==<⇒< 8. 由原点向平面引垂线,垂足的坐标是),,(c b a ,此平面的方程为__________.知识点:平面方程,难度等级:1.答案:23120.x y z -+-=分析:该平面的法向量为22350,x y z -+-=且过点22350,x y z -+-=则其平面的方程23120.x y z -+-=9. 设L 为椭圆221,34x y +=其周长记为,a 则求22(243)Lxy x y ds ++⎰__________.=知识点:对坐标的曲线积分,难度等级:1. 答案:12.a10. 设区域D 为222,x y R +≤则()DR y dxdy +⎰⎰__________.=知识点:二重积分的计算,对称性,难度等级:2. 答案:3.R π分析:所求几何体为一圆柱体被一平面劈开剩下部分,由几何形状知其为圆柱体体积一半,可得结果.或直接由被积函数奇偶分开,及积分区域对称立得. 11.3222(2cos )(12sin 3)__________,Lxy y x dx y x x y dy -+-+=⎰其中为抛物线22x y π=上由到的一段弧.知识点:对坐标的曲线积分,积分与路径无关,难度等级:2答案:2.4π解: 322cos ,P xy y x =-2212sin 3,Q y x x y =-+262cos .Q P xy y x x y∂∂⇒=-=∂∂ 3222(2cos )(12sin 3)L xy y x dx y x x y dy ⇒-+-+⎰与积分路径无关.⇒取L 为由(0,0),(,0),(,1)22ππ组成的折线,则2132222203(2cos )(12sin 3)0(12).44L xy y x dx y x x y dy y y dy ππ-+-+=+-+=⎰⎰12. 设∑为曲面2221x y z ++=的外侧,则333I x dydz y dzdx z dxdy∑=++⎰⎰__________.=知识点:对坐标的曲面积分,球坐标,难度等级:3. 答案:12.5π分析: 由高斯公式,2122240123()3sin .5I x y z dV d d r dr ππθϕϕΩ=++==⎰⎰⎰⎰⎰⎰三、计算题(每小题6分,共24分)13. 求初值问题2(2)|1x ydy x y dxy ==+⎧⎨=⎩的解.知识点:齐次微分方程的初值问题,求解,难度等级:1. 分析:所给方程为齐次微分方程,作代换yu x=化为可分离变量的微分方程. 解:将方程改写为2.dy x y dx y+= 这是齐次方程.令,y xu =则.dy du u x dx dx=+ 代入上式得L (0,0))1,2(π21.du u xdx u+=+ 这是变量分离方程,且有(2)1(2).22y u ==积分得21ln |2|ln |1|0.33x u u C +-+++= 代入初值可解得32ln .2C =--故原方程的特解为213ln |2|ln |1|2ln 0.332y y x x x +-++--=14. 求级数11(4)!n n ∞=∑的和. 知识点:级数和,难度等级:3分析:利用级数之和,幂级数的逐项求导解: 0,.!nx n x e x R n ∞==∈∑(1),.!n nx n x e x R n ∞-=-⇒=∈∑20,.(2)!2n x xn x e e x R n -∞=+⇒=∈∑又 20(1)cos ,.(2)!n nn x x x R n ∞=-=∈∑ 40cos 2,.(4)!2x xn n e e x x x R n -∞=++⇒=∈∑ 111cos112.(4)!2n e e n -∞=++⇒=∑ 15. 计算222()L ydx xdy x y -+⎰,其中L 为圆周22(1)2,x y -+=L 的方向为逆时针方向.知识点:对坐标的曲线积分,积分与路径无关,取特殊路径;难度等级:3.分析:先注意积分与路径无关,后根据分母特点取特殊路径积分.解:当(,)(0,0)x y ≠时,22222.2()P x y Qy x y x∂-∂==∂+∂作小圆222:,C x y ε+=取逆时针方向,则222222222112.2()2()22L C Cx y ydx xdy ydx xdy ydx xdy dxdy x y x y επεε+≤--==-=-=-++⎰⎰⎰⎰⎰16. 求力(,,)F y z x =沿有向闭曲线L 所作的功,其中L 为平面1x y z ++=被三个坐标面所截成的三角形的整个边界,从z 轴正向看去,顺时针方向.知识点:变力没曲线作功,难度等级:2.分析: 曲线积分的边界已为闭,用斯克斯公式,或化为平面曲线积分用格林公式.解: 用斯托克斯公式,取∑为平面1x y z ++=的下侧被L 所围的部分,∑1,1,1).--- 力F 所做的功为LW ydx zdy xdz =++⎰x y y z ∑---=∂∂∂∂⎰⎰3.2===⎰⎰四、解答题(每小题6分,共12分)17.设(),u yxf z =其中()f z 二阶可导,(,)z z x y =由方程2ln 10x y z +-+=所确定,求22.ux∂∂知识点:方程组的二阶偏导数,难度等级:2. 