高中函数题型及解题方法
- 格式:docx
- 大小:36.38 KB
- 文档页数:2
函数常见题型及其解答函数是高中数学的重要内容之一,也是高考的重点和难点。
在学习函数的过程中,同学们可能会遇到各种类型的题目,本文将介绍一些常见的题型及其解答方法。
一、求函数的定义域定义域是函数的基础,求函数的定义域是常见的问题之一。
常见的方法有:1. 观察法:根据函数解析式,直接观察出其定义域。
2. 分式法:对于分式函数,需要保证分母不为0。
3. 偶次根式法:对于偶次根式函数,需要保证被开方数非负。
4. 对数法:对于对数函数,需要保证对数的真数大于0。
5. 复合法:对于含有多个函数的式子,需要保证每个函数都有意义。
例题:求函数f(x) = 的定义域。
解答:由已知可得,要使函数有意义,需满足:3x - 4 > 0,解得x > 4/3。
所以函数的定义域为{x︱x > 4/3}。
二、求函数的解析式求函数的解析式是另一个常见的问题。
常见的方法有:1. 直接法:根据已知的函数表达式,直接求出未给出的函数表达式。
2. 换元法:对于某些复杂的表达式,可以通过换元法简化表达式。
3. 待定系数法:通过设出函数表达式中的系数,再根据已知条件求出这些系数。
例题:已知函数f(x)满足f(x) + f(2 - x) = 2,求f(x)的解析式。
解答:设f(x) = kx + b,则f(2 + x) = k(x + 2) + b + k = kx + 2k + b + b = 2,解得k = - 1,b = 0,所以f(x)的解析式为f(x) = - x。
三、函数的性质与图像函数的性质和图像是函数的重要内容之一。
常见的题型有:1. 求函数的单调区间、极值和最值。
2. 根据函数的性质和图像,分析函数的特征和变化规律。
3. 根据已知条件,画出函数的图像。
例题:已知函数f(x)在定义域内为减函数,且f(x - 1) >f(1),求函数的单调区间。
解答:由题意可知,函数f(x)在定义域内为减函数,且f(x - 1) > f(1),所以x - 1 < 1 < x,即- 1 < x < 2,函数的单调递减区间为( - 1,2)。
高中函数题型方法全归纳高中函数题型方法全归纳函数是高中数学的重要分支之一,在高考数学中占有重要的地位。
函数的题型种类多样,每种题型都有其独特的解决方法。
本文将全面介绍高中函数的题型,并提供相应的解决方法。
一、函数的基本题型1.函数的定义域与值域问题定义域是指函数的输入范围,值域是指函数的输出范围。
对于函数的定义域和值域问题,我们需要明确以下几点:(1)函数的定义域必须包含输入值,值域必须包含输出值;(2)函数的定义域可以是任何实数,但值域必须是非负实数;(3)函数的定义域和值域之间的关系是:定义域决定了函数的输入范围,值域决定了函数的输出范围;(4)对于函数的复合函数,其定义域和值域必须满足复合函数的条件。
2.函数的定义域、值域和图像问题(1)函数的定义域和值域可以通过函数图像来确定;(2)函数图像必须满足函数的定义域和值域的限制条件;(3)通过函数图像,我们可以找到函数的对称轴、开口方向、最大值、最小值等特征。
3.函数的取值范围问题函数的取值范围是指函数在输入变量范围内的取值范围。
对于函数的取值范围问题,我们需要明确以下几点:(1)函数的输入变量必须大于等于零;(2)函数的取值范围可以是任何实数,但非负实数必须大于等于零;(3)函数的取值范围与定义域和值域有关。
4.函数的图像和性质问题(1)函数的图像必须满足函数的定义域和值域的限制条件;(2)通过函数图像,我们可以找到函数的对称轴、最大值、最小值等特征;(3)函数的性质可以通过函数图像和定义域、值域的关系来确定。
二、函数的应用函数在数学中有着广泛的应用,在解决实际问题中发挥着重要的作用。
下面我们将介绍一些常见的函数应用:1.函数在几何中的应用(1)函数在平面直角坐标系中的应用,如函数的取值范围、定义域、值域问题;(2)函数的图像和性质问题;(3)函数在图形上的变换和坐标系的变换。
