大学数学 概率论10第10讲(第二章)
- 格式:doc
- 大小:501.50 KB
- 文档页数:10
第二章 随机变量及其分布题型归类与解题方法1. 求随机变量的分布1.1 求离散型随机变量分布列或分布函数例 2.1 一盒中装有编号1,2,,5 为的五只球,现从中任取三只球,求被抽取的三只球的中间号码为X 的分布列.解 首先确定X 的取值只能为2,3,4.分析 当X k =时,另两只球中的一只在小于k 的1k -个球中取,余一只球在大于k 的5k -只球中取,故111535{}k kC C P X k C --== (2,3,4)k = 即有例 2. 2 已知X 的概率分布为1{2}{1}{1}{2}4P X P X P X P X =-==-=====,求:(1)2Y X =的分布列; (2)(),X Y 的分布列. 解 (1) 2Y X =的分布列为1{2,4}{2}4P X Y P X =-===-=. 同理1{1,1}{1}4P X Y P X =-=-==-=; 1{1,1}{1}4P X Y P X =====; 1{2,4}{2}4P X Y P X =====.故(),X Y 的联合分布列为评点 对于这一类题,首先确定离散型随机变量的取值,然后求出随机变量取各值的概率,最后写出离散型随机变量的分布律.1.2 求连续型随机变量分布列或分布函数例 2.3 设随机变量X 的概率密度为,01;()2,12;0,x x f x x x ≤≤⎧⎪=-≤<⎨⎪⎩其他,求X 的分布函数()F x .解 分析:利用公式()()xF x f x dx -∞=⎰直接计算分布函数.当0x <时,()0F x =;当01x ≤<时,20()()02xxx F x f x dx dx xdx -∞-∞==+=⎰⎰⎰;当12x ≤<时,01211()()0(2)212xx F x f x dx dx xdx x dx x x -∞-∞==++-=--⎰⎰⎰⎰; 当2x ≥时,220,0;,01;2()112,12;21, 2.x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩.例 2.4 在(),X Y 区域Θ上服从均匀分布,求(),X Y 的分布函数,其中Θ为x 轴,y 及1y x =+围成的三角形.解 当1x <-或0y <时,(,)0f x y = (,)0F x y =; 当10x -≤<,1y x ≥+时,201(,)22(1)(22)y xy F x y dy dx y x y x y y -==+-=-+⎰⎰;当10x -≤<,1y x ≥+时,121(,)2(1)xx F x y dx dy x +-==+⎰⎰;当0x ≥,01y ≤<时,01(,)2(2)yy F x y dy dx y y -==-⎰⎰;当0x ≥,1y ≥时,(,)1F x y =. 故2010;(22),10,01;(,)(1),10,1;(2),0,01;10, 1.x y x y y x y x F x y x x y x y y x y x y <-<⎧⎪-+-≤<≤<+⎪⎪=+-≤<≥+⎨⎪-≥≤≤⎪≥≥⎪⎩,或, 评点 求一维的和二维的连续型随机变量的分布函数,是对概率密度函数进行积分.若()f x ,(,)f x y 分区域定义时,关键就在于积分的上,下限或区域的确定.1.3 确定分布列或密度函数或分布函数中的参数例 2.5 随机变量(,)X Y 的概率密度为222(;(,)0,A k x y k f x y ⎧⎪+≤=⎨⎪⎩其他,,求:(1) 系数A 的值.(2) 222{(,)}P X Y x y r ∈+≤ ()r k ≤. 解 (1)因为1(,)(f x y dxdy +∞+∞-∞-∞=⎰⎰用极坐标代换得)222(x y k A k dxdy +≤=⎰⎰230()/3kA d k r rdr A k πθπ=-=⎰⎰故33A k π=. (2)222223300332{(,)}()13r r r P X Y x y r d k r rdr k k k πθπ⎛⎫∈+≤=-=- ⎪⎝⎭⎰⎰.例 2.6设二维随机变量(,)X Y 的分布函数(,)arctan arctan 23x y F x y A B C ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭求:(1)A ,B ,C 的值. (2)(,f x y ).解 (1)因为0A ≠,所以由x ,y 的任意性,得0(0,)arctan 022F A B C π⎛⎫⎛⎫-∞=+-= ⎪⎪⎝⎭⎝⎭,2C π=;0(,0)arctan 023F A B C π⎛⎫⎛⎫-∞=-+= ⎪⎪⎝⎭⎝⎭,2B π=;(,)12222F A ππππ⎛⎫⎛⎫+∞+∞=++= ⎪⎪⎝⎭⎝⎭,21A π=,故21(,)arctan arctan 2223y F x y ππππ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭.(2)由2(,)(,)F x y f x y x y∂=∂∂,得222(,)6[(4)(9)]f x y x y π=++ (,)x y -∞<<+∞.评点 (1)有几个参数就要找到几个独立的条件; (3) 这里主要用到()0F -∞=,()1F +∞=或()1kf x dx =⎰, (,)(,)(,)0F y F x F -∞=-∞=-∞-∞=,(,)1F +∞+∞=,或2(,)1k f x y dxdy =⎰⎰.2. 求概率2.1 由分布列或密度函数或分布函数,求随机变量落入某集合的概率例 2.7 设二维随机变量(,)X Y 的概率密度为(23)6,0,0(,)0,x y e x y f x y -+⎧>>=⎨⎩;其他,求:(1)(,)F x y . (2){236}P x y +≤.解 (1)分区域讨论,见图2.1.当0x ≤,0y ≤时,(,)0F x y =; 当0x >,0y >时(23)230(,)6(1)(1)x yx y x y F x y dy e dx e e -+--==--⎰⎰即23(1)(1),0,0(,)0,x y e e x y F x y --⎧-->>=⎨⎩其他.(2) (23)236{236}6x y x y P X Y e dxdy -++≤+≤=⎰⎰32(3)/3(23)0x x y dx e dy --+=⎰⎰6170.9826e -=-≈.例 2.8 随机变量X 的分布函数为20,0(),05251,5,x xF x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩,求{36}P x <<的概率.解 直接利用公式计算:916{36}(6)(3)12525P x F F <<=-=-=. 评点 (1)对一般连续型随机变量取值的概率,如果已知密度函数求概率可用{(,)}(,)GP x y G f x y dxdy <=⎰⎰公式法.(2)对于已知分布函数求概率,同样也可以用公式法{}{}{}()()P a X b P a X b P a X b F b F a <<=≤≤=<≤=-.2.2 求实际问题的概率例 2.9 某地区18岁的女青年的血压(收缩压,以mmHg计),服从2(110,12)N ,在该地区任选一18岁的女青年,测量她的血压X : (1)求{105}P X ≤,{100120}P X <≤. (2)确定最小的x ,使{}0.05P X x >≤. 解 (1)2(110,12)X N ,则105110{105}(0.417)12P X -⎛⎫≤=Φ=Φ- ⎪⎝⎭1(0.417)10.662=-Φ=-=; 120110100110{100120}1212P X --⎛⎫⎛⎫<≤=Φ-Φ ⎪ ⎪⎝⎭⎝⎭(0.83)(0.83)2(0.8=Φ-Φ-=Φ-= (2)要使{}0.05P X x >≤,必须1{}0.05P X x -≤≤,即{}10.050.95P X x ≤≥-=,亦即1100.9512x -⎛⎫Φ≥⎪⎝⎭,110 1.64512x -≥,129.74x ≥, 故所求x 必须大于等于129.74.