分析:()u yxf z =对x 求二阶偏导数得22,ux ∂∂但其中会包含z 对x 的二阶偏导数22zx ∂∂.2ln 10x y z +-+=两边对x两次求偏导数,可求出22zx∂∂.解:()(),u z yf z xyf z x x∂∂'=+∂∂ 222222()()()(),u z z zyf z xyf z xyf z x x x x∂∂∂∂''''=++∂∂∂∂221,1,z z x zz zz x x∂==∂∂∂==∂∂2222()()().uyzf z xyz f z xyzf z x∂''''=++∂ 18. 计算曲面积分323232()()(),x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =.知识点:高斯公式,球面坐标,极坐标,难度等级3. 分析: 补充辅助面用高斯公式,再用球面坐标.解: 设222:,0x y a S z ⎧+≤⎨=⎩取下侧,则∑与S 围成的区域为,ΩS 在xoy 面的投影区域为.D 于是323232()()()SI x az dydz y ax dzdx z ay dxdy ∑+=+++++⎰⎰323232()()()Sx az dydz y ax dzdx z ay dxdy -+++++⎰⎰22223()Dx y z dv ay dxdy Ω=+++⎰⎰⎰⎰⎰222222203sin sin a a d d r r dr a d r rdr πππθϕϕθθ=⋅+⋅⎰⎰⎰⎰⎰555615429.20a a a πππ=+=五、 证明题(每小题6分,共12分)19. 证明:()()0()()().ay am a x m a x dy e f x dx a x e f x dx --=-⎰⎰⎰知识点:二重积分交换积分次序,难度等级:1分析: 将二次积分化为定积分,注意到被积函数不含变量,y 先对y 积分,故将积分区域D 由y 型区域化为x 型区域计算可得证明结果证明: 积分区域为,0,{()0|},D x y y a x y =≤≤≤≤并且D 又可表示为,0,{(}.)|D x y x a x y a =≤≤≤≤ 所以()()()0()()()().ay a a am a x m a x m a x xdy e f x dx dx e f x dy a x e f x dx ---==-⎰⎰⎰⎰⎰20. 设在半平面0x >内有力3()kF xi yj ρ=-+构成力场,其中k 为常数,ρ=证明:在此力场中场力所作的功与所取路径无关. 知识点:变力沿曲线作功,难度等级:1 分析: 验证积分与路径无关. 证明 场力所作的功2232,()Lxdx ydyW k x y +=-+⎰其中L 为力场内任一闭曲线段.223222523;()()Q y xyx x x y x y ⎡⎤∂∂==-⎢⎥∂∂++⎣⎦ 223222523.()()P x xy y y x y x y ⎡⎤∂∂==-⎢⎥∂∂++⎣⎦ 可见,,P Qy x∂∂=∂∂且,P Q 在半平面0x >内有连续偏导数,所以0.W =即场力作用与路径无关.六、应用题 (每小题8分,共16分)21. 已知年复利为0.05,现存a 万元,第一年取出19万元,第二年取出28万元,…,第n 年取出109n +万元,问a 至少为多少时,可以一直取下去?知识点:幂级数的和函数,难度等级:2解:设n A 为用于第n 年提取(109)n +万元的贴现值,则(1)(109).n n A r n -=++ 故1111110919102009.(1)(1)(1)(1)n n n n nn n n n n n n nA A r r r r ∞∞∞∞∞=====+===+=+++++∑∑∑∑∑设1(),(1,1),n n S x nx x ∞==∈-∑ 则21()()(),(1,1).1(1)n n x x S x x x x x x x ∞=''===∈---∑所以11()()4201 1.05S S r ==+万元,故20094203980A =+⨯=万元,即至少应存入3980万元.22.按照牛顿冷却定律:物体在空气中冷却的速度与物体温度和空气温度之差成正比.已知空气温度为30,︒物体在15分钟内从100︒冷却到70︒时,求物体冷却到40︒时所需要的时间?知识点:微分方程数学模型,难度等级:2分析:根据冷却定律建立微分方程初值问题并求解. 解:设在时间t 时,物体的温度为.T C ︒ 根据冷却定律列出方程(30).dTk T dt=-- 分离变量,并积分得,30dTkdt T =-- ln(30)ln .T kt c -=-+故有0.3kt T ce -=+由初始条件:015|100,|70.t t T T ==== 代入可解得1770,ln ,154c k ==即有 17(ln )154.3070t T e-=+当40T =时,由上式可解得15ln 7527ln 4t ==(分).。