2.函数在代数中的应用(1)函数在一元一次方程中的应用,如函数的定义域、值域问题;(2)函数的取值范围问题;(3)函数在一元二次方程中的应用。
高中函数题型及解题方法高中数学中,函数是一个非常重要的概念,也是学生们比较头疼的一个知识点。
函数题型的考察也是比较灵活多样的,下面我们就来系统地总结一下高中函数题型及解题方法。
一、基本函数题型。
1.函数的定义和性质题型。
这类题型主要考察对函数定义和性质的理解,学生需要掌握函数的定义、定义域、值域、奇偶性、周期性等基本性质。
解题方法是根据函数的具体性质,进行逻辑推理和数学运算,得出题目要求的结论。
2.函数的图像和性质题型。
这类题型主要考察对函数图像和性质的理解,学生需要掌握函数图像的基本特征、对称性、单调性、极值点、拐点等性质。
解题方法是根据函数图像的特点,进行分析和推理,得出题目要求的结论。
3.函数的运算题型。
这类题型主要考察对函数的运算和复合的理解,学生需要掌握函数的加减乘除、复合函数、反函数等运算规则。
解题方法是根据函数运算的性质,进行逻辑推理和数学运算,得出题目要求的结果。
二、综合函数题型。
1.函数的应用题型。
这类题型主要考察对函数的实际应用的理解,学生需要掌握函数在各个领域的具体应用,如经济学、物理学、生物学等。
解题方法是根据具体问题,建立函数模型,进行分析和推理,得出问题的解决方案。
2.函数方程题型。
这类题型主要考察对函数方程的解法和应用的理解,学生需要掌握函数方程的求解方法和应用技巧。
解题方法是根据函数方程的具体形式,进行分析和推理,得出方程的解或满足条件的函数形式。
三、解题方法。
1.理清思路,明确目标。
在解函数题型时,首先要理清思路,明确题目要求的目标,分析题目中给出的条件和限制,明确解题的方向和方法。
2.运用函数的基本性质。
在解题过程中,要灵活运用函数的基本性质,如定义、图像、运算规则等,根据题目的具体要求,进行逻辑推理和数学运算。
3.建立函数模型,进行分析。
对于应用题型,要善于建立函数模型,将实际问题转化为数学问题,进行逻辑分析和推理,得出问题的解决方案。
4.多做练习,掌握技巧。
高一函数零点题型归纳函数零点是高中数学中的一个重要概念,它涉及到函数的值、图像、单调性等多个方面。
以下是高一函数零点的一些常见题型及其解题方法:一、判断零点个数例题:函数f(x) = x^{2} - 2xf(x)=x2−2x在区间( - 3,3)(−3,3)内的零点个数为( )A.0 B.11 C.22 D.33解析:首先确定函数的对称轴为x = 1x=1,然后判断函数的开口方向为向上。
接下来,根据对称轴和区间端点的距离,可以确定函数在区间内的零点个数。
二、求函数的零点例题:函数f(x) = \log_{2}(x - 3)f(x)=log2(x−3)的零点是( )A.22 B.33 C.44 D.55解析:对数函数的零点即为使对数内部表达式等于1的x值。
因此,令x - 3 = 1x−3=1,解得x = 4x=4。
三、判断零点所在区间例题:函数f(x) = x^{3} - x^{2} - xf(x)=x3−x2−x在区间( - 1,2)(−1,2)内的一个零点所在的区间是( )A.(0,1)(0,1) B.(1,2)(1,2) C.( - 1,0)(−1,0) D.(0,2)(0,2)解析:先确定函数在给定区间端点的函数值,然后判断其正负性。
如果端点函数值异号,则该区间内必存在零点。
四、应用题中的零点问题例题:某商品的成本价为每件30元,售价不超过50元时,售价y(元)与售价的整数部分x 满足关系式:y = x + 20y=x+20,当成本价与售价相等时,每月最多可售出该商品____件。
解析:根据题意,当成本价与售价相等时,即30 = x + 2030=x+20,解得x = 10x=10。
由于售价的整数部分为10,则售价为30元。
再根据一次函数的性质,当斜率大于0时,函数单调递增,因此每月最多可售出该商品33件。