例 2.10 一轰炸机带的三枚炸弹向敌方目标投掷,若炸弹落在目标中心40米内,目标将被摧毁,设在使用瞄准器投弹时,弹着点X 的概率密度函数为(100)/10000,1000;()(100)/10000,0100;0,x x f x x x +-<≤⎧⎪=-<≤⎨⎪⎩其他,,求投掷三枚炸弹后,目标被炸毁的概率.解 一枚炸弹落在目标中心40米内的概率为4040404001()(100)(100)10000f x dx x dx x dx --⎡⎤=++-⎢⎥⎣⎦⎰⎰⎰ 4002(100)0.6410000x dx =-=⎰, 则炸弹落在40米外的概率为10.640.36P =-=,所以三枚炸弹都落在目标中心40米外的概率是3(0.36),于是,目标被炸毁的概率是31(0.36)0.953P =-=.评点 (1)对此类题型,一定要根据实际情况,确定所求概率的范围;(2)然后再根据相应的定义,性质,公式求出符合实际的概率.2.3 求服从二项分布的随机变量取值的概率例 2.11 甲地需要与乙地的10个电话用户联系,每一个用户在一分钟内平均占线12秒,并且各个用户是否使用电话是相互独立的,为了在任意时刻,使得电话用户在用电话时能够接通的概率为0.99,至少应有多少电话线路?解 设任意时刻乙地10个用户使用电话的户数为随机变量,记为X ,则每一个电话用户在任意时刻使用电话的概率120.260P ==,即(1,0.2)X b ,又设至少需m 条电话线路,求满足{}0.99P X m ≤=的m .而1010{}(0.2)(0.8)kk k P X k C -== (0,1,,k =,有10100{}{}(0.2)(0.8)mmkk k k k P X m P X k C -==≤===∑∑,于是1010(0.2)(0.8)0.99mkk k k C-==∑ 即 5m =,故至少应有5条电话线路.评点 对于这类问题要注意:(1) X 是n 次试验中事件A 发生的概率; (2) 在每次试验中事件A 和A 有且仅有一个发生;(3) 利用对立事件来求解问题时,注意随机变量的取值为0,1,2,,n ,n 是试验次数;(4) 当n 较大P 较小时,且np λ=,(1)!k k kn kne C p p k λλ---≈.2.4 求服从泊松分布的随机变量取值的概率例 2.12 实验器皿中产生甲,乙两类细菌的机会是相等的,且产生的细菌数X 服从参数为λ的泊松分布,试求产生了甲类细菌但没有乙类细菌的概率. 解 由题意可知,X 的分布律为{}!kP X k e k λλ-==(0,1,2,k = 而这k 个细菌全部是甲类细菌的概率为(1/2)!kke k λλ-,因此产生了甲类细菌而无乙类细菌的概率为21(1)!kk P ee ek λλλλ∞---===-∑.评点 当试验次数n →∞时,若事件A 每次出现的概率0n P nλ=→,此时事件A 出现的次数X 服从泊松分布.服从泊松分布的随机变量很多,例如一个时间间隔内某电话交换台收到的电话的呼唤次数,交叉路口单位时间内过往的汽车辆数,一本书1页中的印刷错误数,纺织厂生产的布匹上一定数量的疵点,铸件的砂眼数等.2.5 求服从均匀分布的随机变量取值的概率例 2.13 测量零件时产生的误差(X 单位:cm )是一个随机变量,它服从(0.1,0.1)-内的均匀分布,求误差的绝对值在0.05cm 之内的概率.解 据均匀分布定义,X 的概率密度为1,0.10.1;0.1(0.1)()0,,x f x ⎧-<<⎪--=⎨⎪⎩其他即5,0.10.1;()0,,x f x -<<⎧=⎨⎩其他 故0.050.05{0.05}50.5P X dx -<==⎰.评点 求此类题型的解法一般有两种方法:(1) 利用概率密度的积分计算,即利用公式{}{}{}{}P a X b P a X b P a X b P a X b <<=≤≤=<≤=≤≤()baf x dx =⎰;(2) 直接利用分布函数计算,即利用公式{}{}{}()()P a X b P a X b P a X b F b F a <<=≤≤=<≤=-.2.6 求服从正态分布的随机变量取值的概率例 2.14 设随机变量X 服从正态分布(108,9)N ,求: (1){101.1117.6}P x <<; (2)常数a ,使{}0.90P X a <=; (3)常数a ,使{||}0.01P X a a ->=.解 (1)117.6108101.1108{101.1117.6}33P x --⎛⎫⎛⎫<<=Φ-Φ⎪ ⎪⎝⎭⎝⎭(3.2)( 2.3)=Φ-Φ-0.9995110.989280.9888=-+=.(2)108{}0.903a P X a -⎛⎫<=Φ=⎪⎝⎭,查表知108 1.293a -≈,即112.17a =. (3){||}{2}{0}P X a a P X a P X ->=>+<10821081081083333X a X P P ----⎧⎫⎧⎫=>+<⎨⎬⎨⎬⎩⎭⎩⎭210810.013a -⎛⎫=-Φ= ⎪⎝⎭,即有21080.993a -⎛⎫Φ= ⎪⎝⎭,故得21082.333a -=,即 57.4a =. 评点 正态分布是一类非常重要的分布.正态分布的概率计算最终都要查标准正态分布表,表里表明()z Φ和Z 的关系,特别地,当0Z <时,()1()z z Φ=-Φ-.2.7判别随机变量是否相互独立例 2.15设随机变量(,)X Y 的分布律如下表示,试判断X ,Y 是否相互独立.解 利用离散型随机变量边缘分布定义,随机变量(,)X Y 关于X 和Y 的边缘分布律分别为{0}{0}0.80.70.56{0,0}P X P Y P X Y ===⨯==== ; {0}{1}0.80.30.24{0,1}P X P Y P X Y ===⨯==== ; {1}{0}0.20.70.14{1,0}P X P Y P X Y ===⨯==== ; {1}{1}0.20.30.06{1,1}P X PY P X Y ===⨯==== .由此可见ij i j p p p = ,故X 和Y 是相互独立的.例 2.16 已知联合分布密度,04,0(,)40,Axy x y f x y ⎧≤≤≤≤⎪=⎨⎪⎩其他,,求:(1)系数A ;(2)边缘概率密度;(3)讨论X 与Y 是否相互独立.解 (1)由概率密度的性质可知14GA xydxdy =⎰⎰即40014A dx xydxdy =⎰,得38A =.从而二维随机变量(,)X Y 的概率密度为 3,(,);(,)320,(,);xy x y G f x y x y G ⎧∈⎪=⎨⎪∉⎩ (2)由2033()3264X f x xydxdy x ==,得 23,04;()320,X x x f x ⎧<<⎪=⎨⎪⎩其他, 同理438,02;()3220,Y y y y f y ⎧⎛⎫-≤≤⎪ ⎪=⎨⎝⎭⎪⎩其他,(3)取点1(,)1,2x y G ⎛⎫=∈ ⎪⎝⎭,由于5133131(1)81,216642642X Y f f f ⎛⎫⎛⎫⎛⎫=⨯-≠= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故X 与Y 并不独立.评点 考察随机变量相互独立的判别,实际上(1) 若(,)X Y 是离散型的随机变量,则X 和Y 相互独立的充要条件是ij i j p p p = ; (2) 若(,)X Y 是连续型的随机变量,则X 和Y 相互独立的充要条件是(,)()()X Y f x y f x f y = .2.8 求连续型随机变量的边缘概率密度例 2.17 设(,)X Y 在区域G 内服从均匀分布,G 由直线12xy +=及x 轴,y 轴围成,求;(1)(,)X Y 的联合密度;(2)关于X 和Y 关于的边缘密度.解 (1)G 的面积1()2112L G =⨯⨯=,故 1,(,)1,(,);()(,)0,.0,x y G x y G L G f x y ⎧∈∈⎧⎪==⎨⎨⎩⎪⎩其他其他 (2)当02x ≤≤时,2012012()(,)01012x x X x f x f x y dy dx dy dy +∞-+∞-∞+∞-==++=-⎰⎰⎰⎰, 当0x <或2x >时,(,)0f x y =,所以(0)0X f =.综上所述1,12;()20,X x x f x ⎧-≤≤⎪=⎨⎪⎩其他,同理可求得2(1),01;()0,Y y y f y -≤≤⎧=⎨⎩其他. 评点 由二维随机变量的概率密度求它的边缘分布是常规题,尤其是要注意 当概率密度是分段函数时,计算时要注意分段函数的段.例如,在求()X f x 时,利用公式()(,)X f x f x y dy +∞-∞=⎰计算,必须分x 取不同区间值讨论.。
