一元二次方程经典题型汇总
- 格式:doc
- 大小:279.52 KB
- 文档页数:14
20道一元二次方程一、直接开平方法类型(5道)1. 解方程x^2=9。
2. 求解方程(x - 2)^2=16。
3. 解一元二次方程3(x+1)^2=27。
4. 求方程(2x - 1)^2=4的解。
5. 解方程(1)/(2)(x + 3)^2=8。
二、配方法类型(5道)6. 用配方法解方程x^2+4x - 1 = 0。
7. 求解方程x^2-6x+5 = 0(用配方法)。
8. 用配方法解一元二次方程2x^2-4x - 3 = 0。
9. 解关于x的方程x^2+3x+(9)/(4)=0(配方法)。
10. 用配方法解方程3x^2+8x - 3 = 0。
三、公式法类型(5道)11. 用公式法解一元二次方程x^2-3x - 4 = 0。
12. 求解方程2x^2+5x - 3 = 0(公式法)。
13. 用公式法解3x^2-2x - 1 = 0。
14. 解一元二次方程x^2+2x - 2 = 0(公式法)。
15. 用公式法求方程4x^2-4x+1 = 0的解。
四、因式分解法类型(5道)16. 用因式分解法解方程x^2-x - 6 = 0。
17. 求解方程(x + 1)(x - 3)=0。
18. 用因式分解法解一元二次方程x^2-9 = 0。
19. 解关于x的方程x^2+5x = 0(因式分解法)。
20. 用因式分解法解方程2x^2-x - 1 = 0。
一元二次方程学习资料一、一元二次方程的定义形如ax^2+bx + c = 0(a≠0)的方程叫做一元二次方程,其中a是二次项系数,b 是一次项系数,c是常数项。
二、一元二次方程的解法1. 直接开平方法- 对于方程x^2=k(k≥0),其解为x = ±√(k)。
- 对于方程(x - m)^2=n(n≥0),解为x=m±√(n)。
- 例如在方程x^2=9中,k = 9,则x=±3;在方程(x - 2)^2=16中,m = 2,n = 16,解得x = 2±4,即x = 6或x=-2。
一元二次方程是中考数学中的重要内容,以下是几个经典的中考题型:
1.已知一元二次方程x² - kx - 6 = 0 的两根分别是2 和3,则k 的值为多少?
解析:由求根公式可知,一元二次方程ax² + bx + c = 0 的两根分别为x1 = (-b + √(b² - 4ac)) / 2a 和x2 = (-b - √(b² - 4ac)) / 2a。
题目已知方程x² - kx - 6 = 0 的两根为2 和3,根据求根公式可得2 + 3 = k,即k = 5。
2. 若一元二次方程x² - x - a = 0 的两根之差为3,则a 的值为多少?
解析:根据题意,设该方程的两根为x1 和x2,则有x2 - x1 = 3。
根据求和公式可知,x1 + x2 = 1。
而根据一元二次方程的求根公式,x1 + x2 = 1/a。
将上述两个式子联立,可得1/a = 3,即a = 1/3。
3. 若一元二次方程x² - 5x + b = 0 的两根之比为2:3,则
b 的值为多少?
解析:根据题意,设该方程的两根为x1 和x2,则有x1/x2 = 2/3。
根据求根公式可知,x1 + x2 = 5,x1x2=b。
将x1/x2 = 2/3代入得x1=2x2/3,代入x1+x2得5=8x2/3,即x2=15/8。
代入x1/x2=2/3得x1=10/3。
于是b=x1x2=15/8*10/3=25/4。
中考数学中的一元二次方程考题形式多样,需要学生结合具体的知识点进行综合练习和思考,提高解题技能和水平。
一元二次方程经典题型汇总一、一元二次方程的概念一.一元二次方程:一个具有未知数且未知数的最高阶数为2的积分方程称为一元二次方程。
2.一元二次方程的一般形式:AX2?bx?C0(a?0),其特征是关于方程左侧未知x的11个二次多项式和方程右侧的0,其中AX2称为二次项,a称为二次项的系数;BX 称为主项,B称为主项系数;C被称为常数项。
一.填空题:1.方程mx2-3x=x2 mx+2是一个单变量的二次方程,然后是m______2.方程4x(x-1)=2(x+2)+8化成一般形式是_______________,二次项系数是____,一次项系数是____,常数项是______.3.对于X(M+3)x2+4x+m2-9=0的一元二次方程,如果有解0,则M=_4、。
如果二次方程AX2+BX+C=0(a≠ 0)的根为-1,则a、B和C之间的关系为_____5、当m时,方程m2?1x2?mx?5?0不是一元二次方程,当m时,上述方程是一元二次方程。
二.选择题:① 下式中x=3;②2x2-3x=2x(x-1)c1;③3x2-4xc5;④x2=-1+2x??是一元二次方程的共有()a0个b1个c2个d3个7、下列方程中,一元二次方程是()1(a)x2?2(b)ax2?bx(c)?十、1.十、2.1(d)3x2?2xy?5y2?0x8.一元二次方程的一般形式是()ax2+bx+c=0bax2+c=0(a≠0)cax2+bx+c=0dax2+bx+c=0(a≠0)9.方程6x2-5=0的一次项系数是()a6b5c-5d0A.1.x2?十、a2?1.0×10。
如果一元二次方程的一个根是0,那么a的值是()1a、1b、?1c、1或?1d、2三、将下列方程转化为一般形式,分别指出它们的二次项系数、一次项系数和常数项x(3x+2)=6(3x+2)(3CT)+T=922一般形式二次项系数一次项系数常数项2、一元二次方程1的解。
初中数学解一元二次方程经典练习题(含答案)解下列解一元二次方程:1、x2=121;2、(2x+3)2=9;3、3(4x+5)2-147=0;4、(2x−7)2+9 =6(2x-7);5、7x(x-6)=3(12-2x);6、(3x-5)(2x+5)= x+7;7、3(3x-4)+ x(4-3x)=0;8、x(2x+5)=4(2x-1)+3;9、(x−3)2+4=5(3-x);10、4x2+7x +1=0;11、512x2+ 13= x;12、(x−1)(x−2)2 -1 = (x+1)(x−3)3;13、14[12(x+1)+13(x+2)+2] =x2;14、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;15、x= 2(0.3x+21)3 - (0.2x−1)(x+2)2;16、x2+(1+ 2√5)x +( 4+√5)=0;参考答案1、x2=121;解:x2=121等式两边同时开平方x= 11故原方程的根是:x1=11,x2= -112、(2x +3)2=9;解:(2x +3)2=9等式两边同时开平方(2x +3)=±3令2x +3 = 3,即2x=0,解得x=0令2x +3 =-3,即2x=-6,解得x=-3故原方程的根是:x 1=0,x 2=-33、3(4x +5)2-147=0;解:3(4x +5)2-147=03(4x +5)2=147等式两边同时除以3(4x +5)2= 49等式两边同时开平方4x+5=±7令4x+5=7, 解得x= 12 令4x+5= -7,解得x=-3故原方程的根是:x 1= 12,x 2=-34、(2x −7)2+9 =6(2x-7);解:(2x −7)2 +9 =6(2x-7)右边的项移到等号左边(2x−7)2-6(2x-7)+9 =0(2x−7)2 -2・3・(2x-7)+32=0[(2x−7)−3 ]2=0令(2x−7)−3 =0,解得 x=5故原方程的根是:x1=x2=55、7x(x-6)=3(12-2x);解:7x(x-6)=3(12-2x)等号左边提取-27x(x-6)=-6(x-6)右边的项移到等号左边7x(x-6)+6(x-6)=0提取公因式(x-6)(x-6)(7x+6)=0令x-6=0,解得x=6令7x+6=0,解得x= - 67故原方程的根是:x1=6,x2=- 676、(3x-5)(2x+5)= x+7;解(3x-5)(2x+5)= x+7等号左边去括号6x2+15x-10x-25 =x+76x2+5x-25=x+76x2+4x-32=03x2+2x-16=0(3x+8)(x-2)=0令3x+8=0,解得x= - 83令x-2 =0,解得x=2故原方程的根是:x1=- 8,x2=237、3(3x-4)+ x(4-3x)=0;解:3(3x-4)+ x(4-3x)=0 3(3x-4)- x(3x-4)=0 提取公因式(3x-4)(3x-4)(3- x)=0令3x-4=0,解得x= 43令3- x =0,解得x=3,x2=3 故原方程的根是:x1= 438、x(2x+5)=4(2x-1)+3;解:x(2x+5)=4(2x-1)+3 