五、判断函数是否为同一函数(根据零点个数)例题:下列四个函数中与函数f(x) = \frac{1}{x}f(x)=x1表示同一函数的是( )A.y = \frac{x^{2}}{x}y=xx2B.y = \frac{1}{\sqrt{x}}y=x1C.y = \frac{1}{\log_{a}x}y=logax1D.y = \frac{e^{x}}{x}y=xex解析:根据函数的三要素(定义域、值域、对应关系),分别判断各选项是否与给定函数定义域相同、值域相同以及对应关系相同。
全国通用2023高中数学必修一第五章三角函数题型总结及解题方法单选题1、已知函数f (x )=sin (2x +π3),为了得到函数g (x )=cos (2x +π3)的图象只需将y =f (x )的图象( ) A .向左平移π4个单位B .向右平移π4个单位 C .向左平移π2个单位D .向右平移π2个单位 答案:A分析:利用三角函数的平移结合诱导公式即可求解. 解:因为sin (2x +π3+π2)=cos (2x +π3) 所以sin(2x +π3)→sin(2x +π2+π3),只需将f (x )的图象向左平移π4个单位, 故选:A.2、已知α,β为锐角,sinα=45,cos(α+β)=−√22,则cosβ=( )A .3√210B .√210C .7√210D .9√210答案:B分析:利用同角三角函数基本关系式,求出cosα,sin(α+β),再利用角变换β=α+β−α,利用两角差的余弦公式求得答案.由α是锐角,sinα=45,则cosα=√1−sin 2α=35,又α,β是锐角,得α+β∈(0,π), 又cos (α+β)=−√22,则sin(α+β)=√22, 则cosβ=cos[(α+β)−α]=cos(α+β)cosα+sin(α+β)sinα =−√22×35+√22×45=−3√2+4√210= √210.故选:B .3、中国扇文化有着深厚的文化底蕴,文人雅士喜在扇面上写字作画.如图,是书画家唐寅(1470—1523)的一幅书法扇面,其尺寸如图所示,则该扇而的面积为( )A .704cm 2B .352cm 2C .1408cm 2D .320cm 2 答案:A解析:设∠AOB =θ,OA =OB =r ,由题意可得:{24=rθ64=(r +16)θ ,解得r ,进而根据扇形的面积公式即可求解.如图,设∠AOB =θ,OA =OB =r , 由弧长公式可得:{24=rθ64=(r +16)θ , 解得:r =485,所以,S 扇面=S 扇形OCD −S 扇形OAB =12×64×(485+16)−12×24×485=704cm 2.故选:A .4、已知sin (π+α)=35,则sin(−α)cos(π−α)sin(π2−α)=( )A .−45B .45C .−35D .35答案:C解析:由条件利用诱导公式进行化简所给的式子,可得结果. ∵sin(π+α)=35=−sinα,∴sinα=−35,则sin(−α)cos(π−α)sin(π2−α)=−sinα⋅(−cosα)cosα=sinα=−35,故选:C5、已知tanθ=2,则sin(π2+θ)−cos(π−θ)cosθ−sin(π−θ)=( )A .2B .-2C .0D .23答案:B分析:根据tanθ=2,利用诱导公式和商数关系求解. 因为tanθ=2, 所以sin(π2+θ)−cos(π−θ)cosθ−sin(π−θ),=2cosθcosθ−sinθ, =21−tanθ=−2,故选:B6、若扇形周长为20,当其面积最大时,其内切圆的半径r 为( ) A .5−1sin1B .1sin1+32C .5sin11+sin1D .5+51+sin1答案:C分析:先根据扇形周长求解出面积取最大值时扇形的圆心角和半径,然后根据图形中的内切关系得到关于内切圆半径r 的等式,由此求解出r 的值.设扇形的半径为R ,圆心角为α,面积为S ,因为2R +αR =20, 所以S =12αR 2=(10−R )R ≤(10−R+R 2)2=25,取等号时10−R =R ,即R =5,所以面积取最大值时R =5,α=2, 如下图所示:设内切圆圆心为O ,扇形过点O 的半径为AP ,B 为圆与半径的切点, 因为AO +OP =R =5,所以r +r sin∠BPO=5,所以r +r sin1=5,所以r =5sin11+sin1, 故选:C.7、若f (x )=cos (x −π3)在区间[−a,a ]上单调递增,则实数a 的最大值为( )A .