第二章 随机变量第一节 随机变量及其分布函数上一章中我们讨论的随机事件中有些是直接用数量来标识的,例如,抽样检验灯泡质量试验中灯泡的寿命;而有些则不是直接用数量来标识的,如性别抽查试验中所抽到的性别.为了更深入地研究各种与随机现象有关的理论和应用问题,我们有必要将样本空间的元素与实数对应起来.即将随机试验的每个可能的结果e 都用一个实数X 来表示.例如,在性别抽查试验中用实数“1”表示“出现男性”,用“0”表示“出现女性”.显然,一般来讲此处的实数X 值将随e 的不同而变化,它的值因e 的随机性而具有随机性,我们称这种取值具有随机性的变量为随机变量.定义2.1 设随机试验的样本空间为Ω,如果对Ω中每一个元素e ,有一个实数X (e )与之对应,这样就得到一个定义在Ω上的实值单值函数(e ),称之为随机变量( ).随机变量的取值随试验结果而定,在试验之前不能预知它取什么值,只有在试验之后才知道它的确切值;而试验的各个结果出现有一定的概率,故随机变量取各值有一定的概率.这些性质显示了随机变量与普通函数之间有着本质的差异.再者,普通函数是定义在实数集或实数集的一个子集上的,而随机变量是定义在样本空间上的(样本空间的元素不一定是实数),这也是二者的差别.本书中,我们一般以大写字母如X ,Y ,Z ,W ,…表示随机变量,而以小写字母如,…表示实数.为了研究随机变量的概率规律,并由于随机变量X 的可能取值不一定能逐个列出,因此我们在一般情况下需研究随机变量落在某区间(x 1,x 2]中的概率,即求P {x 1<X ≤x 2},但由于P {x 1<X ≤x 2}{X ≤x 2}{X ≤x 1},由此可见要研究P {x 1<X ≤x 2}就归结为研究形如P {X ≤x }的概率问题了.不难看出,P {X ≤x }的值常随不同的x 而变化,它是x 的函数,我们称这函数为分布函数.定义2.2 设X 是随机变量,x 为任意实数,函数F (x ){X ≤x }称为X 的分布函数( ).对于任意实数x 12(x 1<x 2),有P {x 1<X ≤x 2}{X ≤x 2}{X ≤x 1}(x 2)(x 1), (2.1)因此,若已知X 的分布函数,我们就能知道X 落在任一区间(x 12]上的概率.在这个意义上说,分布函数完整地描述了随机变量的统计规律性.如果将X 看成是数轴上的随机点的坐标,那么,分布函数F (x )在x 处的函数值就表示X 落在区间(-∞]上的概率.分布函数具有如下基本性质: 1°F (x )为单调不减的函数.事实上,由(2.1)式,对于任意实数x 12(x 1<x 2),有F (x 2)(x 1){x 1<X ≤x 2}≥0.2°0≤F (x )≤1,且)(lim x F x +∞→=1,常记为F (+∞)=1.)(lim x F x -∞→=0,常记为F (-∞)=0.我们从几何上说明这两个式子.当区间端点x 沿数轴无限向左移动(x →-∞)时,则“X 落在x 左边”这一事件趋于不可能事件,故其概率P {X ≤x }(x )趋于0;又若x 无限向右移动(x →+∞)时,事件“X 落在x 左边”趋于必然事件,从而其概率P {X ≤x }(x )趋于1.3°F (0)(x ),即F (x )为右连续. 证略.反过来可以证明,任一满足这三个性质的函数,一定可以作为某个随机变量的分布函数. 概率论主要是利用随机变量来描述和研究随机现象,而利用分布函数就能很好地表示各事件的概率.例如,P {X >a }=1{X ≤a }=1(a ){X <a }(0){}(a )(0)等等.在引进了随机变量和分布函数后我们就能利用高等数学的许多结果和方法来研究各种随机现象了,它们是概率论的两个重要而基本的概念.下面我们从离散和连续两种类别来更深入地研究随机变量及其分布函数,另有一种奇异型随机变量超出本书范围,就不作介绍了.第二节离散型随机变量及其分布如果随机变量所有可能的取值为有限个或可列无穷多个,则称这种随机变量为离散型随机变量.容易知道,要掌握一个离散型随机变量X 的统计规律,必须且只须知道X 的所有可能取的值以及取每一个可能值的概率.设离散型随机变量X 所有可能的取值为(1,2,…)取各个可能值的概率,即事件{}的概率P {}, 1,2,… (2.2)我们称(2.2)式为离散型随机变量X 的概率分布或分布律.分布律也常用表格来表示(表2-1):表2-1 X x 1 x 2 x 3 … …p 1 p 2 p 3 … …由概率的性质容易推得,任一离散型随机变量的分布律{},都具有下述两个基本性质: 1°≥0,1,2,…; (2.3) 2°11=∑∞=k kp. (2.4)反过来,任意一个具有以上两个性质的数列{},一定可以作为某一个离散型随机变量的分布律.为了直观地表达分布律,我们还可以作类似图2-1的分布律图.图2-1图2-1中处垂直于x 轴的线段高度为,它表示X 取的概率值.例2.1 设一汽车在开往目的地的道路上需通过4盏信号灯,每盏灯以0.6的概率允许汽车通过,以0.4的概率禁止汽车通过(设各盏信号灯的工作相互独立).以X 表示汽车首次停下时已经通过的信号灯盏数,求X 的分布律.解 以p 表示每盏灯禁止汽车通过的概率,显然X 的可能取值为0,1,2,3,4,易知X 的分布律为或写成P {}=(1),0,1,2,3.P {4}=(1)4.将0.4,10.6代入上式,所得结果如表2-3所示.表2-3(1)两点分布若随机变量X 只可能取x 1与x 2两值,它的分布律是P {1}=1(0<p <1),P {2},则称X 服从参数为p 的两点分布.特别,当x 1=0,x 2=1时两点分布也叫(0-1)分布,记作(0-1)分布.写成分布律表形式见表2-4.表2-4对于一个随机试验,若它的样本空间只包含两个元素,即={e 1,e 2},我们总能在上定义一个服从(0-1)分布的随机变量,,,1,0)(21e e e e e X X ==⎩⎨⎧==当当用它来描述这个试验结果.因此,两点分布可以作为描述试验只包含两个基本事件的数学模型.如,在打靶中“命中”与“不中”的概率分布;产品抽验中“合格品”与“不合格品”的概率分布等等.总之,一个随机试验如果我们只关心某事件A 出现与否,则可用一个服从(0-1)分布的随机变量来描述.(2)二项分布若随机变量X 的分布律为P {}kn C (1), 0,1,…, (2.5)则称X 服从参数为n ,p 的二项分布( ),记作().易知(2.5)满足(2.3)、(2.4)两式.事实上,P ()≥0是显然的;再由二项展开式知n k n k nk k nnk p p p p k X P )]1([)1(C}{0-+=-==-==∑∑=1.我们知道,P {}=kn k k n p p --)1(C 恰好是[(1)]n 二项展开式中出现的那一项,这就是二项分布名称的由来.