2x2 +5x =8x-4+32x2 +5x =8x-12x2 -3x +1=0(2x-1)(x-1)=0令2x-1=0,解得x= 12 令x-1=0,解得x=1故原方程的根是:x 1= 12 ,x 2=19、(x −3)2 +4=5(3-x );解:(x −3)2 +4= 5(3-x )等号左边提取-1(x −3)2 +4= -5(x-3)右边的项移到等号左边(x −3)2 +5(x-3)+4=0[(x -3)+1][(x-3)+4]=0(x-2)(x+1)=0令x-2=0,解得x=2令x+1=0,解得x=-1故原方程的根是:x 1=2,x 2=-110、4x 2+7x +1=0;解:4x 2+7x +1=0判别式△=72 -4×4×1 =33x= −7 ±√332×4 = −7 ±√338故原方程的根是:x 1=−7 +√338,x 2=−7 −√33811、512x 2 + 13 = x ; 解:512x 2 + 13 = x等式两边同时乘以125x 2 +4 =12x5x 2 +4 -12x =0(5x-2)(x-2)=0令5x-2=0,解得x= 25 令x-2=0,解得x=2故原方程的根是:x 1= 25,x 2=212、(x−1)(x−2)2-1 = (x+1)(x−3)3 ; 解:(x−1)(x−2)2 -1 = (x+1)(x−3)3 等式两边分子去括号x 2−3x+22 -1 = x 2−2x−33等式两边同时乘以63(x 2−3x +2)-6 =2(x 2−2x −3) 3x 2 -9x+6 -6= 2x 2 -4x −6x 2 -5x +6=0(x-2)(x-3)=0令x-2=0,解得x=2令x-3=0,解得x=3故原方程的根是:x 1=2,x 2=313、 14[12(x+1)+13(x+2)+2] =x 2;解:14[12(x+1)+13(x+2)+2] =x 2等号两边同时乘以412(x+1)+13(x+2)+2 =4x 2等号两边同时乘以63(x+1)+2(x+2)+12 =24x 23x+3+2x+4+12=24x 224x 2-5x-19=0(24x+19)(x-1)=0令24x+19=0,解得x= −1924令x-1=0,解得x= 1故原方程的根是:x 1=−1924,x 2= 114、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;解:(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32 等号两边去括号x 2+3x+2+x 2+7x+12 =x 2+5x+6+32整理得x 2+5x-24=0(x+8)(x-3)=0令x+8=0,解得x= -8令x-3=0,解得x= 3故原方程的根是:x 1=-8,x 2= 315、x=2(0.3x+21)3 - (0.2x−1)(x+2)2 ; 解:x= 2(0.3x+21)3 - (0.2x−1)(x+2)2等号两边同时乘以66x=4(0.3x+21)-3(0.2x-1)(x+2) 去括号6x=1.2x+84-0.6x 2+1.8x+6整理得0.6x 2+3x-90=0等号两边同时乘以10,然后再除以6 x 2+5x-150=0(x+15)(x-10)=0令x+15=0,解得x= -15令x-10=0,解得x= 10故原方程的根是:x 1= -15,x 2= 1016、x 2+(1+ 2√5)x +( 4+√5)=0; 解:x 2+(1+ 2√5)x +( 4+√5)=0 判别式△=(1+ 2√5)2-4・1・( 4+√5)=1+4√5+20-16-4√5=5x= −(1+ 2√5)±√52∙1即x= −(1+ 2√5)+√52=−(1+ √5)2或 x= −(1+ 2√5)−√52=−(1+3 √5)2故原方程的根是:x1=−(1+ √5)2,x2= −(1+3 √5)2。
一元二次方程必考大题一、解答题1.列方程(组)解应用题端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?2.列方程(组)解应用题:某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.3.改善小区环境,争创文明家园.如图所示,某社区决定在一块长()16,宽()9的矩形场地上修建三条同样宽的小路,其中两条与平行,另一条与平行,其余部分种草.要使草坪部分的总面积为112,则小路的宽应为多少?4.如图,有一块矩形硬纸板,长,宽.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为?5.巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.6.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A 品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数012345(含5次以上)累计车费00.50.9a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数012345人数51510302515(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.7.根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示。
一元二次方程10道例题一、直接开平方法例1:解方程(x - 3)^2=16解析:对于方程(x - 3)^2 = 16,根据直接开平方法,我们得到:x-3=±4当x - 3=4时,x=4 + 3=7;当x-3=-4时,x=- 4+3=-1。
所以方程的解为x_1 = 7,x_2=-1。
二、配方法例2:解方程x^2+6x - 7 = 0解析:在方程x^2+6x-7 = 0中,1. 移项得x^2+6x=7。
2. 配方:在等式两边加上一次项系数一半的平方,即x^2+6x + 9=7 + 9,得到(x + 3)^2=16。
3. 然后用直接开平方法,x+3=±4。
- 当x+3 = 4时,x=1。
- 当x + 3=-4时,x=-7。
所以方程的解为x_1=1,x_2 = - 7。
三、公式法例3:解方程2x^2-5x+3=0解析:对于一元二次方程ax^2+bx + c=0(a≠0),其求根公式为x=(-b±√(b^2 - 4ac))/(2a)。
在方程2x^2-5x + 3=0中,a = 2,b=-5,c = 3。
1. 先计算判别式Δ=b^2-4ac=(-5)^2-4×2×3=25 - 24 = 1。
2. 把a、b、Δ的值代入求根公式,得到x=(5±√(1))/(4)。
- 当取正号时,x=(5 + 1)/(4)=(3)/(2)。
- 当取负号时,x=(5-1)/(4)=1。
所以方程的解为x_1=(3)/(2),x_2 = 1。
四、因式分解法例4:解方程x^2-3x+2=0解析:1. 对x^2-3x + 2进行因式分解,得到(x - 1)(x - 2)=0。
2. 则有x-1=0或者x - 2=0。
- 当x-1=0时,x = 1。
- 当x-2=0时,x=2。
所以方程的解为x_1=1,x_2=2。
例5:解方程6x^2+x - 1=0解析:1. 对6x^2+x - 1进行因式分解,得到(2x + 1)(3x - 1)=0。
一元二次方程经典题型汇总将一元二次方程化为完全平方形式,然后两边开平方根,得到方程的解。
2、因式分解法:将一元二次方程化为两个一次因式的乘积形式,然后根据乘积为零的性质求解。
3、配方法:通过添加或减少一个适当的常数,将一元二次方程化为完全平方形式,然后利用完全平方公式求解。
4、公式法:利用求根公式,直接求解一元二次方程的解。
三、例题解析1、用直接开平方法求解方程x2+6x+9=0.解:将方程变形为(x+3)2=0,然后两边开平方根,得到x=-3.所以方程的解为x=-3.2、用因式分解法求解方程x2-5x+6=0.解:将方程因式分解为(x-2)(x-3)=0,然后根据乘积为零的性质得到x=2或x=3.所以方程的解为x=2或x=3.3、用配方法求解方程2x2-5x+2=0.解:为了将方程化为完全平方形式,需要在方程两边同时加上一个适当的常数,使得方程的左边成为一个完全平方。