2017学年春季学期《高等数学Ⅰ(二)》期末考试试卷(B)注意:1、本试卷共 3 页;2、考试时间110分钟; 3、姓名、学号必须写在指定地方一、单项选择题(8个小题,每小题2分,共16分)将每题的正确答案的代号A、B、C或D填入下表中.1.a与b是向量,若baba+=+,则必有()(A)⊥a b(B)0,0==a b或(C)a=b(D)⋅=a b a b2.()(),0,1sin()limx yxyx→=( ).(A)不存在(B)1(C)0(D)∞3.二元函数),(yxfz=在),(yx处可微的充要条件是()(A)),(yxf在),(yx处连续(B)),(yxfx',),(yxfy'在),(yx的某邻域内存在(C)),(yxfx',),(yxfy'在),(yx的某邻域内连续(D)当0)()(22→∆+∆yx时,yyxfxyxfzyx∆'-∆'-∆),(),(是4.对函数(,)f x y=(0,0)是(,)f x y的( ).(A)驻点与极值点(B)驻点,非极值点(C)极值点,非驻点(D)非驻点,非极值点5.设平面区域D:1)1()2(22≤-+-yx,若21()dDI x yσ=+⎰⎰,32()dDI x yσ=+⎰⎰则有()(A)21II<(B)21II=(C)21II>(D)不能比较6.设椭圆L:13422=+yx的周长为l,则()dLx y s+=⎰()(A)0 (B) l (C) l3 (D) l47.下列结论正确的是( )(A)若11nnuu+<(1,2,)n=成立,则正项级数1nnu∞=∑收敛(B)当0lim=∞→nnu时,交错级数1(1)nnnu∞=-∑收敛(C)若级数1nnu∞=∑收敛,则对级数的项任意加括号后所成的新级数也收敛(D) 若对级数1nnu∞=∑的项适当加括号后所成的新级数收敛,则原级数也收敛8.设∑∞=1nnnxa的收敛半径为(0)R R>,则∑∞=12nnnxa的收敛半径为( A )(A) (B) R(C) 2R(D) 不能确定二、填空题(7个小题,每小题2分,共14分).1.过点(1,2,3)且方向向量为(1,2,3)=n的直线方程为;2.设z是方程e zx y z+-=所确定的,x y的隐函数,则(1,0,0)zx∂=∂;3.设22(,)f x y x y=-,则(1,1)f=grad;4. 交换积分1d(,)dyy f x y x⎰的积分次序,变为;5.设L是直线21y x=+上从点(0,1)到点(1,3)的线段,将(,)(,)LP x y dx Q x y dy+⎰转换成对弧长的曲线积分为;6.幂级数11(1)nnnxn∞-=-∑的收敛域是;7.设有周期为π2的函数,它在(,]ππ-上的表达式为()⎩⎨⎧≤<+≤<--=ππxxxxf,1,1,其傅里叶级数在点π=x处收敛于.三峡大学试卷纸教学班号序号学号姓名…………………….……答题不要超过密封线………….………………………………三、综合解答题一(5个小题,每小题7分,共35分.解答题应写出文字说明、证明过程或演算步骤)1.设(,)z z x y =由方程(23,2)0F x z y z --=所确定,其中F 是可微函数,求d z . 解: 2.求曲面32=++xy z e z在点)0,1,2(处的切平面方程与法线方程. 解:3.计算二重积分22()d Dxxy y σ++⎰⎰,其中D 由1,0,0=+==y x y x 所围成.解:4.计算(1)d I x v Ω=+⎰⎰⎰,其中Ω是以原点(0,0,0)为形心,边长为a 正立方体.解:5.求幂级数01nn x n ∞=+∑的收敛域与和函数.解:三峡大学 试卷纸 教学班号 序号 学号 姓名…………………….……答 题 不 要 超 过 密 封 线………….………………………………四、综合解答题二(5个小题,每小题7分,共35分.解答题应写出文字说明、证明过程或演算步骤)1.在椭圆4422=+y x 上求一点,使其到直线0632=-+y x 的距离最短. 解: 2.计算d d Ly x x y -+⎰,其中L 是沿圆周1)1()1(22=-+-y x 正向一周.解:3.计算d Lxy s ⎰,其中L 为从(0,0)到(2,0)的上半圆弧:)0(222≥=+y x y x .解:4.计算积分d I z S =∑⎰⎰,其中∑是上半球面222y x a z --=,(0)a >.解:5.利用高斯公式计算对坐标的曲面积分(cos cos cos )d x y z S ∑αβγ++⎰⎰, 其中∑为锥面222x y z +=介于平面0z =及1z =之间的部分的下侧, (cos ,cos ,cos αβγ)是∑上点(,,)x y z 处的法向量的方向余弦.解:三峡大学 试卷纸 教学班号 序号 学号 姓名…………………….……答 题 不 要 超 过 密 封 线………….………………………………2017学年春季学期《高等数学Ⅰ(二)》期末考试试卷(B)答案及评分标准一、单项选择题(8个小题,每小题2分,共16分)1.a 与b 是向量,若b a b a +=+,则必有(D )(A)⊥a b ; (B)0,0==a b 或; (C)a =b ; (D)⋅=a b a b .2.()(),0,1sin()limx y xy x →=( B ).(A ) 不存在;(B ) 1; (C ) 0; (D ) ∞ .3.