π3B .π2C .2π3D .π 答案:A分析:先求出函数的增区间,进而建立不等式组解得答案即可.易知将函数y =cosx 的图象向右平移π3得到函数f (x )=cos (x −π3)的图象,则函数f (x )=cos (x −π3)的增区间为[−23π+2kπ,π3+2kπ](k ∈Z ),而函数又在[−a,a ]上单调递增,所以{−a ≥−23πa ≤π3 ⇒a ≤π3,于是0<a ≤π3,即a的最大值为π3.故选:A.8、若tanθ=2,则sinθ(1−sin2θ)sinθ−cosθ=( )A .25B .−25C .65D .−65 答案:A分析:由二倍角正弦公式和同角关系将sinθ(1−sin2θ)sinθ−cosθ转化为含tanθ的表达式,由此可得其值. sinθ(1−sin2θ)sinθ−cosθ=sinθ(sin 2θ+cos 2θ−sin2θ)sinθ−cosθ=sinθ(sinθ−cosθ)2sinθ−cosθ=sin 2θ−sinθcosθsin 2θ+cos 2θ=tan 2θ−tanθtan 2θ+1=25.故选:A.9、小说《三体》中的“水滴”是三体文明派往太阳系的探测器,由强相互作用力材料制成,被形容为“像一滴圣母的眼泪”.小刘是《三体》的忠实读者,他利用几何作图软件画出了他心目中的水滴(如图),由线段AB ,AC 和优弧BC 围成,其中BC 连线竖直,AB ,AC 与圆弧相切,已知“水滴”的水平宽度与竖直高度之比为74,则cos∠BAC =( ).A .1725B .4√37C .45D .57答案:A分析:设优弧BC 的圆心为O ,半径为R ,连接OA ,OB ,OC ,如图,进而可得“水滴”的水平宽度为|OA |+R,竖直高度为2R ,根据题意求得OA =52R ,由切线的性质和正弦函数的定义可得sin∠BAO =25,结合圆的对称性和二倍角的余弦公式即可得出结果.设优弧BC 的圆心为O ,半径为R ,连接OA ,OB ,OC ,如下图所示易知“水滴”的水平宽度为|OA |+R ,竖直高度为2R ,则由题意知OA+R 2R=74,解得OA =52R ,AB 与圆弧相切于点B ,则OB ⊥AB ,∴在Rt △ABO 中,sin∠BAO =OB OA=R 52R=25,由对称性可知,∠BAO =∠CAO ,则∠BAC =2∠BAO ,∴cos∠BAC =1−2sin 2∠BAO =1−2×(25)2=1725, 故选:A .10、若角α的终边上一点的坐标为(1,−1),则cosα=( ) A .−1B .−√22C .√22D .1 答案:C分析:根据任意角三角函数的定义即可求解.∵角α的终边上一点的坐标为(1,−1),它与原点的距离r =√12+(−1)2=√2, ∴cosα=xr =√2=√22, 故选:C. 填空题11、已知cos (π6+α)=√33,则cos (5π6−α)=________.答案:−√33分析:本题可根据诱导公式得出结果.cos (5π6−α)=cos [π−(π6+α)]=−cos (π6+α)=−√33, 所以答案是:−√3312、若函数f(x)=sin(x +φ)+cosx 的最大值为2,则常数φ的一个取值为________. 答案:π2(2kπ+π2,k ∈Z 均可)分析:根据两角和的正弦公式以及辅助角公式即可求得f(x)=√cos 2φ+(sinφ+1)2sin(x +θ),可得√cos 2φ+(sinφ+1)2=2,即可解出.因为f(x)=cosφsinx +(sinφ+1)cosx =√cos 2φ+(sinφ+1)2sin(x +θ), 所以√cos 2φ+(sinφ+1)2=2,解得sinφ=1,故可取φ=π2.所以答案是:π2(2kπ+π2,k ∈Z 均可).