可以发现,2x2-5x+2=2(x-1)(x-2)+2,所以方程可以化为2(x-1)2=0.然后利用完全平方公式,得到x=1或x=2.所以方程的解为x=1或x=2.4、用公式法求解方程3x2-4x+1=0.解:根据求根公式,方程的解为x=[4±√(16-4*3*1)]/(2*3),化简可得到x=1/3或x=1.所以方程的解为x=1/3或x=1.四、练题1、用直接开平方法求解方程2x2-12x+18=0.2、用因式分解法求解方程x2+7x+10=0.3、用配方法求解方程x2+4x-5=0.4、用公式法求解方程x2-2x+1=0.5、求解方程2x2-5x-3=0的解法有哪些?分别求出方程的解。
答案:1、将方程变形为x2-6x+9=0,然后利用直接开平方法,得到x=3.所以方程的解为x=3.2、将方程因式分解为(x+5)(x+2)=0,然后根据乘积为零的性质,得到x=-5或x=-2.所以方程的解为x=-5或x=-2.3、为了将方程化为完全平方形式,需要在方程两边同时加上一个适当的常数,使得方程的左边成为一个完全平方。
z 一元二次方程应用题经典题型汇总一、增长率问题例 1 恒利商厦九月份的销售额为200 万元,十月份的销售额下降了20% ,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6 万元,求这两个月的平均增长率.解设这两个月的平均增长率是X.,则根据题意,得200(1 —20%)(1+ x)2= 193.6 ,即(1+x)2= 1.21,解这个方程,得x i = 0.1 , X2=— 2.1 (舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2= n求解,其中m v n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1 —x)2= n即可求解,其中m >n.二、商品定价例2 益群精品店以每件21 元的价格购进一批商品, 该商品可以自行定价, 若每件商品售价a元,则可卖出(350 —10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400 元,需要进货多少件?每件商品应定价多少?解根据题意,得(a—21)(350 —10a) = 400,整理,得a2—56a+775 = 0 ,解这个方程,得a1 = 25 , a2 = 31.因为21 p+20%) = 25.2,所以a2=31不合题意,舍去.所以350 —10 a= 350 —10 X25 = 100 (件).答需要进货100 件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率•(假设不计利息税)解设第一次存款时的年利率为X.则根据题意,得[1000(1+ x)- 500](1+0.9 x) = 530.整理,得90X2+145 x —3 = 0.解这个方程,得X i~0.0204 = 2.04% , X21.63.由于存款利率不能为负数,所以将X2~—1.63 舍去.答第一次存款的年利率约是 2.04%.说明这里是按教育储蓄求解的,应注意不计利息税四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得2(x+0.1+ x+1.4+0.1) x= 1.8,整理,得x2+0.8 x—1.8 = 0.解这个方程,得X1 = — 1.8 (舍去),X2= 1.所以x+1.4+0.1 = 1 + 1.4+0.1 = 2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为X,则十位数字为x - 3.则根据题意,得x2= 10(x —3)+ x,即X2-11X+30 = 0,解这个方程,得x= 5或x= 6.当x = 5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x = 6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979 , 1980 , 1984 , 1985.经核实,有一位同学统计无误•试计算这次比赛共有多少个选手参加•解设共有n个选手参加比赛,每个选手都要与(n —1)个选手比赛一局,共计n(n —1)1局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为2 n(n —1)局由于每局共计2分,所以全部选手得分总共为n(n —1)分•显然(n—1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0, 2 , 6,故总分不可能是1979 , 1984 , 1985,因此总分只能是1980,于是由n(n —1) = 1980,得n2—n —1980 = 0 ,解得n1 = 45 , n2=—44 (舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题, 法求解• 七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元•请问该单位 这次共有多少员工去天水湾风景区旅游?解设该单位这次共有 x 名员工去天水湾风景区旅游 •因为1000 >25 = 25000 V 27000,所以员工人数一定超过 25人.则根据题意,得[1000 — 20(x — 25)] x = 27000.整理,得 x 2 — 75X +1350 = 0,解这个方程,得 x i = 45 , X 2= 30.当 x = 45 时,1000 — 20( x — 25) = 600 V 700,故舍去 x i ;当 X 2= 30 时,1000 — 20(x — 25) = 900 >700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论都可以仿照些如果人数不超过25人 如果人数超过25人,每増加1 人人均放游费用降低20元 旦人均册费用不得低于700人均旅游费用海1000元.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为 原来荒地面积的三分之二•(精确到0.1m )(1 )设计方案1 (如图2)花园中修两条互相垂直且宽度相等的小路(2)设计方案2 (如图3)花园中每个角的扇形都相同 .以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由 解 都能.(1)设小路宽为 X ,则 18x +16x — x 2=^ X18 X15,即 x 2— 34X +180 = 0 ,解这个方程,得x = 2 ,即x ~ 6.6.(2)设扇形半径为 r ,则 3.14 r 2 =X18 X15 ,即卩 r 2疋 57.32,所以 r ~7.6.明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变; 积也变,但重量不变,等等九、动态几何问题例9 如图 4所示,在△ ABC 中,/ C = 90?/SPAN> , AC = 6cm , BC = 8cm ,点 P 从 点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动(1)如果P 、Q 同时出发,几秒钟后,可使△ PCQ 的面积为8平方厘米?X ,或形变(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△ PCQ 的面积等于△ ABC 的面积的一半•若存在,求出运动的时间;若不存在,说明理由(1 )设 x s 后,可使△ PCQ 的面积为 8cm 2,所以 AP = x cm , PC = (6 — x )cm , CQ =2x cm.则根据题意,得(6 — x ) 2x = 8.整理,得X 2— 6x +8 = 0,解这个方程,得 x i = 2, X 2=4. 所以P 、Q 同时出发,2s 或4s 后可使△ PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△ PCQ 的面积等于△ ABC 面积的一半•1 1 1则根据题意,得 2(6 — x ) 2x =2 x2 x6 X8.整理,得 x 2— 6x +12 = 0.由于此方程没有实数根,所以不存在使厶 PCQ 的面积等于ABC 面积一半的时刻•说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度x 时间.十、梯子问题例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m.