二元函数),(y x f z =在),(00y x 处可微的充要条件是( C ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C )),(y x f x ',),(y x f y '在),(00y x 的某邻域内连续; (D)当0)()(22→∆+∆y x 时,y y x f x y x f z y x ∆'-∆'-∆),(),(0000是比4.对函数(,)f x y =(0,0)是(,)f x y 的( C ). (A )驻点与极值点; (B )驻点,非极值点; (C )极值点,非驻点; (D )非驻点,非极值点. 5.设平面区域D :1)1()2(22≤-+-y x ,若21()d DI x y σ=+⎰⎰,32()d DI x y σ=+⎰⎰则有( A )(A )21I I <; (B ) 21I I =; (C )21I I >; (D )不能比较.6.设椭圆L :13422=+y x 的周长为l ,则()d L x y s +=⎰(A ) (A)0; (B) l ; (C) l 3; (D) l 4.7.下列结论正确的是 ( C )(A) 若11n n u u +<(1,2,)n =成立,则正项级数1n n u ∞=∑收敛; (B) 当0lim =∞→n n u 时,交错级数1(1)nnn u∞=-∑收敛;(C) 若级数1nn u∞=∑收敛,则对级数的项任意加括号后所成的新级数也收敛; (D) 若对级数1nn u∞=∑的项适当加括号后所成的新级数收敛,则原级数也收敛.8.设∑∞=1n nnx a的收敛半径为(0)R R >,则∑∞=12n n n x a 的收敛半径为 ( A )(A)(B) R ; (C) 2R ; (D) 不能确定.二、填空题(7个小题,每小题2分,共14分).1.过点(1,2,3)且方向向量为(1,2,3)=n 的直线方程为123123x y z ---==.2.设z 是方程e zx y z +-=所确定的,x y 的隐函数,则(1,0,0)z x ∂=∂_______12_____ 3.设22(,)f x y x y =-,则(1,1)f =grad (2,-2) . 4.交换积分10d (,)d yy f x y x ⎰的积分次序为______21d (,)d xxx f x y y ⎰⎰___.5.设L 是直线21y x =+上从点(0,1)到点(1,3)的线段, 将(,)(,)LP x y dx Q x y dy+⎰转换成对弧长的曲线积分为2)P Q ds +⎰. 6.幂级数11(1)nn n x n∞-=-∑的收敛域是 (1,1]- . 7.设有周期为π2的函数,它在(,]ππ-上的表达式为()⎩⎨⎧≤<+≤<--=ππx x x x f 0,10,1,其傅里叶级数在点π=x 处收敛于2π. 三、综合解答题一(5个小题,每小题7分,共35分.解答题应写出文字说明、证明过程或演算步骤)1.设(,)z z x y =由方程(23,2)0F x z y z --=所确定,其中F 是可微函数,求d z . 解:d d d x y z z x z y =+………………2分12121222d d 33F F x y F F F F =-+-----………………5分12122d 2d 3F x F y F F +=+.………………7分或解:由12(2d 3d )(2d d )0F x z F y z ⋅-+⋅-=,得12122d 2d d 3F x F yz F F +=+.2.求曲面32=++xy z e z在点)0,1,2(处的切平面方程与法线方程. 解:令32),,(-++=xy z e z y x F z,………………2分 则2,,+===z z y x e F x F y F ,故(2,1,0)(1,2,3)n………………4分所求切平面的方程为 03)1(2)2(=+-+-z y x , 即432=++z y x , ………………6分法线方程为32112zy x =-=-.………………7分 3.计算二重积分22()d Dx xy y σ++⎰⎰,其中D 由1,0,0=+==y x y x 所围成.解:22()d Dxxy y σ++⎰⎰=1-1220d ()d x x x xy y y +++⎰⎰………………4分1320515()d 62324x x x x =-+-+=⎰.………………7分4.计算(1)d I x v Ω=+⎰⎰⎰,其中Ω是以原点(0,0,0)为形心,边长为a 正立方体.解:Ω的形心为(0,0,0),Ω的体积V 为3a ,………………4分 故3I xV V V a =+==.………………7分5.求幂级数01nn x n ∞=+∑的收敛域与和函数.解:因为11limlim 12n n n n a n a n ρ+→∞→∞+===+,所以1R = . ………………1分 在左端点1x =-,幂级数成为0(1)1nn n ∞=-+∑,它是收敛的;在右端点1x =,幂级数成为011n n ∞=+∑,它是发散的,故该幂级数收敛域为[1,1)-. ………………3分令0()1nn xs x n ∞==+∑,[1,1)x ∈-,于是1()1n n x xs x n +∞==+∑,[1,1)x ∈-,逐项求导,得(())xs x '=101n n x n +∞='⎛⎫ ⎪+⎝⎭∑=101n n x n +∞='⎛⎫ ⎪+⎝⎭∑=0n n x ∞=∑=11x -,(1,1)x ∈- 将上式两端从0到x 积分,得01()d ln(1),111xxs x x x x x==---≤<-⎰, (根据和函数的连续性,当1x =-时,此式也成立).