小提示:本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.13、函数f(x)=sinx的图象向左平移π6个单位得到函数g(x)的图象,则下列函数g(x)的结论:①一条对称轴方程为x=7π6;②点(5π6,0)是对称中心;③在区间(0,π3)上为单调增函数;④函数g(x)在区间[π2,π]上的最小值为−12.其中所有正确的结论为______.(写出正确结论的序号)答案:②③④解析:先求得g(x),然后利用代入法判断①②,根据单调区间和最值的求法判断③④.函数f(x)=sinx的图象向左平移π6个单位得到函数g(x)=sin(x+π6),g(7π6)=sin(7π6+π6)=sin4π3=sin(π+π3)=−sinπ3=−√32≠±1,所以①错误.g(5π6)=sin(5π6+π6)=sinπ=0,所以②正确.由2kπ−π2≤x+π6≤2kπ+π2,解得2kπ−2π3≤x≤2kπ+π3,k∈Z.令k=0得−2π3≤x≤π3,所以g(x)在区间(0,π3)上为单调增函数,即③正确.由π2≤x≤π得2π3≤x+π6≤7π6,所以当x=π,x+π6=7π6时,g(x)有最小值为sin7π6=sin(π+π6)=−sinπ6=−12,所以④正确.所以答案是:②③④小提示:解决有关三角函数对称轴、对称中心的问题,可以考虑代入验证法.考查三角函数单调区间的问题,可以考虑整体代入法.解答题14、已知函数f(x)=2cos2ωx−1+2√3sinωxcosωx(0<ω<1),直线x=π3是函数f(x)的图象的一条对称轴. (1)求函数f(x)的单调递增区间;(2)已知函数y=g(x)的图象是由y=f(x)的图象上各点的横坐标伸长到原来的2倍,然后再向左平移2π3个单位长度得到的,若g(2α+π3)=65,α∈(0,π2),求sinα的值.答案:(1)[−2π3+2kπ,π3+2kπ],k∈Z;(2)4√3−310解析:(1)首先化简函数f(x)=2sin(2ωx+π6),再根据x=π3是函数的一条对称轴,代入求ω,再求函数的单调递增区间;(2)先根据函数图象变换得到g(x)=2cos12x,并代入g(2α+π3)=65后,得cos(α+π6)=35,再利用角的变换求sinα的值.(1)f(x)=cos2ωx+√3sin2ωx=2sin(2ωx+π6),当x =π3时,ω×2π3+π6=π2+kπ,k ∈Z ,得ω=12+3k 2,k ∈Z ,∵0<ω<1,∴ω=12,即f (x )=2sin (x +π6),令−π2+2kπ≤x +π6≤π2+2kπ, 解得:−2π3+2kπ≤x ≤π3+2kπ,k ∈Z ,函数的单调递增区间是[−2π3+2kπ,π3+2kπ],k ∈Z ;(2)g (x )=2sin [12(x +2π3)+π6]=2cos 12x , g (2α+π3)=2cos (α+π6)=65,得cos (α+π6)=35, ∵α∈(0,π2),α+π6∈(π6,2π3),sin (α+π6)=√1−cos 2(α+π6)=45, sinα=sin [(α+π6)−π6]=sin (α+π6)cos π6−cos (α+π6)sin π6=45×√32−35×12=4√3−310小提示:方法点睛:本题考查函数的图象变换,以及y =Asin (ωx +φ)的性质,属于中档题型,y =Asin (x +φ)的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是y =Asin (ωx +φ),若y =Asinωx 向右(或左)平移φ(φ>0)个单位,得到函数的解析式是y =Asin [ω(x −φ)]或y =Asin [ω(x +φ)].15、已知角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边经过函数f (x )=−3−a x−3(a >0且a ≠1)的定点M .(1)求sinα−2cosα的值;(2)求sin (π+α)+cos(π2+α)cos (2π+α)+sin (−α)−tan (5π+α)的值. 