(1) 若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2) 若梯子的底端水平向外滑动 1m ,梯子的顶端滑动多少米?(3 )如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解 依题意,梯子的顶端距墙角 =8 (m ).(1 )若梯子顶端下滑1m ,则顶端距地面7m.设梯子底端滑动x m.因为/ C = 90?/SPAN>,所以AB ="汙\取匸=用卜『=10(cm )(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ ABC的则根据勾股定理,列方程72+(6+ x)2= 102,整理,得x2+12 x—15 = 0 ,解这个方程,得X i~ 1.14 , X213.14 (舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8 —X)2+(6+1)2= 100.整理,得X2—16X+13 = 0.解这个方程,得X1~ 0.86 , X2 ~ 15.14 (舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程(8 —X)2+(6+X)2= 102,整理,得2x2—4x = 0,解这个方程,得X1 = 0 (舍去),X2= 2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南方向200 海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC 的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航•一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1) F位于D的正南方向,贝U DF丄BC•因为AB丄BC, D为AC的中点,所以DF =2 AB = 100海里,所以,小岛D与小岛F相距100海里.(2 )设相遇时补给船航行了x海里,那么DE = x海里,AB+BE= 2x海里,EF= AB+BC -(AB+ BE)—CF= (300 - 2x)海里.在Rt△ DEF中,根据勾股定理可得方程x2= 100 2+(300 - 2x)2,整理,得3x2-1200 x+100000 = 0.lOtK/6 10(K/6解这个方程,得X1 = 200 —孑 ~ 118.4 , X2 = 200+3 (不合题意,舍去)•所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12 X12个小正方形格,将边长为n (n 为整数,且2w n< 11 )的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n Xi的纸片正好盖住正方形ABCD左上角的n刈个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n - 1) X n —1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,冼成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n23456使用的纸片张数(2 )设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S i,未被盖住的面积为S2.①当n = 2时,求S i : S2的值;解(1 )依题意可依次填表为: 11、10、9、8、7.②是否存在使得S i = S2的n值?若存在,请求出来;若不存在,请说明理由(2) S1 = n2+(12 - n)[n2—(n - 1)2] = - n2+25 n - 12.①当n = 2 时,S1 = - 22+25 X2 - 12 = 34 , S2= 12 X12 - 34 = 110.所以S1 : S2 = 34 : 110 = 17 : 55.1②若S1 = S2,则有—n2+25 n —12 =? X122,即n2—25 n +84 = 0 ,解这个方程,得n1 = 4 , n2= 21 (舍去).所以当n = 4时,S1= S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于 12cm 2吗?若能,求出两段铁丝的长度; 若不能, 请说明理由解(1)设剪成两段后其中一段为 x cm ,则另一段为(20 — x ) cm.当 x = 16 时,20 — x = 4,当 x = 4时,20 — x = 16 , 答 这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为 y cm ,则另一段为(20 — y ) cm.则由题意得I 4丿+1 4丿=12,整理,得 y 2— 20 y +104 = 0,移项并配方,得(y — 10) 2 =—4v 0,所以此方程无解,即不能剪成两段使得面积和为12cm 2.说明 本题的第(2 )小问也可以运用求根公式中的 b 2 — 4ac 来判定 若b 2 — 4ac >0,方程有两个实数根,若 b 2— 4ac v 0,方程没有实数根,本题中的b 2 — 4ac =— 16 v 0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形 ABCD 中,AB = DC = 5 , AD = 4 , BC = 10.点E?^下底边BC 上,点F 在腰AB 上.(1 )若EF 平分等腰梯形 ABCD 的周长,设BE 长为X ,试用含x 的代数式表示 △ BEF 的面积; (2) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时分成1 : 2的两部分?若存在,求此时BE 的长;若不存在,请说明理由则根据题意,得 =17,解得 X i = 16X 2 = 4 ,Be K解(1 )由已知条件得,梯形周长为12,高4,面积为28.过点F作FG丄BC于G,过点A作AK丄BC于K.12 - K则可得,FG= 总,込24所以S A BEF=BEFG=—§ x2+ x (7 < x < 10).2 24(2)存在.由 (1 )得—5 x2+ 5 x = 14,解这个方程,得x i = 7, X2 = 5 (不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE= 7.(3)不存在•假设存在,显然有S A BEF : S多边形AFECD = 1 : 2,2 16 28即(BE+BF):(AF+AD + DC) = 1 : 2.则有一5 x2+ 5 x =3 ,整理,得3x2—24x+70 = 0,此时的求根公式中的b2—4ac = 576 —840 V 0,所以不存在这样的实数X.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1 : 2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得X2 = 5时,并不属于7 < X W 10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1的小正方形组成:(1 )观察图形,请填写下列表格:正方形边长 13黑色小正方形个数 正方形边长 24黑色小正方形个数(2 )在边长为n (n > 1)的正方形中,设黑色小正方形的个数为个数为P 2,问是否存在偶数.n ,使P 2= 5P i ?若存在,请写出 n 的值;若不存在,请说明 理由.解(1)观察分析图案可知正方形的边长为 1、3、5、7、…、n 时,黑色正方形的个 数为1、5、9、13、2n — 1 (奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形 的个数为4、& 12、16、2n (偶数)•(2 )由(1 )可知n 为偶数时P 1 = 2 n ,所以P 2= n 2— 2n .根据题意,得n 2 — 2 n = 5 x 2n ,即n 2 —12 n = 0,解得n 1= 12 , n 2 = 0 (不合题意,舍去).所以存在偶数n = 12,使得P 2 =5P 1.n (奇数)n (偶数)P i ,白色小正方形的说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。