回忆n 重贝努里试验中事件A 出现k 次的概率计算公式(k )kn C (1), 0,1,…,可知,若(),X 就可以用来表示n 重贝努里试验中事件A 出现的次数.因此,二项分布可以作为描述n 重贝努里试验中事件A 出现次数的数学模型.比如,射手射击n 次中,“中的”次数的概率分布;随机抛掷硬币n 次,落地时出现“正面”次数的概率分布;从一批足够多的产品中任意抽取n 件,其中“废品”件数的概率分布等等.不难看出,(0-1)分布就是二项分布在1时的特殊情形,故(0-1)分布的分布律也可写成P {}1(0,1)(1).例2.2 某大学的校乒乓球队与数学系乒乓球队举行对抗赛.校队的实力较系队为强,当一个校队运动员与一个系队运动员比赛时,校队运动员获胜的概率为0.6.现在校、系双方商量对抗赛的方式,提了三种方案: (1)双方各出3人;(2)双方各出5人;(3)双方各出7人.三种方案中均以比赛中得胜人数多的一方为胜利.问:对系队来说,哪一种方案有利?解 设系队得胜人数为X ,则在上述三种方案中,系队胜利的概率为(1) P {X ≥2}=k kk k -=∑3323)6.0()4.0(C ≈0.352;(2) P {X ≥3}=k kk k -=∑5535)6.0()4.0(C ≈0.317;(3) P {X ≥4}=k kk k -=∑7747)6.0()4.0(C ≈0.290.因此第一种方案对系队最为有利.这在直觉上是容易理解的,因为参赛人数越少,系队侥幸获胜的可能性也就越大.例2.3 某一大批产品的合格品率为98%,现随机地从这批产品中抽样20次,每次抽一个产品,问抽得的20个产品中恰好有k 个(1,2,…,20)为合格品的概率是多少?解 这是不放回抽样.由于这批产品的总数很大,而抽出的产品的数量相对于产品总数来说又很小,那么取出少许几件可以认为并不影响剩下部分的合格品率,因而可以当作放回抽样来处理,这样做会有一些误差,但误差不大.我们将抽检一个产品看其是否为合格品看成一次试验,显然,抽检20个产品就相当于做20次贝努里试验,以X 记20个产品中合格品的个数,那么(20,0.98),即P {}=kk k -2020)02.0()98.0(C ,1,2, (20)若在上例中将参数20改为200或更大,显然此时直接计算该概率就显得相当麻烦.为此我们给出一个当n 很大而p (或1)很小时的近似计算公式.定理2.1(泊松()定理) 设λ(λ>0是一常数,n 是任意正整数),则对任意一固定的非负整数k ,有e lim (1)!k k k n knn n n C p p k λλ-→∞-=-.证 由λ,有().111121111!)1()(!)1()1(1C kn kkn k kn n kn k n n n n k n n k n n k k n n n p p ---⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅=-+--=-λλλλλ对任意固定的k ,当n →∞时,11121111→⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅n k n n ,11,e 1→⎪⎭⎫ ⎝⎛-→⎪⎭⎫ ⎝⎛---kn n n λλλ故e lim (1).!k kk n knn n n C p p k λλ--→∞-=由于λ是常数,所以当n 很大时必定很小,因此,上述定理表明当n 很大p 很小时,有以下近似公式,!e )1(C k p p k kn k k nλλ--≈- (2.6)其中λ.从表2-5可以直观地看出(2.6)式两端的近似程度.表2-5由上表可以看出,两者的结果是很接近的.在实际计算中,当n ≥20≤0.05时近似效果颇佳,而当n ≥100≤10时效果更好.!e k k λλ-的值有表可查(见本书附表3)二项分布的泊松近似,常常被应用于研究稀有事件(即每次试验中事件A 出现的概率p 很小),当贝努里试验的次数n 很大时,事件A 发生的次数的分布.例2.4 某十字路口有大量汽车通过,假设每辆汽车在这里发生交通事故的概率为0.001,如果每天有5000辆汽车通过这个十字路口,求发生交通事故的汽车数不少于2的概率.解 设X 表示发生交通事故的汽车数,则(),此处5000,0.001,令λ5, P {X ≥2}=1{X <2}=1-{}∑==1k k X P=1-(0.999)5000-5(0.999)4999≈1!e 50!e 51550----. 查表可得P {X ≥2}=1-0.00674-0.03369=0.95957.例2.5 某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率.解 将一次射击看成是一次试验.设击中次数为X ,则(400,0.02),即X 的分布律为P {}=k400C (0.02)k (0.98)400, 0,1, (400)故所求概率为P {X ≥2}=1{0}{1}=1-(0.98)400-400(0.02)(0.98)399 =0.9972.这个概率很接近1,我们从两方面来讨论这一结果的实际意义.其一,虽然每次射击的命中率很小(为0.02),但如果射击400次,则击中目标至少两次是几乎可以肯定的.这一事实说明,一个事件尽管在一次试验中发生的概率很小,但只要试验次数很多,而且试验是独立地进行的,那么这一事件的发生几乎是肯定的.这也告诉人们决不能轻视小概率事件.其二,如果在400次射击中,击中目标的次数竟不到两次,由于P {X <2}≈0.003很小,根据实际推断原理,我们将怀疑“每次射击的命中率为0.02”这一假设,即认为该射手射击的命中率达不到0.02.(3)泊松分布若随机变量X 的分布律为P {} =e !k k λλ-,0,1,2,…, (2.7)其中λ>0是常数,则称X 服从参数为λ的泊松分布( ),记为(λ). 易知(2.7)满足(2.3)、(2.4)两式,事实上,P {}≥0显然;再由∑∞=-0!e k k k λλλ·e λ=1,可知∑∞==0}{k k X P =1.由泊松定理可知,泊松分布可以作为描述大量试验中稀有事件出现的次数0,1,…的概率分布情况的一个数学模型.比如:大量产品中抽样检查时得到的不合格品数;一个集团中生日是元旦的人数;一页中印刷错误出现的数目;数字通讯中传输数字时发生误码的个数等等,都近似服从泊松分布.除此之外,理论与实践都说明,一般说来它也可作为下列随机变量的概率分布的数学模型:在任给一段固定的时间间隔内,① 由某块放射性物质放射出的α质点,到达某个计数器的质点数;② 某地区发生交通事故的次数;③ 来到某公共设施要求给予服务的顾客数(这里的公共设施的意义可以是极为广泛的,诸如售货员、机场跑道、电话交换台、医院等,在机场跑道的例子中,顾客可以相应地想象为飞机).泊松分布是概率论中一种很重要的分布.例2.6 由某商店过去的销售记录知道,某种商品每月的销售数可以用参数λ=5的泊松分布来描述.为了以95%以上的把握保证不脱销,问商店在月底至少应进某种商品多少件?解 设该商店每月销售这种商品数为X ,月底进货为a 件,则当X ≤a 时不脱销,故有P {X ≤a }≥0.95.由于(5),上式即为∑=-ak kk 05!5e ≥0.95. 查表可知∑=-95!5e k kk ≈0.9319<0.95, ∑=-105!10e k kk ≈0.9682>0.95 于是,这家商店只要在月底进货这种商品10件(假定上个月没有存货),就可以95%以上的把握保证这种商品在下个月不会脱销.下面我们就一般的离散型随机变量讨论其分布函数.设离散型随机变量X 的分布律如表2-1所示.由分布函数的定义可知F (x ){X ≤x }=∑∑≤≤==xx kxx kk k px X P }{,此处的∑≤xx k 和式表示对所有满足≤x 的k 求和,形象地讲就是对那些满足≤x 所对应的的累加.例2.7 求例2.1中X 的分布函数F (x ). 