答案:(1)−2 (2)5221分析:(1)易知函数f (x )=−3−a x−3的定点M 的坐标为(3,−4),利用三角函数的定义则可求出sinα=−45,cosα=35则可求出答案;(2)利用诱导公式化简,再将sinα=−45,cosα=35,tanα=−43代入,即可得出答案. (1)∵函数f (x )=−3−a x−3(a >0且a ≠1)的定点M 的坐标为(3,−4), ∴角α的终边经过点M (3,−4),∴OM =√32+(−4)2=5(O 为坐标原点), 根据三角函数的定义可知sinα=−45,cosα=35,∴sinα−2cosα=−45−2×35=−2. (2)sin (π+α)+cos(π2+α)cos (2π+α)+sin (−α)−tan (5π+α)=−sinα−sinαcosα−sinα−tanα=−2sinαcosα−sinα−(−43) =−2×(−45)35−(−45)+43=87+43=5221.。
高一函数题型及解题技巧高一函数是高中数学中的重要内容,包括函数的定义、性质、图像、变化规律等,在考试中也经常出现。
下面是一些高一函数题型及解题技巧的介绍。
1.函数的定义题型函数的定义题型考察的是对函数的基本概念和定义的理解。
通常会给出一个函数的表达式或定义,然后要求判断函数的性质或回答问题。
解题时要仔细分析函数的定义,注意函数值的范围、定义域和值域等因素。
2.函数的性质题型函数的性质题型考察的是对函数性质的理解和运用。
通常会给出一个函数的表达式或定义,并且要求判断函数的奇偶性、单调性、周期等性质。
解题时要根据函数的性质进行分析,可以使用导数、导数的符号变化、函数图像等方法。
3.函数的图像题型函数的图像题型考察的是对函数图像的理解和分析能力。
通常会给出一个函数的表达式或定义,然后要求画出函数的图像或分析图像的特点。
解题时可以先分析函数的性质,然后根据性质画图,注意函数的变化规律和特殊点的位置。
4.函数的变化规律题型函数的变化规律题型考察的是对函数变化规律的掌握和分析能力。
通常会给出一个函数的表达式或定义,然后要求分析函数的变化规律或进行函数的运算。
解题时要注意函数的变化趋势、特点和规律,可以使用导数、极值、最值等方法。
解题技巧:1.熟练掌握函数的基本概念和定义,理解函数的性质和特点。
2.注意观察题目中给出的已知条件和要求,对问题进行合理的分析和解答。
3.尽量画出函数的图像,根据图像进行分析和判断。
首先确定函数的性质和特点,然后根据特点进行计算或推导。
4.注意函数的定义域和值域,合理利用函数的性质进行推导和计算。
5.灵活运用导数和基本函数的性质,尤其是对于求导和导数的符号变化。
6.注意函数的极值和最值,找出极值点和最值点的位置和数值。
以上是一些高一函数题型及解题技巧的介绍,希望对你有帮助。
在学习函数的过程中,要多做练习题,熟练掌握函数的概念、性质和画图方法,提高解题能力。
高中数学题型归纳及方法一、函数题型。
1. 求函数定义域题型。
题目:求函数y = (1)/(√(x 1))+ln(x + 2)的定义域。
解析:对于(1)/(√(x 1)),要使根式有意义,则根号下的数大于0,即x 1>0,解得x>1。
对于ln(x + 2),对数函数中真数大于0,即x+2>0,解得x > 2。
综合起来,函数的定义域为x>1。
2. 函数单调性判断题型。
题目:判断函数y = x^2-2x + 3在(-∞,1)上的单调性。
解析:对于二次函数y = ax^2+bx + c(a≠0),其对称轴为x =-(b)/(2a)。
在函数y = x^2-2x + 3中,a = 1,b=-2,对称轴x = 1。
因为a = 1>0,二次函数开口向上,所以在对称轴左侧(-∞,1)上函数单调递减。
二、三角函数题型。
3. 三角函数化简求值题型。
题目:化简sin(α+β)cosβ-cos(α +β)sinβ并求值(已知α=(π)/(3))。
解析:根据两角差的正弦公式sin(A B)=sin Acos B-cos Asin B,这里A=α+β,B = β,所以sin(α+β)cosβ-cos(α+β)sinβ=sin(α+β-β)=sinα。
当α=(π)/(3)时,sinα=(√(3))/(2)。