一元二次方程应用题七大题型
1. 求解物体运动距离
题型:一个物体从静止开始运动,加速度为 a,运动时间为 t。
求物体运动的距离。
公式:距离 = (1/2) 加速度时间²
2. 求解物体最终速度
题型:一个物体从静止开始运动,加速度为 a,运动时间为 t。
求物体最终速度。
公式:最终速度 = 加速度时间
3. 求解物体运动时间
题型:一个物体从静止开始运动,最终速度为 v,加速度为 a。
求物体运动的时间。
公式:时间 = 最终速度 / 加速度
4. 求解物体加速度
题型:一个物体从静止开始运动,运动时间为 t,最终速度为v。
求物体加速度。
公式:加速度 = 最终速度 / 时间
5. 求解运动物体速度
题型:一个物体从静止开始运动,在 t1 时刻速度为 v1,在
t2 时刻速度为 v2。
求物体在 t3 时刻的速度。
公式:速度 = (最终速度 - 初始速度) / (最终时间 - 初始
时间)
6. 求解运动物体加速度变化率
题型:一个物体的加速度从 a1 变化到 a2,时间间隔为Δt。
求加速度的变化率。
公式:加速度变化率 = (最终加速度 - 初始加速度) / 时间间隔
7. 求解运动物体速度变化率
题型:一个物体的速度从 v1 变化到 v2,时间间隔为Δt。
求速度的变化率。
公式:速度变化率 = (最终速度 - 初始速度) / 时间间隔。
一元二次方程常见题型总结一元二次方程常见题型总结题型1:一元二次方程的概念1.若方程$(a-1)x^2-3x+2=0$是关于$x$的一元二次方程,则$a$的取值范围为【】(A)$a\neq1$(B)$a>1$(C)$a\neq1$(D)$a>1$答案:$a\neq1$2.若$1-3$是方程$x^2-2x+c=0$的一个根,则$c$的值为【】(A)$-2$(B)$4/3$(C)$3/2$(D)$4$答案:$4/3$3.已知关于$x$的一元二次方程$(k+4)x^2+3x+k^2+3k-4=0$的一个根为$0$,且$k$的值为【】答案:$k=-4$或$k=1$题型2:一元二次方程的解法4.一个等腰三角形的底边长是$6$,腰长是一元二次方程$x^2-7x+12=0$的一个根,则此三角形的周长是【】(A)$12$(B)$13$(C)$14$(D)$12$或$14$答案:$14$5.方程$(x+3)^2=5(x+3)$的解为__________。
答案:$x=-2$或$x=2$6.用适当的方法解下列方程:1)$4x^2-144=0$;(2)$2x^2+3x=3$;(3)$x^2-2x-24=0$;(4)$x(2x-5)=4x-10$。
题型3:一元二次方程根的判别式及根与系数的关系定理7.已知$a,b,c$为常数,点$P(a,c)$在第二象限,则关于$x$的方程$ax^2+bx+c=0$的根的情况是【】(A)有两个相等的实数根(B)有两个不相等的实数根(C)没有实数根(D)无法判断答案:$B$8.若关于$x$的一元二次方程$x^2+(2k-1)x+k^2-1=0$没有实数根,则$k$的取值范围为__________。
答案:$k1$9.已知关于$x$的一元二次方程$x^2+(2k+1)x+k^2=0$有两个不相等的实数根。
1)求$k$的取值范围;2)设方程的两个实数根分别为$x_1,x_2$,当$k=1$时,求$x_1^2+x_2^2$的值。
一元二次方程题型汇总一、填空题: 1、方程(x –1)(2x +1)=2化成一般形式是 ,它的二次项系数是 .2、关于x 的方程是(m 2–1)x 2+(m –1)x –2=0,那么当m 时,方程为一元二次方程; 当m 时,方程为一元一次方程.3、方程0322=+x x 的根是 .4、当k = 时,方程0)1(2=+++k x k x 有一根是0.5、若方程kx 2–6x +1=0有两个实数根,则k 的取值范围是 .6、设x 1、x 2是方程3x 2+4x –5=0的两根,则=+2111x x .x 12+x 22= . 7、关于x 的方程2x 2+(m 2–9)x +m +1=0,当m = 时,两根互为倒数; 当m = 时,两根互为相反数.8、若x 1 =23-是二次方程x 2+ax +1=0的一个根,则a = , 该方程的另一个根x 2 = .9、方程x 2+2x +a –1=0有两个负根,则a 的取值范围是 .10、若p 2–3p –5=0,q 2-3q –5=0,且p ≠q ,则=+2211pq . 11、分解因式:122--x x = ,2232y xy x --= .12、请写出一个一元二次方程使它有一个根为3 , .13、如果把一元二次方程 x 2–3x –1=0的两根各加上1作为一个新一元二次方程的两根, 那么这个新一元二次方程是 .14、已知方程0)1(2=+++k x k x 的两根平方和是5,则k = .二、选择题:1、方程012=--kx x 的根的情况是( )(A )方程有两个不相等的实数根 (B )方程有两个相等的实数根(C )方程没有实数根 (D )方程的根的情况与k 的取值有关2、已知方程22=+x x ,则下列说中,正确的是( )(A )方程两根和是1 (B )方程两根积是2(C )方程两根和是-1 (D )方程两根积是两根和的2倍3、已知方程062=--kx x 的两个根都是整数,则k 的值可以是( )(A )—1 (B )1 (C )5 (D )以上三个中的任何一个4、若一元二次方程 2x (kx -4)-x 2+6 = 0 无实数根,则k 的最小整数值是( )(A )-1 (B )2 (C )3 (D )4 5、若c 为实数,方程x 2-3x +c =0的一个根的相反数是方程x 2+3x -3=0的一个根,那么方程x 2 -3x +c =0的根是( )(A )1,2 (B )-1,-2 (C )0,3 (D )0,-3 6、若一元二次方程ax 2+bx +c = 0 (a ≠0) 的两根之比为2:3,那么a 、b 、c 间的关系应当是( ) (A )3b 2=8ac (B )a c a b 2325922= (C )6b 2=25ac (D )不能确定 三、解下列方程:(1)9)12(2=-x (2)42)2)(1(+=++x x x(3) 3x 2–4x –1=0 (4)4x 2–8x +1=0(用配方法)四、求证:不论k 取什么实数,方程x 2-(k+6)x+4(k- 3)=0一定有两个不相等的实数根.五、若方程 x 2+mx -15 = 0 的两根之差的绝对值是8,求m的值.六、某商店4月份销售额为50万元,第二季度的总销售额为182万元,,求月平均增长率.七、 已知a 、b 、c 为三角形三边长,且方程b (x 2-1)-2ax+c (x 2+1)=0有两个相等的实数根.试判断此三角形形状,说明理由.八、综合应用题1. 分式1872---x x x 的值是0,则__________=x 2. 已知053)23(6522=+++-+-x x m m m m ,是关于x 的二次方程, 则m =图1图233. 设b a ,是一个直角三角形两条直角边的长,且12)1)((2222=+++b a b a ,则这个直角三角形的斜边长为4. 如果两个连续整数的积为210,那么这两个数是5. 已知实数x 满足+++x x x 22101=x ,那么x x 1+的值为 6.如图中的每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数是s 按此推断s 与n 的关系是 .n=2,s=3n=3,s=6n=4,s=9 7.观察下列一组图形,根据其变化规律,可得第10个图形中三角形的个数为8.等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形的周长为 ( )A. 27B. 33C. 27和33D.以上都不对9. 合肥百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十•一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装因应降价多少元?10. 解答题:方程01)3()1(12=--+++x m x m m ;(1)m 取何值时是一元二次方程,并求出此方程的解;(2)m 取何值时是一元一次方程;11.已知a 、b 、c 均为实数且0)3(11222=+++++-c b a a ,求方程02=++c bx ax 的根;12.试证明关于x 的方程012)208(22=+++-ax x a a 无论a 取何值,该方程都是一元二次方程;13.两个正方形,小正方形的边长比大正方形的边长的一半多4cm ,大正方形的面积比小正方形的面积的2倍少32cm2,求大小两个正方形的边长。