解 由例2.1的分布律知 当x <0时,F (x ){X ≤x }=0;当0≤x <1时,F (x ){X ≤x }{0}=0.4;当1≤x <2时,F (x ){X ≤x }({0}∪{1}){0}{1}=0.4+0.24=0.64;当2≤x <3时F (x ){X ≤x }({0}∪{1}∪{2}) {0}{1}{2}=0.4+0.24+0.144 =0.784;当3≤x <4时F (x ){X ≤x }({0}∪{1}∪{2}∪{3}) =0.4+0.24+0.144+0.0864=0.8704;当x ≥4时F (x ){X ≤x }({0}∪{1}∪{2}∪{3}∪{4}) =0.4+0.24+0.144+0.0864+0.1296=1.综上所述F (x ){X ≤x }=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<.4,1,43,8704.0,32,784.0,21,64.0,10,4.0,0,0x x x x x x F (x )的图形是一条阶梯状右连续曲线,在0,1,2,3,4处有跳跃,其跳跃高度分别为0.4,0.24,0.144,0.0864,0.1296,这条曲线从左至右依次从F (x )=0逐步升级到F (x )=1.对表2-1所示的一般的分布律,其分布函数F (x )表示一条阶梯状右连续曲线,在(1,2,…)处有跳跃,跳跃的高度恰为{},从左至右,由水平直线F (x )=0,分别按阶高p 1,p 2,…升至水平直线F (x )=1.以上是已知分布律求分布函数.反过来,若已知离散型随机变量X 的分布函数F (x ),则X 的分布律也可由分布函数所确定:{}()(0).第三节 连续型随机变量及其分布上一节我们研究了离散型随机变量,这类随机变量的特点是它的可能取值及其相对应的概率能被逐个地列出.这一节我们将要研究的连续型随机变量就不具有这样的性质了.连续型随机变量的特点是它的可能取值连续地充满某个区间甚至整个数轴.例如,测量一个工件长度,因为在理论上说这个长度的值X 可以取区间(0,+∞)上的任何一个值.此外,连续型随机变量取某特定值的概率总是零(关于这点将在以后说明).例如,抽检一个工件其长度X 丝毫不差刚好是其固定值(如 1.824)的事件{1.824}几乎是不可能的,应认为P{1.824}=0.因此讨论连续型随机变量在某点的概率是毫无意义的.于是,对于连续型随机变量就不能用对离散型随机变量那样的方法进行研究了.为了说明方便我们先来看一个例子.例2.8 一个半径为2米的圆盘靶,设击中靶上任一同心圆盘上的点的概率与该圆盘的面积成正比,并设射击都能中靶,以X 表示弹着点与圆心的距离,试求随机变量X 的分布函数.解 1°若x <0,因为事件{X ≤x }是不可能事件,所以F (x ){X ≤x }=0.2°若0≤x ≤2,由题意P {0≤X ≤x }2,k 是常数,为了确定k 的值,取2,有P {0≤X ≤2}=22k ,但事件{0≤X ≤2}是必然事件,故P {0≤X ≤2}=1,即221,所以1/4,即P {0≤X ≤x }2/4.于是F (x ){X ≤x }{X <0}{0≤X ≤x }= x 2/4.3°若x ≥2,由于{X ≤2}是必然事件,于是F (x ){X ≤x }=1.综上所述F (x )=⎪⎩⎪⎨⎧≥<≤<,2,1,20,41,0,02x x x x 它的图形是一条连续曲线如图2-2所示.图2-2另外,容易看到本例中X 的分布函数F (x )还可写成如下形式:F (x )=t t f xd )(⎰∞-,其中 f (t )=⎪⎩⎪⎨⎧<<.,0,20,21其他t t这就是说F (x )恰好是非负函数f (t )在区间(-∞,x ]上的积分,这种随机变量X 我们称为连续型随机变量.一般地有如下定义.定义2.3 若对随机变量X 的分布函数F (x ),存在非负函数f (x ),使对于任意实数x 有F (x )=⎰∞-xx t f d )(, (2.8)则称X 为连续型随机变量,其中f (x )称为X 的概率密度函数,简称概率密度或密度函数( ).由(2.8)式知道连续型随机变量X 的分布函数F (x )是连续函数.由分布函数的性质F (-∞)=0,F (+∞)=1及F (x )单调不减,知F (x )是一条位于直线0与1之间的单调不减的连续(但不一定光滑)曲线. 由定义2.3知道,f (x )具有以下性质:1°f (x )≥0;2°⎰+∞∞-x x f d )(=1;3°P {x 1<X ≤x 2}(x 2)-F (x 1)=⎰21d )(x x x x f (x 1≤x 2);4°若f (x )在x 点处连续,则有F ′(x )(x ).由2°知道,介于曲线(x )与0之间的面积为1.由3°知道,X 落在区间(x 1,x 2]的概率P {x 1<X ≤x 2}等于区间(x 1,x 2]上曲线(x )之下的曲边梯形面积.由4°知道,f (x )的连续点x 处有f (x )=.}{)()(lim lim 00x x x X x P x x F x x F x x ∆∆+≤<=∆-∆+++→∆→∆ 这种形式恰与物理学中线密度定义相类似,这也正是为什么称f (x )为概率密度的原因.同样我们也指出,反过来,任一满足以上1°、2°两个性质的函数f (x ),一定可以作为某个连续型随机变量的密度函数.前面我们曾指出对连续型随机变量X 而言它取任一特定值a 的概率为零,即P {}=0,事实上,令Δx >0,设X 的分布函数为F (x ),则由{}⊂{a -Δx <X ≤a },得 0≤P {}≤P {a -Δx <X ≤a }(a )-F (a -Δx ). 由于F (x )连续,所以)(lim 0x a F x ∆-→∆(a ).当Δx →0时,由夹逼定理得P {}=0,由此很容易推导出P {a ≤X <b }{a <X ≤b }{a ≤X ≤b }{a <X <b }.即在计算连续型随机变量落在某区间上的概率时,可不必区分该区间端点的情况.此外还要说明的是,事件{}“几乎不可能发生”,但并不保证绝不会发生,它是“零概率事件”而不是不可能事件.例2.9 设连续型随机变量X 的分布函数为F (x )=⎪⎩⎪⎨⎧≥<≤<.1,1,10,,0,02x x Ax x 试求:(1)系数A ;(2)X 落在区间(0.3,0.7)内的概率; (3)X 的密度函数.解 (1)由于X 为连续型随机变量,故F (x )是连续函数,因此有1(1)=2101lim lim )(Axx F x x -→-→= ,即1,于是有F (x )=⎪⎩⎪⎨⎧≥<≤<.1,1,10,,0,02x x x x (2) P {0.3<X <0.7}(0.7)-F (0.3)=(0.7)2-(0.3)2=0.4; (3) X 的密度函数为f (x )′(x )=⎩⎨⎧<≤.,0;10,2其他x x由定义2.3知,改变密度函数f (x )在个别点的函数值,不影响分布函数F (x )的取值,因此,并不在乎改变密度函数在个别点上的值(比如在0或1上f (x )的值).例2.10 设随机变量X 具有密度函数f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,43,22,30,其他x x x kx (1) 确定常数k ;(2) 求X 的分布函数F (x );(3) 求P {1<X ≤72}. 