4. 三角函数图象平移题型。
题目:将函数y=sin x的图象向左平移(π)/(3)个单位,再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),求得到的函数解析式。
解析:将y = sin x的图象向左平移(π)/(3)个单位,根据“左加右减”原则,得到y=sin(x+(π)/(3))的图象。
再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则x的系数变为原来的(1)/(2),得到y=sin((1)/(2)x+(π)/(3))。
三、数列题型。
5. 等差数列通项公式求题型。
题目:已知等差数列{a_n}中,a_1=2,公差d = 3,求其通项公式a_n。
高中数学求函数解析式解题方法大全及配套练习一、定义法:根据函数的定义求解析式用定义法。
【例1】【例2】【例3】【例4】二、待定系数法:(主要用于二次函数)已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式。
它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。
其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。
【例1】【解析】【例2】已知二次函数f(x)满足f(0)=0,f(x+1)= f(x)+2x+8,求f(x)的解析式.解:设二次函数f(x)= ax2+bx+c,则f(0)= c= 0 ①f(x+1)(x+1)= ax2+(2a+b)x+a+b②由f(x+1)= f(x)+2x+8 与①、②得解得故f(x)= x2+7x.【例3】三、换元(或代换)法:道所求函数的类型,且函数的变量易于用另一个变量表示的问题。
使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。
如:已知复合函数f [g(x)]的解析式,求原函数f(x)的解析式,把g(x)看成一个整体t,进行换元,从而求出f(x)的方法。
实施换元后,应注意新变量的取值围,即为函数的定义域.【例1】【解析】【例2】【例3】【例4】(1)在(1(2)1(3)【例5】(1(2)由【例6】四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法.【例1】解则解得,上,(五)配凑法【例1】:2x当然,上例也可直接使用换元法即由此可知,求函数解析式时,可以用配凑法来解决的,有些也可直接用换元法来求解。
【例2】:分析:此题直接用换元法比较繁锁,而且不易求出来,但用配凑法比较方便。
实质上,配凑法也缊含换元的思想,只是不是首先换元,而是先把函数表达式配凑成用此复合函数的函数来表示出来,在通过整体换元。
和换元法一样,最后结果要注明定义域。
高中函数题型及解题方法1. 分析函数的解析式:给定一个函数,要求分析该函数的解析式,即找出函数的表达式形式。
解题方法:通过对函数给定的条件进行分析,利用对应的函数性质和已知信息,推导出函数的解析式。
2. 求函数的定义域:给定一个函数,要求确定该函数的定义域,即使该函数在哪个区间或值集上有意义。
解题方法:根据函数的定义,找出对函数的约束条件,推导出函数的定义域。
3. 求函数的值域:给定一个函数,要求确定该函数的值域,即使该函数在实数范围内能够取到的所有值。
解题方法:通过对函数的性质进行分析,找到函数的最大值和最小值,推导出函数的值域范围。
4. 求函数的导数:给定一个函数,要求求出该函数的导数,即该函数的变化率。
解题方法:使用导数的定义或导数的性质进行求解,并化简表达式。
5. 求函数的极值点:给定一个函数,要求确定该函数的极值点,即函数在哪些点上达到最大值或最小值。
解题方法:求出函数的导数,令导数为0,解方程得到函数的极值点。
6. 求函数的最值:给定一个函数,要求确定该函数的最大值或最小值。
解题方法:找到函数的极值点,并比较极值点和区间端点的函数值,确定函数的最值。