一元二次方程题型总结题型一:一元二次方程的判断1.下列方程中,是关于x的一元二次方程的是()a.3?x?1?2?3?x?1?b.1x2?1x?2?0c.ax2?bx?c?0d.x2?2x?x2?12.下列方程,是一元二次方程的是()①3x2?x?20,②2x2?3xy?4?0,③x2?1x?4,④x2?0,⑤x2?x3?3?0a.①②b.①④c.①④⑤d.①②④⑤3.已知关于x的方程?m2?1?x2??m?1?x?m?2?0,当_____时,方程为一元二次方程;当______时,方程就是一元一次方程。
4.关于x的一元二次方程?m?1?xm2?1?4x?2?0的解为题型二:一元二次方程的木1.关于x的一元二次方程x2?x?k?0有两个不相等的实数根,则k的取值范围是2.如果关于x的方程x2?2x?a?0存有两个成正比的实数根,那么a=________3.如果关于的一元二次方程存有实数根,谋的取值范围.4.若一元二次方程?k?1?x2?4x?5?0存有两个不成正比实数根,则k的值域范围为_________。
5.方程x2?2x?0的根是()a.x?2b.x?0c.x1??2,x2?0d.x1?2,x2?06.方程x?x?2??x?2?0的解是7.一元二次方程x2?kx?3?0的一个根就是x?1,则另一个根就是8.未知x?1就是方程x2?ax?2?0的一个根,则方程的另一个根为()a.2b.?2c.3d.?39.若关于x的方程x2?3x?a?0有一个根为-1,则另一个根为10.已知x??2是方程x2?mx?6?0的一个根,则方程的另一个根是,m?。
11.关于x的一元二次方程?a?1?x2?ax?a2?1?0的一个根是0,则a的值为_________。
12.若x??2是关于x的一元二次方程x2?5ax?a2?0的一个根,则2a的值为13.未知方程2x2?3x?4?0的两根为x1,x222,那么x1?x2=.14.未知一元二次方程3?m?1?x2?5mx?3m?2的两根互为相反数,则m的值为_________.题型三:一元二次方程的对数求解1.根据下列表格的对应值,判断方程ax2?bx?c?0(a?0,a、b、c为常数)一个解的范围是()x3.233.243.253.26ax2?bx?c-0.06-0.020.030.09a.3?x?3.23b.3.23?x?3.24c.3.24?x?3.25d.3.25?x?3.262.观察下列表格,一元二次方程x2?x?1.1的一个近似解是()x1.11.21.31.41.51.61.71.81.9x2?x0.110.240.390.560.750.961.191.441.71a.0.11b.1.6c.1.7d.1.19题型四:配方法1.用分体式方法求解一元二次方程,配方后的方程为2.一元二次方程2x2?3x?1?0化成?x?a?2?b的形式,恰当的就是()222a、x?3?216b、2x?3?41?3?116c、??x?416d、以上都不对题型五:解方程解下列方程(1)2x?4x?1?0(分体式方法)(2)x?x?1?0(公式法)(7)x?4x?8?0(用分体式方法求解)(8)?x?3??x?62222(3)5x?x?3??6?2x(因式分解法)(5)x2?4x?3?0;4)?2x?1?2?96)?x?3?2?2x?3?x?;(9)?x?5??x?1??12(11)3x2?6x?1?0(用配方法解)10)(x?1)2?2x(x?1)?0(((题型六:增长率问题1.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,题型八:应用题题型1---面积相关1.例如图,松省为22米的篱笆,一面利用墙(墙的最小需用长度为14米),围站如果平均值每月增长率为x,则由题意列方程应属()a.200?1?x?2?1000b.200?200?2x?1000c.200?200?3x?1000d.200?1??1?x1?x?2??10002.为全面落实“两宽免一迁调”政策,某市2021年资金投入教育经费2500万元,预计2021年必须资金投入教育经费3600万元,未知2021年至2021年的教育经费资金投入以相同的百分率逐年快速增长,则这个快速增长的百分率为_________。
一元二次方程应用题典型题型归纳This manuscript was revised by the office on December 22, 2012一元二次方程应用题典型题型归纳(一)传播与握手问题1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。
2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。
3.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。
4.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛。
5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?6.7.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?8.9.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(二)平均增长率问题变化前数量×(1 x)n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。
3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?5. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.(三)商品销售问题售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元每天要售出这种商品多少件2.3.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30X,P=170—2X。
一元二次方程大题一、利用一元二次方程的定义求解参数1. 已知方程(m - 1)x^2+3x - 1=0是关于x的一元二次方程,求m的取值范围。
- 解析:- 对于一元二次方程ax^2+bx + c = 0(a≠0)。
- 在方程(m - 1)x^2+3x - 1=0中,要使其为一元二次方程,则二次项系数不能为0,即m - 1≠0。
- 解得m≠1。
2. 若方程ax^2+x - 1 = 0是一元二次方程,则a的取值范围是多少?- 解析:- 因为一元二次方程的一般形式是ax^2+bx + c = 0(a≠0)。
- 对于方程ax^2+x - 1 = 0,这里a为二次项系数,只要a≠0,该方程就是一元二次方程。
二、直接开平方法解方程3. 解方程(x - 2)^2=9。
- 解析:- 根据直接开平方法,对于方程(x - 2)^2=9。
- 则x - 2=±√(9)=±3。
- 当x - 2 = 3时,x=3 + 2=5;当x - 2=-3时,x=-3+2=-1。
- 所以方程的解为x_{1}=5,x_{2}=-1。
4. 求解方程4(x + 1)^2-25 = 0。
- 解析:- 首先将方程变形为(x + 1)^2=(25)/(4)。
- 然后开平方得x + 1=±(5)/(2)。
- 当x + 1=(5)/(2)时,x=(5)/(2)-1=(3)/(2);当x + 1=-(5)/(2)时,x=-(5)/(2)-1=-(7)/(2)。
- 所以方程的解为x_{1}=(3)/(2),x_{2}=-(7)/(2)。
三、配方法解方程5. 用配方法解方程x^2+6x - 7 = 0。
- 解析:- 移项得x^2+6x=7。
- 然后在等式两边加上一次项系数一半的平方,即x^2+6x + 9=7 + 9。
- 配方得(x + 3)^2=16。
- 开平方得x+3=±4。
- 当x + 3 = 4时,x = 1;当x+3=-4时,x=-7。
1元2次方程题型题型一:利润问题【常用公式】【例题】某商场销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施。
经调查发现,如果这种衬衫的售价每降低1元,那么衬衫平均每天多售出2件,商场若要平均每天盈利1200元,每件衬衫应降价多少元?【解析】假设每件衬衫应降价x元,现每件盈利为(40-x)元,现每天销售衬衫为(20+2x)件,根据等量关系:每件衬衫的利润×销售衬衫数量=销售利润,可列出方程。