解 (1)由⎰∞∞-x x f d )(=1,得x xx kx d )22(d 4330⎰⎰-+=1, 解得1/6,故X 的密度函数为f (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-<≤.,0,43,22,30,6其他x x x x(2) 当x <0时,F (x ){X ≤x }=⎰∞-xt t f d )( =0;当0≤x <3时,F (x ){X ≤x }⎰∞-xtt f d )(⎰⎰∞-+0d )(d )(xt t f t t f 12d 620x t t x =⎰;当3≤x <4时,F (x ){X ≤x }⎰∞-xtt f d )(033()()()x f t dt f t dt f t dt -∞++⎰⎰⎰=233(2)23;624x t t x dt dt x +-=-+-⎰⎰当x ≥4时,F (x ){X ≤x }⎰∞-xtt f d )(⎰⎰⎰⎰∞-+++030434d )(d )(d )(d )(xt t f t t f t t f t t f=t tt t d )22(d 64330⎰⎰-+ =1.即F (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-+-<≤<.4,1,43,324,30,12,0,022x x x x x x x(3) P {1<X ≤7/2}(7/2)-F (1)=41/48.下面介绍三种常见的连续型随机变量. (1)均匀分布若连续型随机变量X 具有概率密度f (x )=⎪⎩⎪⎨⎧<<-.,0,,1其他b x a ab (2.9)则称X 在区间(a ,b )上服从均匀分布( ),记为().易知f (x )≥0且⎰⎰∞∞--=ba x ab x x f d 1d )(=1.由(2.9)可得 1°P {X ≥b }=⎰∞bx d 0 =0{X ≤a }⎰∞-ax d 00,即 P {a <X <b }=1-P {X ≥b }-P {X ≤a }=1;2°若a ≤c <d ≤b ,则P {c <X <d }=ab cd x a b dc--=-⎰d 1. 因此,在区间()上服从均匀分布的随机变量X 的物理意义是:X 以概率1在区间()内取值,而以概率0在区间()以外取值,并且X 值落入()中任一子区间()中的概率与子区间的长度成正比,而与子区间的位置无关. 由(2.8)易得X 的分布函数为F (x )=⎪⎩⎪⎨⎧≥<≤--<.,1,,,,0b x b x a a b ax a x (2.10) 密度函数f (x )和分布函数F (x )的图形分别如图2-3和图2-4所示.图2-3 图2-4在数值计算中,由于四舍五入,小数点后第一位小数所引起的误差X ,一般可以看作是一个服从在[-0.5,0.5]上的均匀分布的随机变量;又如在()中随机掷质点,则该质点的坐标X 一般也可看作是一个服从在()上的均匀分布的随机变量.例2.11 某公共汽车站从上午7时开始,每15分钟来一辆车,如某乘客到达此站的时间是7时到7时30分之间的均匀分布的随机变量,试求他等车少于5分钟的概率.解 设乘客于7时过X 分钟到达车站,由于X 在[0,30]上服从均匀分布,即有f (x )=⎪⎩⎪⎨⎧≤≤.,0,300,301其他x显然,只有乘客在7∶10到7∶15之间或7∶25到7∶30之间到达车站时,他(或她)等车的时间才少于5分钟,因此所求概率为P {10<X ≤15}{25<X ≤30}⎰⎰+15103025d 301d 301x x 1/3. (2)指数分布若随机变量X 的密度函数为f (x )=⎩⎨⎧≤>-.00,,0,e x x x λλ (2.11) 其中λ>0为常数,则称X 服从参数为λ的指数分布( ),记作(λ).显然f (x )≥0,且x x x f x d e d )(0⎰⎰∞∞-∞-=λλ=1.容易得到X 的分布函数为F (x )=⎩⎨⎧≤>--.00,,0,e 1x x x λ指数分布最常见的一个场合是寿命分布.指数分布具有“无记忆性”,即对于任意>0,有P {X >>s }{X >t }. (2.12)如果用X 表示某一元件的寿命,那么上式表明,在已知元件已使用了s 小时的条件下,它还能再使用至少t 小时的概率,与从开始使用时算起它至少能使用t 小时的概率相等.这就是说元件对它已使用过s 小时没有记忆.当然,指数分布描述的是无老化时的寿命分布,但“无老化”是不可能的,因而只是一种近似.对一些寿命长的元件,在初期阶段老化现象很小,在这一阶段,指数分布比较确切地描述了其寿命分布情况.(2.12)式是容易证明的.事实上,(){,}{}{}{}{}1()ee {}.1()es t t λsP X s X s t P X s t P X s t X s P X s P X s F s t P X t F s λλ-+->>+>+>+>==>>-+====>--(3)正态分布若连续型随机变量X 的概率密度为f (x )=222)(e π21σμσ--x , -∞<x <+∞, (2.13)其中μ,σ(σ>0)为常数,则称X 服从参数为μ,σ的正态分布( ),记为(μ,σ2).显然f (x )≥0,下面来证明⎰∞∞-x x f d )(=1.令σux -,得到.d eπ21d e π2122)(222t x t x ⎰⎰∞∞--∞∞---=σμσ记t t d e22⎰∞∞--,则有I 2=⎰⎰∞∞-∞∞-+-ds d e222t s t .作极坐标变换:θθ,得到I 2=22π22r redrd πθ∞--∞=⎰⎰,而I >0,,即有.π2d e22=⎰∞∞--t t于是.1π2π21d e 21222)(=⋅=--∞∞-⎰x x σμσπ 正态分布是概率论和数理统计中最重要的分布之一.在实际问题中大量的随机变量服从或近似服从正态分布.只要某一个随机变量受到许多相互独立随机因素的影响,而每个个别因素的影响都不能起决定性作用,那么就可以断定随机变量服从或近似服从正态分布.例如,因人的身高、体重受到种族、饮食习惯、地域、运动等等因素影响,但这些因素又不能对身高、体重起决定性作用,所以我们可以认为身高、体重服从或近似服从正态分布.参数μ,σ的意义将在第四章中说明(x )的图形如图2-5所示,它具有如下性质:图2-5 图2-61°曲线关于μ对称;2°曲线在μ处取到最大值,x 离μ越远,f (x )值越小.这表明对于同样长度的区间,当区间离μ越远,X 落在这个区间上的概率越小;3°曲线在μ±σ处有拐点; 4°曲线以x 轴为渐近线;5°若固定μ,当σ越小时图形越尖陡(图2-6),因而X 落在μ附近的概率越大;若固定σ,μ值改变,则图形沿x 轴平移,而不改变其形状.故称σ为精度参数,μ为位置参数. 由(2.13)式得X 的分布函数F (x )=t xt d eπ21-2)(22⎰∞--σμσ. (2.14)特别地,当μ=0,σ=1时,称X 服从标准正态分布N (0,1),其概率密度和分布函数分别用)(x ϕ,Φ(x )表示,即有22e π21)(x x -=ϕ, (2.15)Φ(x )=t xt d eπ2122⎰∞--. (2.16)易知,Φ(-x )=1-Φ(x ).人们已事先编制了Φ(x )的函数值表(见本书附录).一般地,若(μ,σ2),则有σμ-X (0,1).事实上,σμ-X 的分布函数为P {Z ≤x }=}{x X P ≤-σμ{X ≤μ+σx }=t t xd e π21222)(σμσμσ--+∞-⎰,令σμ-t ,得P {Z ≤x }=s xs d eπ2122⎰∞--=Φ(x ),由此知σμ-X (0,1).因此,若(μ,σ2),则可利用标准正态分布函数Φ(x ),通过查表求得X 落在任一区间(x 12]内的概率,即P {x 1<X ≤x 2}=⎭⎬⎫⎩⎨⎧-≤-<-σμσμσμ21x X x P =⎭⎬⎫⎩⎨⎧-≤--⎭⎬⎫⎩⎨⎧-≤-σμσμσμσμ12x X P x X P=⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫⎝⎛-Φσμσμ12x x . 例如,设(1.5,4),可得P {-1≤X ≤2}=⎭⎬⎫⎩⎨⎧-≤-≤--25.1225.125.11X P=Φ(0.25)-Φ(-1.25)=Φ(0.25)-[1-Φ(1.25)]=0.5987-1+0.8944=0.4931.