于是,当0x ≠时,1()ln(1)s x x x=--,又(0)1s =.故 1ln(1), [-1,0)(0,1),()1, 0.x x s x xx ⎧--∈⎪=⎨⎪=⎩ ………………7分四、综合解答题二(5个小题,每小题7分,共35分.解答题应写出文字说明、证明过程或演算步骤)1.在椭圆4422=+y x 上求一点,使其到直线0632=-+y x 的距离最短. 解: 设),(y x 为椭圆4422=+y x 上任一点,则该点到直线0632=-+y x 的距离为13326yx d --=;令)44()326(222-++--=y x y x L λ,………………2分于是由224(623)20,6(623)80,440,x y L x y x L x y y L x y λλλ⎧=---+=⎪=---+=⎨⎪=+-=⎩ 得驻点 183(,)35M ,283(,)55M -,383(,)55M --,483(,)55M -,………………5分依题意,椭圆到直线一定有最短距离存在, 其中1313133261min =--=M yx d 即为所求.………………7分 2.计算d d Ly x x y -+⎰,其中L 是沿圆周1)1()1(22=-+-y x 正向一周.解: 圆周1)1()1(22=-+-y x 所围区域D 的面积为 π⋅21,………………3分 由格林公式得d d (11)d d LDy x x y x y -+=+⎰⎰⎰=π2.………………7分3.计算d Lxy s ⎰,其中L 为从(0,0)到(2,0)的上半圆弧:)0(222≥=+y x y x .解: :L 1cos {,[0,]sin x t t y tπ=+∈=,………………3分d (1cos )sin d 2Lxy s t t t π=+=⎰⎰.………………7分4.计算积分d I z S =∑⎰⎰,其中∑是上半球面222y x a z --=,(0)a >.解:d d S x y =d x y ………………3分d DI x y =………………5分3d d d DDx y a x y a π===⎰⎰.………………7分5.利用高斯公式计算对坐标的曲面积分(cos cos cos )d x y z S ∑αβγ++⎰⎰, 其中∑为锥面222x y z +=介于平面0z =及1z =之间的部分的下侧, (cos ,cos ,cos αβγ)是∑上点(,,)x y z 处的法向量的方向余弦. 解:设∑1为221(1)z x y =+≤的上侧,………………2分 则∑与∑1一起构成一个闭曲面, 记它们围成的空间闭区域为1=∑∑Ω+, 由高斯公式得 1(cos cos cos )d x y z S ∑∑αβγ+++⎰⎰3d d d x y z Ω=⎰⎰⎰=π………………4分而 22111(cos cos cos )d d d d d x y x y z S z x y x y ∑αβγπ∑+≤++===⎰⎰⎰⎰⎰⎰,………………6分因此 (cos cos cos )d x y z S ∑αβγ++⎰⎰=0 ………………7分。
《高等数学(二)》作业一、填空题1.点A (2,3,-4)在第 VIII 卦限。
2.设22(,)sin,(,)yf x y x xy y f tx ty x=--=则 2(,)t f x y .3x y y-的定义域为 {}(,)0x y x y ≥> 。
4.设25(,),f f x y x y y x y∂=-=∂则245x x y - 。
5.设共域D 由直线1,0x y y x ===和所围成,则将二重积分(,)Df x y d σ⎰⎰化为累次积分得111(,)(,)xydx f x y dy dy f x y dx ⎰⎰⎰⎰或。
6.设L 为连接(1,0)和(0,1)两点的直线段,则对弧长的曲线积分()Lx y ds +⎰=2 。
7.平面2250x y z -++=的法向量是 (2,-2,1) 。
8.球面2229x y z ++=与平面1x y +=的交线在0x y 面上的投影方程为{222(1)90x y x z ++-== 。
9.设22,z u v ∂=-=∂z而u=x-y,v=x+y,则x-4y 。
10.函数z x y =-的定义域为 }{2(,)0,0,x y x y x y ≥≥> 。
11.设n 是曲面22z x y =+及平面z=1所围成的闭区域,化三重积为(,,)nf x y z dx dy dz ⎰⎰⎰为三次积分,得到222211111(,,)x x x y dx f x y z dz ---+⎰⎰ 。
12.设L 是抛物线2y x =上从点(0,0)到(2,4)的一段弧,则22()Lx y dx -=⎰ 5615-。