解:设每件衬衫应降价x元,根据题意,得(40- x)(20+2x)=1200解得X1=10,X2=20。
因尽快减少库存,故取x =20答:每件应降价20元。
题型二:利息问题【常用公式】【例题】某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行。
若存款的利率不变,到期后本金和利息共1320元。
求这种存款方式的年利率(本题不计利息税)?【解析】假设这种存款方式的年利率为x,2000元存一年后本息和为2000(1+x)元,支取1000元后,还剩[2000(1+x)-1000]元。
将所剩[2000(1+x)-1000]元再存入银行一年,到期后本息共1320元。
根据本息和=本金×(1+利率)等量关系可列出方程。
解:设这种存款方式的年利率为x。
根据题意得,[2000(1+x)-1000](1+ x)=1320整理可得:2000x2+3000x-320=0解得:x1=-1.6(舍去),x2=0.1=10%答:这种存款方式的年利率为10%。
题型三:与几何图形的面积问题①几何图形的面积问题【等量关系】面积公式是此类问题的等量关系。
【例题】如图1-1所示,某小区规划在一个“长为40m,宽为26m”的矩矩形场地A B C D上修建三条同样宽的道路,使其中两条与A B平行,另一条与A D平行,其余部分种草。
一元二次方程常见题型
一元二次方程是数学中常见的一种形式,下面列举几种常见的一元二次方程题型:
1.求根:给定一个一元二次方程,要求求出方程的根。
可以
有实根、复数根以及无解的情况。
2.完全平方:给定一个一元二次方程,要求将其转化为完全
平方的形式,即配方。
3.平移、伸缩与翻折:考察一元二次方程在平移、伸缩和翻
折等变换中的性质。
例如,给定一个二次函数的图像,要
求求出对应的方程。
4.方程组与二次方程:考察一元二次方程与其他线性或非线
性方程的关系。
例如,给定一个二次函数的图像和一条直
线,要求求出二者的交点。
5.题目应用:将实际问题转化为一元二次方程,并求解问题。
例如,给出一个抛物线的方程和一个物体的运动轨迹,要
求求出物体的落地时间和距离等相关信息。
6.图像性质:通过对一元二次函数的图像性质的分析来得出
方程的特征。
例如,给定一个二次函数的图像,要求判断
方程的开口方向、对称轴、顶点等。
这些题型旨在让学生巩固和应用一元二次方程的知识,掌握求解一元二次方程、理解二次函数图像性质以及将问题转化为一元二次方程的能力。
通过解这些题目,学生可以加深对一元二
次方程的理解,并提高解决实际问题的能力。
一元二次方程典型题一、利用配方法求解一元二次方程例:用配方法解方程x^2 - 6x - 4 = 0解:begin{align}x^2 - 6x - 4 = 0 x^2 - 6x = 4 x^2 - 6x + 9 = 4 + 9x - 3)^2 = 13 x - 3 = ±√(13) x = 3 ± √(13)end{align}解析:配方法是将一元二次方程通过配方转化为完全平方式,再利用直接开平方法求解。
在方程x^2 - 6x - 4 = 0中,首先在等式两边加上一次项系数一半的平方,即9,将方程左边配成完全平方式(x - 3)^2,然后开平方求解。
二、利用公式法求解一元二次方程例:用公式法解方程2x^2 + 3x - 1 = 0解:在方程2x^2 + 3x - 1 = 0中,a = 2,b = 3,c = -1Δ = b^2 - 4ac = 3^2 - 4×2×(-1) = 9 + 8 = 17 > 0x = (-b ± √(Δ))/(2a) = (-3 ± √(17))/(2×2)所以x_1 = (-3 + √(17))/(4),x_2 = (-3 - √(17))/(4)解析:公式法是对于一元二次方程ax^2 + bx + c = 0(a≠0),其解为x = (-b ±√(b^2 - 4ac))/(2a)。
首先需要计算判别式Δ = b^2 - 4ac,判断方程根的情况。
当Δ > 0时,方程有两个不相等的实数根,将系数代入公式即可求出方程的解。
三、一元二次方程根的判别式的应用例:已知关于x的方程x^2 - 2x + m = 0有两个不相等的实数根,求m的取值范围。
解:因为方程x^2 - 2x + m = 0有两个不相等的实数根,所以Δ = (-2)^2 - 4×1×m > 04 - 4m > 04 > 4mm < 1解析:在一元二次方程ax^2 + bx + c = 0(a≠0)中,判别式Δ = b^2 - 4ac。
一元二次方程经典题型汇总一、一元二次方程的概念1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
一.填空题:1.关于x 的方程mx 2-3x= x 2-mx+2是一元二次方程,则m___________.2.方程4x(x-1)=2(x+2)+8化成一般形式是_______________,二次项系数是____,一次项系数是____,常数项是______.3.关于x 的一元二次方程(m+3) x 2+4x+ m 2- 9=0有一个解为0 , 则m=______. 4、.若一元二次方程ax2+bx+c=0(a ≠0)有一个根为-1,则a 、b 、c 的关系是_____5、当m 时,方程()05122=+--mx x m 不是一元二次方程,当m 时,上述方程是一元二次方程。
二.选择题:6.在下列各式中 ①x 2+3=x; ②2 x 2- 3x=2x(x- 1) – 1 ; ③3 x 2- 4x – 5 ; ④x 2=-x1+2 是一元二次方程的共有( ) A 0个 B 1个 C 2个 D 3个 7、下列方程中,一元二次方程是( )(A ) 221xx +(B ) bx ax +2(C ) ()()121=+-x x (D ) 052322=--y xy x8.一元二次方程的一般形式是( )A x 2+bx+c=0B a x 2+c=0 (a ≠0 )C a x 2+bx+c=0D a x 2+bx+c=0 (a ≠0)9.方程6 x 2- 5=0的一次项系数是( ) A 6 B 5 C -5 D 010、关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为( )A 、1B 、1-C 、1或1-D 、12三、.将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项二、一元二次方程的解法 1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
练习:用直接开平方法解下列一元二次方程1、0142=-x 2、2)3(2=-x 3、()512=-x 4、()162812=-x2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 练习:1.用适当的数填空:①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2; ③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )2 2.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-17.把方程x+3=4x 配方,得( )A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=28.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2± C . D .9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10、用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=11.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9 (3)x 2+12x-15=0 (4)41 x 2-x-4=012、用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c练习:用公式解法解下列方程。
1、0822=--x x2、22314y y -= 3、y y 32132=+4、01522=+-x x5、1842-=--x x6、02322=--x x4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式练习:用因式分解法解下列一元二次方程。