设(μ,σ2),由Φ(x )函数表可得P {μ-σ<X <μ+σ}=Φ(1)-Φ(-1)=2Φ(1)-1=0.6826,P {μ-2σ<X <μ+2σ}=Φ(2)-Φ(-2)=0.9544, P {μ-3σ<X <μ+3σ}=Φ(3)-Φ(-3)=0.9974.我们看到,尽管正态变量的取值范围是(-∞,∞),但它的值落在(μ-3σ,μ+3σ)内几乎是肯定的事,因此在实际问题中,基本上可以认为有-μ|<3σ.这就是人们所说的“3σ原则”.例2.12 公共汽车车门的高度是按成年男子与车门顶碰头的机会在1%以下来设计的.设男子身高X 服从μ=170(),σ=6()的正态分布,即(170,62),问车门高度应如何确定?解 设车门高度为h (),按设计要求P {X ≥h }≤0.01或P {X <h }≥0.99,因为(170,62),故P {X <h }=⎪⎭⎫⎝⎛-Φ=⎭⎬⎫⎩⎨⎧-<-617061706170h h X P ≥0.99, 查表得 Φ(2.33)=0.9901>0.99.故取6170-h =2.33,即184.设计车门高度为184()时,可使成年男子与车门碰头的机会不超过1%.例2.13 测量到某一目标的距离时发生的随机误差X (单位:米)具有密度函数f (x )=3200)20(2eπ2401--x .试求在三次测量中至少有一次误差的绝对值不超过30米的概率.解 X 的密度函数为f (x )=222402)20(3200)20(e π2401eπ2401⨯----⨯=x x ,即(20,402),故一次测量中随机误差的绝对值不超过30米的概率为P {≤30}{-30≤X ≤30}=⎪⎭⎫⎝⎛--Φ-⎪⎭⎫⎝⎛-Φ402030402030 =Φ(0.25)-Φ(-1.25)=0.5981-(1-0.8944)=0.4931.设Y 为三次测量中误差的绝对值不超过30米的次数,则Y 服从二项分布b (3,0.4931),故P {Y ≥1}=1-P {0}=1-(0.5069)3=0.8698.为了便于今后应用,对于标准正态变量,我们引入了α分位点的定义. 设(0,1),若z α满足条件P {X >z α}=α,0<α<1, (2.17)则称点z α为标准正态分布的上α分位点,例如,由查表可得z 0.05=1.6450.001=3.16.故1.645与3.16分别是标准正态分布的上0.05分位点与上0.001分位点.第四节 随机变量函数的分布我们常常遇到一些随机变量,它们的分布往往难于直接得到(如测量轴承滚珠体积值Y 等),但是与它们有函数关系的另一些随机变量,其分布却是容易知道的(如滚珠直径测量值X ).因此,要研究随机变量之间的函数关系,从而通过这种关系由已知的随机变量的分布求出与其有函数关系的另一个随机变量的分布.例2.14 设随机变量X 具有表2-6所示的分布律,试求X 2的分布律.“X 2=9”等价,所以P {X 2=0}{0}=0.1, P {X 2=2.25}{1.5}=0.3, P {X 2=9}{3}=0.1.事件“X 2=1”是两个互斥事件“1”及“1”的和,其概率为这两事件概率和,即P {X 2=1}{1}{1}=0.2+0.3=0.5.于是得X 2的分布律如表2-7所示.解 先求Y 的分布函数(y ),由于(X )2≥0,故当y ≤0时事件“Y ≤y ”的概率为0,即(y ){Y ≤y }=0,当y >0时,有(y ){Y ≤y }{X 2≤y }{≤X ≤y }=x x f yyX d )(⎰-.将(y )关于y 求导,即得Y 的概率密度为(y )=()()[]⎪⎩⎪⎨⎧≤>-+.0,0,0,21y y y f y f y XX例如,当(0,1),其概率密度为(2.15)式,则2的概率密度为(y )=⎪⎩⎪⎨⎧≤>--.0,0,0,e π21221y y y y此时称Y 服从自由度为1的χ2分布.上例中关键的一步在于将事件“Y ≤y ”由其等价事件“≤X ≤y ”代替,即将事件“Y ≤y ”转换为有关X 的范围所表示的等价事件,下面我们仅对(X ),其中g (x )为严格单调函数,写出一般结论.定理2.2 设随机变量X 具有概率密度(x ),-∞<x <+∞,又设函数g (x )处处可导且g ′(x )>0(或g ′(x )<0),则(X )是连续型随机变量,其概率密度为(y )=⎩⎨⎧<<'.,0,)()]([其他βαx y h y h f X (2.18)其中α(g (-∞),g (+∞)),β(g (-∞),g (+∞)),h (y )是g (x )的反函数.我们只证g ′(x )>0的情况.由于g ′(x )>0,故g (x )在(-∞∞)上严格单调递增,它的反函数h (y )存在,且在(α,β)严格单调递增且可导.我们先求Y 的分布函数(y ),并通过对(y )求导求出(y ).由于(X )在(α,β)上取值,故 当y ≤α时,(y ){Y ≤y }=0; 当y ≥β时,(y ){Y ≤y }=1; 当α<y <β时,(y ){Y ≤y }{g (X )≤y }{X ≤h (y )}=⎰∞-)(d )(x h X x x f .于是得概率密度(y )=[()](),,0,X f h y h y x .αβ'<<⎧⎨⎩其他对于g ′(x )<0的情况可以同样证明,即(y )=[()][()],,0,fX h y h y x .αβ'<<⎧⎨⎩其他将上面两种情况合并得(y )=(())(),,0,fX h y h y x .αβ'⎧<<⎨⎩其他注:若f (x )在[a ,b ]之外为零,则只需假设在(a ,b )上恒有g ′(x )>0(或恒有g ′(x )<0),此时α{g (a ),g (b )},β{g (a ),g (b )}.例2.16 设随机变量(μ,σ2).试证明X 的线性函数(a ≠0)也服从正态分布. 证 设X 的概率密度(x )=,21222)(σμ--x e π-∞<x <+∞.再令(x ),得g (x )的反函数(y )=y ba-. 所以h ′(y )=1.由(2.18)式(X )的概率密度为(y )=⎪⎭⎫ ⎝⎛-a b y f a X 1, -∞<y <+∞, 即(y )=22)(2)]([21σμσa a b y a +--eπ,-∞<y <+∞,即有(a μ,(a σ)2).例2.17 由统计物理学知分子运动速度的绝对值X 服从麦克斯韦()分布,其概率密度为f (x )=⎪⎩⎪⎨⎧≤>-,0,0,0,42232x x a x a x e π其中a >0为常数,求分子动能221mX (m 为分子质量)的概率密度. 解 已知(x )=221mx (x )只在区间(0,+∞)上非零且g ′(x )在此区间恒单调递增,由。
第十讲 随机变量及其分布§ 常用离散型分布Remark 讨论常用分布的目的及常用分布的类型§2.4§2.5⎧⎨⎩常用离散型分布(中讨论)常用分布常用连续型分布(中讨论)2.4.1 二项分布(以n 重伯努利试验为背景的分布)1. 二项分布的定义与记号 记=X “n 重伯努利试验中A 发生(即‘成功’)的次数”,则X 为离散型..V R ,其可能值为n ,,2,1,0⋅⋅⋅.且由事件的独立性可得n k p p C k X P kn k k n,,2,1,0,)1()(⋅⋅⋅=-==-. 其中)(A P p =,满足10<<p .基于这种试验的背景,可以给出二项分布的定义与记号如下:若..V R X 的分布列为n k p p C k X P k n k k n ,,2,1,0,)1()(⋅⋅⋅=-==-,则称X 服从参数为p n ,的二项分布(因其形式而得名),记为~X b ),(p n . Remarks)i 容易验证二项分布的分布列满足非负性,正则性..93.P)ii 实际中二项分布的例子:.93.P☆检查不合格品率为p 的一批产品中的10件,其中不合格品数~X b ),10(p ;☆随机调查色盲率为p 的任意50个人中的色盲人数~Y b ),50(p ;☆命中率为p 的射手5次射击中命中次数~Z b ),5(p . 