13.已知两点12(1,3,1)(2,1,3)M M 和。
向量1212M M M M =的模 3 ;向量12M M 的方向余弦cos α=1/3 ,cos β= -2/3 ,cos γ= 2/3 。
14.点M (4,-3,5)到x 轴的距离为 34 。
高等数学2真题及答案解析高等数学2作为大学数学课程的一部分,是对高等数学1内容的拓展与深化。
它涵盖了微分方程、多元函数与偏导数、重积分等重要知识点。
许多学生在面对高等数学2的考试时,可能会遇到一些难题,对一些概念和方法有一定的困惑。
为了帮助大家更好地掌握这门课程,以下将对一道典型的高等数学2题目进行详细分析和解答。
【题目】设函数$f(x,y)=x^2+y^2+xy-x-2y+3$,求$f(x,y)$在椭圆$2x^2+4y^2=9$上的最大值和最小值。
【解析】首先,我们需要找到$f(x,y)$在椭圆上的极值点。
根据多元函数极值的判定条件,我们需要求得$f(x,y)$的偏导数。
求得$f(x,y)$的偏导数后,我们将其分别与椭圆方程联立解方程组。
先求$f(x,y)$的偏导数:$f_x=2x+y-1$,$f_y=2y+x-2$。
联立椭圆方程与偏导数方程组,得到方程组:$2x^2+4y^2=9$,$2x+y=1$,$2y+x=2$。
解方程组得到$x=1$,$y=0$,我们需要验证这个点是否是极值点。
计算得$f(1,0)=1$。
接下来,我们需要求出椭圆方程$2x^2+4y^2=9$的参数方程。
设$x=\frac{3}{\sqrt{2}}\cos t$,$y=\frac{3}{2}\sin t$。
代入$f(x,y)$中,得到:$f(t)=\frac{9}{2}\cos^2 t+\frac{9}{4}\sin^2t+\frac{9}{2}\sin t\cos t-\frac{3}{\sqrt{2}}\cos t-\frac{9}{2}\sin t+3$化简,得到$f(t)=\frac{9}{2}\cos^2 t+\frac{9}{4}\sin^2 t-\frac{3}{\sqrt{2}}\cos t-\frac{9}{2}\sin t+\frac{21}{4}$。
我们需要求得$f(t)$的极值点。
对$f(t)$求导,得到:$f'(t)=-\frac{9}{2}\sin t\cos t+\frac{9}{2}\sin t-\frac{3}{\sqrt{2}}\sin t-\frac{9}{4}\cos t=\frac{1}{2}(9\sin t-6\sin 2t-\sqrt{2}\sin t-9\cos t)$。
高等数学一、填空(18分)1 已知22)/,(y x x y y x f -=+,则=),(y x f 。
2 设{}1:),(22≤+=y x y x D ,则由估值不等式得 ⎰⎰≤++≤Dd y x σ)14(22 。
3 设∑是锥面222z y x =+被平面1=z 所截得立体表面的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 。
4 级数∑∞=--11)1(n n n 的和为 。
5 把函数x +11展开成x 的幂级数得到:=+x11。
6 已知四个函数x x e e x x cos ,sin ,,-是某个四阶齐次线性微分方程的特解, 则该微分方程为 。
二、选择题(18分)1 有且只有一个不连续点的函数是( )(A )xy (B ))ln(22y x e x + (C )yx x + (D )xy arctan 。
2 旋转抛物面42222-+=y x z 在点)0,1,1(-处的法线方程为( )(A )14141-=+=-z y x (B )14141-=-+=-z y x (C )14111-=+=--z y x (D )44111z y x =+=--。
3 改换积分⎰⎰---11122),(y y dx y x f dy的次序,则下列结果正确的是( )(A )⎰⎰--21011),(x dy y x f dx(B )⎰⎰21/1),(xxdy y x f dx (C )⎰⎰xxdy y x f dx /131),( (D )⎰⎰-2121),(x xdy y x f dx4 若L 是抛物线2x y =上10≤≤x 的弧段,则=⎰Lxds ( )(A ))155(121- (B )155- (C )121 (D ))155(81-。
5 下列级数中收敛的是( )(A )∑∞=+1884n n n n (B )∑∞=-1884n n n n (C )∑∞=+1824n n n n (D )∑∞=⋅1842n nnn 。
华南农业大学期末考试试卷(A 卷)后附答案2014-2015学年第 2 学期 考试科目: 大学数学Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、填空题(本大题共6小题,每小题3分,共18分)1. 事件A 、B 为两个事件,若()0.6P A =,(|)0.4P B A =,则()P A B = 0.762.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤=其它,,02cos )(πx x A x f ,则系数A = 1/23.已知随机变量X N Y N ~()~()-1131,,,且X 与Y 相互独立,若Z X Y =-+27,则Z 服从 N(0,5) 分布(写出具体分布及其参数)。