1、x x 22=2、0)32()1(22=--+x x3、0862=+-x x4、22)2(25)3(4-=+x x5、0)21()21(2=--+x x6、0)23()32(2=-+-x x三、一元二次方程根的判别式 根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆I 当△>0时,一元二次方程有2个不相等的实数根; II 当△=0时,一元二次方程有2个相同的实数根; III 当△<0时,一元二次方程没有实数根 练习:一、选择题1、一元二次方程2210x x --=的根的情况为( ) A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根2、若关于x 的一元二次方程02.2=+-m x x 没有实数根,则实数m 的取值范围是( ) A .m<l B .m>-1 C .m>l D .m<-1 3、一元二次方程x 2+x +2=0的根的情况是( )A .有两个不相等的正根B .有两个不相等的负根C .没有实数根D .有两个相等的实数根4、已知函数2y ax bx c =++的图象如图(7)所示,那么关于x 的方程220ax bx c +++=的根的情况是( )A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根5、下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )(A )x 2+4=0 (B )4x 2-4x +1=0 (C )x 2+x +3=0 (D )x 2+2x -1=0 6、下列方程中有实数根的是( )(A )x 2+2x +3=0 (B )x 2+1=0 (C )x 2+3x +1=0 (D )111x x x =-- 7、已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围是( )A . m >-1B . m <-2C .m ≥0D .m <0 8、如果2是一元二次方程x 2=c 的一个根,那么常数c 是( )。
A 、2B 、-2C 、4D 、-4 二、填空题1、方程()412=-x 的解为 。
2、阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a +=-,12c x x a=g .根据该材料填空:已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______ 3、关于x 的一元二次方程x 2+bx +c =0的两个实数根分别为1和2,则b =______;c =______.图(7)4、方程220x x -=的解是5、已知方程230x x k -+=有两个相等的实数根,则k =6、方程x 2+2x=0的解为9、已知x 是一元二次方程x 2+3x -1=0的实数根,那么代数式235(2)362x x x x x -÷+---的值为____ 10、已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a =_______.11、若关于x 的一元二次方程220x x k +-=没有实数根,则k 的取值范围是 .12、写出一个两实数根符号相反的一元二次方程:__________________。
13、已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .四、一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,a cx x =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
五、一元二次方程应用题学习了一元二次方程的解法以后,就会经常遇到解决与一元二次方程有关的生活中的应用问题,即列一元二次方程解应用题,不少同学遇到这类问题总是左右为难,难以下笔,事实上,同学们只要能认真地阅读题目,分析题意,并能学会分解题目,各个击破,从而找到已知的条件和未知问题,必要时可以通过画图、列表等方法来帮助我们理顺已知与未知之间的关系,找到一个或几个相等的式子,从而列出方程求解,同时还要及时地检验答案的正确性并作答.现就列一元二次方程解应用题中遇到的常见的十大典型题目,举例说明.1、增长率问题恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.2、商品定价益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a 元,则可卖出(350-10a )件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?3、储蓄问题王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)4、趣味问题一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?5、古诗问题读诗词解题:(通过列方程式,算出周瑜去世时的年龄).大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?6、象棋比赛象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.7、情景对话春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?8、等积变形将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m )(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路. (2)设计方案2(如图3)花园中每个角的扇形都相同.以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.9、动态几何问题如图4所示,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动.(1)如果P 、Q 同时出发,几秒钟后,可使△PCQ 的面积为8平方厘米?(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△PCQ 的面积等于△ABC 的面积的一半.若存在,求出运动的时间;若不存在,说明理由.图2Q PC BA 图4图310、梯子问题一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m. (1)若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2)若梯子的底端水平向外滑动1m ,梯子的顶端滑动多少米?(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?11、航海问题如图5所示,我海军基地位于A 处,在其正南方向200海里处有一重要目标B ,在B 的正东方向200海里处有一重要目标C ,小岛D 恰好位于AC 的中点,岛上有一补给码头;小岛F 位于BC 上且恰好处于小岛D 的正南方向,一艘军舰从A 出发,经B 到C 匀速巡航.一艘补给船同时从D 出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D 和小岛F 相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B 到C 的途中与补给船 相遇于E 处,那么相遇时补给船航行了多少海里?(精确到0.1海里) 12、图表信息如图6所示,正方形ABCD 的边长为12,划分成12×12个小正方形格,将边长为n (n 为整数,且2≤n ≤11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n ×n 的纸片正好盖住正方形ABCD 左上角的n ×n 个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n -1)×(n -1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD 的右下角为止. 请你认真观察思考后回答下列问题: (1) 由于正方形纸片边长n 的取值不同,•F EDC B A图5。