2. 利用二项分布的分布列计算概率例2.4.1 (题目叙述没有区分患者与健康者!换讲.101.P 习题的第2题)一条自动化生产线上产品一级品率为,检查5件,求至少有2件一级品的概率.解 记X =“抽检5件产品中一级品的件数”,则依题意可知~X b )8.0,5(,于是(P 抽检5件中至少有2件是一级品)()()()()()()54115521210110.810.80.810.80.99328P X P X P X P X C C =≥=-<=-=-==-⨯⨯--⨯⨯-=例 2.4.2 已知~X b ),2(p ,~Y b ),3(p ,若()519P X ≥=,求()1P Y ≥.解 由~X b ),2(p 及()519P X ≥=,得 ()()54011199P X P X ==-≥=-=,即94)1(202=-p p C ,解之得 31=p 或 34=p (舍去), 于是~Y b )31,3(,所以()()03031119110113327P Y P Y C ⎛⎫⎛⎫≥=-==--=⎪ ⎪⎝⎭⎝⎭. 3. 二点分布(二项分布的特殊情形)1=n 的二项分布),1(p b 称为二点分布,或称0-1 分布,易见,若..V R X 的分布为二点分布),1(p b ,则其分布列为1,0,)1()(1=-==-x p p x X P xx . 表格列示就是Remark (回到n 重伯努利试验背景下,探讨二项分布与二点分布的有用关系.)记X =“n 重伯努利试验中‘成功’的次数”,则()~,X b n p ;又记i X ="n 重伯努利试验中第i 次试验'成功'的次数",则()~1,,1,2,,,i X b p i n =易见1,2,,n X X X 相互独立(..V R 的独立性第三章中讨论),且1ni i X X ==∑.这结果表明:服从二项分布),(p n b 的..V R 是n 个独立的二点分布),1(p b 的..V R 之和. 4. 二项分布的期望与方差若..V R ()~,X b n p ,则EX np =,()1DX np p =-. Proof 由()~,X b n p ,得 ()()1,0,1,,n kk knP X k C P p k n -==-=于是∑===nk k X kP EX 0)(∑=--=nk k n k k n p p kC 1)1(∑=-------=nk k n k k n p p kC np1)1()1(111)1(1)]1([--+=n p p npnp =. 又∑=+-=⋅⋅⋅===nk np p n n k X P k X E 0222)1()()(,于是)1()()1()()(2222p np np np p n n EX X E DX -=-+-=-=.Remarks)i 若X ~),1(p b ,则)1(,p p DX p EX -==. )ii n 一定时,对服从二项分布),(p n b 的..V R X 取k 的概率,即)(k X P =变化特点的描述:如..V R X ~),10(p b ,p 分别取8.0,5.0,2.0时,)(k X P =的变化特点是1) )(k X P =的峰值出现在接近np 的k 值处; 2) )(k X P =的峰值随p 的增大而右移. 教材.95.P 有相应的图形揭示. 例2.4.3 (自学) 2.4.2泊松分布 1.泊松分布定义与记号若..V R X 的分布列为⋅⋅⋅===-,2,1,0,!)(k e k k X P kλλ.其中0>λ,则称X 服从参数为λ的泊松分布,记为X ~)(λP .Remarks)i 泊松分布的分布列满足非负性和正则性.)ii 一本书中的出错处数是服从泊松分布的;其它服从泊松分布的实例..96.P 2. 泊松分布的期望与方差若X ~)(λP ,则λ==DX EX .(参数既是期望也是方差!)Proof .9796.-P Remarks)i 若X ~)(λP ,则λ==DX EX .记住这个结论是主要的,其证明看过即可.)ii 对服从泊松分布)(λP 的..V R X 取k 的概率,即)(k X P =变化特点的描述:如..V R X ~)(λP ,λ分别取0.4,0.2,8.0时,)(k X P =的变化特点是1) )(k X P =的峰值出现在接近λ的k 值处; 2) )(k X P =的分布随λ的增大趋于对称. 教材.97.P 有相应的图形揭示. 3. 泊松分布应用例例 2.4.4 一个铸件上的砂眼(缺陷)数服从参数为5.0=λ的泊松分布,试求此铸件上至多有1个砂眼(合格品)的概率和至少有2个砂眼(不合格品)的概率.解 记X =“该铸件上的砂眼数”,则X ~)5.0(P ,于是(P 铸件合格)=910.0)1(=≤X P .(用1,5.0==k λ查.421.P 的泊松分布表) 从而(P 铸件不合格)=09.0910.01)1(1=-=≤-X P .例2.4.5 .98.P (自学) 4. 二项分布的泊松分布近似 Remark问题:二项分布概率计算在n 较大时计算量很大,如何处理解决方法:转为泊松分布作近似计算. 理论依据:泊松定理.定理2.4.1(泊松定理)若..V R ()~,X b n p ,则当n 充分大,且p 足够小时,则有()(1)!kkk n kn P X k p p e k C λλ--==-≈,其中np =λ.Proof .98.P (略) Remarks)i 使用泊松定理对二项分布有关概率作近似计算的条件不是很明确,其实想用都可用,如果n 不是很大,p不是很小时,也用这种近似计算,不是不可以,只是近似的效果不好而已.)ii 对不同的n 、p 值,利用定理2.4.1的近似效果揭示. 见.99.P 表泊松定理应用例例2.4.6 已知某种疾病的发病率为,某单位共有5000人,求该单位患有这种疾病的人数不超过5人的概率.解 设X =“该单位患此病的人数”,则X ~)001.0,5000(b ,于是(P 该单位5000人患此病的人数不超5人) )5(≤=X P∑=--=550005000)001.01(001.0k k k kC ,这里n =5000较大,p =也是足够小,于是,由泊松定理可取5001.05000=⨯==np λ,做近似计算,所求概率为616.0!5)5(5=≈≤∑=k kk X P . 最后一步用5,5==k λ查.476.P 的泊松分布表得到.例2.4.7 有10000名同年龄段且同社会阶层的人参加了某保险公司的一项人寿保险,每个投保人在每年初需交纳200元保费,而在这一年中若投保人意外死亡则受益人可从保险公司获得100 000元的赔偿.据生命表知这类人的年死亡率为.试求保险公司在这项业务上(1)亏本的概率;(2)至少获利500 000元的概率. 解 记X =“10 000名投保人中在一年内死亡的人数”,则X ~b(10000,,又保费收入为()10000200200⨯=万元(1)易见,事件“亏本”=“10200>X ”=“20>X ”,这里n =10000已充分大,p =也是足够小.于是,由泊松定理可取10001.010000=⨯==np λ,做近似计算,所求概率为)20()(>=X P P 亏本002.0998.01!101)20(120=-=-≈≤-=∑=k kk X P .其中,倒数第二步用20,10==k λ查.476.P 的泊松分布表得到.(2)注意到,事件“至少获利50万元”=“1050200-≤X ”=“15≤X ”,于是(P 至少获利50万元)15()≤=X P 951.0!10150=≈∑=k kk . 其中,最后一步用15,10==k λ查.476.P 的泊松分布表得到.例2. 4.8 (自学) 2.4.3超几何分布.102101.-P2.4.4几何分布与负二项分布.104102.-PRemark 同学们自行了解以上两个专题的内容. ☆本节作业:习题 .106104.-P上上次布置: 3. 6. 上次布置: 7. 9 本次布置: 15.。