4. 以X 表示接连10次独立重复射击命中目标的次数,已知每次射击命中目标的概率为0.4,则2()E X =_16_____.5. 设来自总体X N ~(.)μ,092的容量为9的样本得样本均值X =5,则未知参数μ的置信度为95%的置信区间是 4。
412,5。
5586. 设总体2~(,)X N μσ,其中μ未知,12,,n X X X 为其一个样本,样本均值为X ,样本方差为2S ,检验原假设2200:H σσ= 与备择假设2210:H σσ≠,该检验统计量为____(n−1)S 2σ2______________(用22,,n S σ来表示)二、单项选择题(本大题共6小题,每小题3分,共18分) 1. 下述函数中,可作为某个随机变量的分布函数的是( c )A. 21(),1F x x =+ 当x R ∈ B. 11()arctan 2F x x π=+,当x R ∈ C. ⎪⎩⎪⎨⎧≤>-=-.0,0;0 ),1(21)(x x e x F xD. ()2F x x =,当01x <<2. 设X 和Y 相互独立,且分别服从)1,0(N 和)1,1(N ,则( c )。
A. 2/1}0{=≤+Y X PB. 2/1}1{=≤-Y X PC. 2/1}0{=≤-Y X PD. 2/1}1{=≤+Y X P3. 设)(Y X ,的概率密度⎩⎨⎧≤≤≤≤=其它,,,,02010)(y x C y x f ,则=C ( c )A. 3B. 1/3C.1/2D. 24. 设随机变量,X Y 的期望与方差都存在, 则下列各式中成立的是(a ).A. ()E X Y EX EY +=+B. ()E XY EX EY =⋅C. ()D X Y DX DY +=+D. ()D XY DX DY =⋅5. 总体2~(,)X N μσ,从总体中抽取容量为n 的样本,样本均值为X ,则统计量2X Y n S μ⎛⎫-= ⎪⎝⎭服从( c )分布 。
2A.(0,1) B.(1)C.(1)D.(1,1)N t n n F n χ---6. 设n X X X ,,, 21为来自X 的一个样本,X 为样本均值,则总体方差()D X 的无偏估计量为( b ). A.21()ni i X X =-∑ B.211()1ni i X X n =--∑ C. 211()n i i X X n =-∑ D. 211()1n i i X X n =-+∑三、解答题(本大题共4小题,共44分)1. (本题10分) 已知某种病菌在人口中的带菌率为10%,在检测时,带菌者呈阳性和阴性反应的概率分别为95%和5%,而不带菌者呈阳性和阴性反应的概率分别为20%和80%.(1) 随机地抽出一个人进行检测,结果为阳性的概率.(2) 已知某人检测的结果为阳性,求这个人是带菌者的条件概率. 0.2750.34552.(本题10分) 若随机变量X 的概率密度(1),01()0Ax x x f x -<<⎧=⎨⎩其他,(1)求系数A , (2) 102P X <<() (3)求lnX Y =的密度函数Y ()f y-6 1/23. (本题12分) 设二维离散型随机变量(,)X Y 的分布列为(1)分别求X 和Y 的边缘分布律,并判断X 和Y 是否相互独立 (2)求()E X ,()D X ,2()E Y ,2()D Y (3)求()P X Y =2. 0.84. (本题12分)设二维随机变量(,)X Y 的概率密度为(34)e ,0,0(,)0,x y k x y f x y -+⎧>>=⎨⎩其它.(1) 确定常数k ; (2) 求(,)X Y 分布函数(,)F x y ; (3) 求()P X Y <; (4) 判断X 与Y 相互独立性. 12四、应用题(本大题共2小题,共20分)1. (本题10分) 设甲、乙、丙、丁四个工人操作机器Ⅰ、Ⅱ、Ⅲ各一天,其产品产量如下表,问工人和机器对产品产量是否有显著影响?(1)写出双因素无交互作用方差分析的统计模型(2)写出该统计模型下需要检验的原假设与备择假设(0.050.050.050.05)2. (本题10分) 某纤维材料的耐热性能好坏主要依赖指标缩醛化度来衡量,该指标越高说明耐热性能越好。
在生产过程中,影响缩醛化度的重要因素是甲醛浓度.为了找出两者之间的相关关系,做了一批试验,获得数据如下表:计算得24,28.99x y ==,21ii x=∑=4144,1i ii x y =∑=4900.16(1)计算一元线性回归方程回归系数01ˆˆ,ββ,并写出该一元线性回归方程(2)写出检验该一元线性回归方程有效性(或y 与x 之间线性关系)的原假设与备择假设(3)若已知211ˆ~(,/)xxN L ββσ,2σ未知,其估计为2ˆ/(2)E SS n σ=-且满足222ˆ(2)~(2)n n σχσ--,请给出1β的 1α-的置信区间(用1ˆβ ,/2(2)t n α-,2ˆ,xx L σ表示)。
2014-2015学年第 2 学期 大学数学Ⅱ 华南农业大学期末考试试卷(A 卷)-参考答案一、1. 0.56; 2. 1/2; 3. N (0, 5); 4. 40 ; 5. [4.412 5.588]; 6. 22(1)/n S σ- 二、1. B 2. D 3. C 4. B 5. D 6. B三、1. 解:假设带菌者为A ,检测结果阳性为B(1) ()()(|)()(|)0.10.950.90.20.275P B P A P B A P A P B A =+=⨯+⨯= (5分)(2) ()(|)0.10.9519(|)()0.27555P A P B A P A B P B ⨯===或0.3455 (10 分)2.解 (1)23111000()(1)()|1236x x Af x dx Ax x dx A =-=-==⎰⎰,故A=6 (3分)(2)231/21/2330011116(1)6()|6[()()]232322x x x x dx -=-=-⨯=⎰(6分)(3)由于lnX Y=是单调函数,且反函数为()y G y e =,26(1),016(1),0()[(()]()00y y yy y y Y X e e e e e e y f y f G y G y ⎧⎧-<<-<'===⎨⎨⎩⎩其他其他 (10分)且(1,1)(1)(1)P X Y P X P Y =-=-≠=-=-,故X,,Y 不独立 (3分)(2)1()10.310.320.40.8ni i i E X p X ===-⨯+⨯+⨯=∑,222221()(1)0.310.320.4 2.2ni i i E X p X ===-⨯+⨯+⨯=∑222()()[()] 2.20.8 1.56D X E X E X =-=-= (6分)22221()(1)0.620.4 2.2ni i i E Y p Y ===-⨯+⨯=∑,44441()(1)0.620.47ni i i E Y p Y ===-⨯+⨯=∑24222()()[()]7 2.2 2.16D Y E Y E Y =-=-= (10分)(3)()(1,1)(2,2)0.10.10.2P XY P X Y P X Y ===-=-+===+= (12分)4. 解 (1) 由(,)d d 1f x y x y +∞+∞-∞-∞=⎰⎰,(34)3303400(,)d d e d d e d e d 111e e 12312x y x y x y f x y x y k x y k x yk k +∞+∞+∞+∞+∞+∞-+---∞-∞+∞+∞--==⎡⎤⎡⎤=--=⋅=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰⎰,所以12k =. (2分)(2)(23)340012e d d (1e )(1e ),0,0(,)(,)d d 0,y x u v x y y x u v x y F x y f u v u v -+---∞-∞⎧=-->>⎪==⎨⎪⎩⎰⎰⎰⎰其他(5分)(3){}(34)00(,)d d 12e d d y x y x yP X Y f x y x y x y+∞-+<⎡⎤<==⎢⎥⎣⎦⎰⎰⎰⎰433704e [1e ]d 4e d 4e d y y y y y y y +∞+∞+∞----=-=-⎰⎰⎰431.77=-= (8分) (4) (34)3012e ,0,3e ,0()(,)d 0,.0,.x y x X dy x x f x f x y y +∞-+-+∞-∞⎧>⎧>⎪===⎨⎨⎩⎪⎩⎰⎰其他其他 (10分) (34)4012e ,0,4e ,0()(,)d 0,.0,.x y y Y dx x y f x f x y x +∞-+-+∞-∞⎧>⎧>⎪===⎨⎨⎩⎪⎩⎰⎰其他其他 (11分) 显然,(,)()()X Y f x y f x f y =,所以X 与Y 相互独立. (12分) 四、 1.(1)722214144724112xx i i L x nx ==-=-⨯=∑,14900.1672428.991429.6048nxy i i i L x y nx y ==-⋅=-⨯⨯=∑10129.6048ˆˆˆ0.2643,28.99140.26432422.6482112xy xxL y x L βββ====-=-⨯=所以方程为ˆ22.64860.2643yx =+(6分) (2)01:0H β= ,11:0H β≠ (8分)(3)ˆˆ~(2)t n =-,故其1β的 1α-的置信区间为1/21/2ˆˆ[((t n t n ααββ--+- (10分)2.(1)211,~(0,),1,2,,,1,2,,,0,0abij i j ij ij i j i j X N i a j b μαβεεσαβ===+++====∑∑(2 分)(2)01H :021====a ααα 11H :至少有一个i α不为零1,2,,i a =02H :021====b βββ12H :至少有一个j β不为零 1,2,,j b =(5分)。