7. 求函数的反函数:给定一个函数,要求确定该函数的反函数,即使得该函数复合反函数为恒等函数的逆运算。
解题方法:通过函数的定义和性质,进行变量的代换和方程的转换,求解反函数。
8. 求函数的零点:给定一个函数,要求确定该函数的零点,即函数取到0的点。
解题方法:将函数的表达式设置为0,解方程得到函数的零点。
9. 求函数的不等式解集:给定一个函数,要求确定该函数的不等式解集,即满足给定不等式的函数取值范围。
解题方法:对不等式进行转化和化简,然后根据函数和不等式的性质,确定函数的解集。
10. 求函数的复合函数:给定两个函数,要求确定它们的复合函数,即通过一个函数对另一个函数进行运算。
解题方法:将一个函数的表达式代入另一个函数的表达式中,得到复合函数的表达式。
三角函数的题型和方法一、思想方法1、三角函数恒等变形的基本策略。
( 1)常值代换:特别是用“ 1”的代换,如 1=cos 2θ +sin 2 θ=tanx · cotx=tan45 °等。
( 2)项的分拆与角的配凑。
如分拆项: sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α =(α + β)-β,β =-等。
2 2( 3)降次与升次。
即倍角公式降次与半角公式升次。
( 4)化弦(切)法。
将三角函数利用同角三角函数基本关系化成弦(切)。
( 5)引入协助角。
asin θ +bcos θ = a 2 b 2 sin(θ + ),这里协助角 所在象限由 a 、b 的符号确立,角的值由 tan = b确立。
a( 6)全能代换法。
巧用全能公式可将三角函数化成 tan的有理式。
22、证明三角等式的思路和方法。
( 1)思路:利用三角公式进行假名,化角,改变运算结构,使等式两边化为同一形式。
( 2)证明方法:综合法、剖析法、比较法、代换法、相消法、数学概括法。
3、证明三角不等式的方法:比较法、配方法、反证法、剖析法,利用函数的单一性,利用正、余弦函数的有界性,利用单位圆三角函数线及鉴别法等。
4、解答三角高考题的策略。
( 1)发现差别:察看角、函数运算间的差别,即进行所谓的“差别剖析”。
( 2)找寻联系:运用有关公式,找出差别之间的内在联系。
( 3)合理转变:选择适合的公式,促进差别的转变。
二、注意事项对于三角函数进行恒等变形,是三角知识的综合应用,其题目种类多样,变化仿佛复杂,办理这种问题,注意以下几个方面:1、三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值。
2、三角变换的一般思想与常用方法。
注意角的关系的研究,既注意到和、差、倍、半的相对性,如1() ( ) 22 .也要注意题目中所给的各角之间的关系。
(名师选题)部编版高中数学必修一第三章函数的概念与性质考点题型与解题方法单选题1、下列函数中,在区间(1,+∞)上为增函数的是( )A .y =−3x +1B .y =2xC .y =x 2−4x +5D .y =|x −1|+2答案:D分析:根据一次函数、反比例函数和二次函数单调性直接判断可得结果.对于A ,y =−3x +1为R 上的减函数,A 错误;对于B ,y =2x 在(−∞,0),(0,+∞)上单调递减,B 错误;对于C ,y =x 2−4x +5在(−∞,2)上单调递减,在(2,+∞)上单调递增,C 错误;对于D ,y =|x −1|+2={x +1,x ≥13−x,x <1,则y =|x −1|+2在(1,+∞)上为增函数,D 正确. 故选:D.2、已知f(x)是一次函数,2f(2)−3f(1)=5,2f (0)−f (−1)=−1,则f(x)=( )A .3x +2B .3x −2C .2x +3D .2x −3答案:D分析:设出函数f(x)的解析式,再根据给定条件列出方程组,求解作答.依题意,设f(x)=kx +b,k ≠0,则有{2(2k +b)−3(k +b)=52b −(−k +b)=−1,解得k =2,b =−3, 所以f(x)=2x −3.故选:D3、若函数f (x +1x )=x 2+1x 2,且f (m )=4,则实数m 的值为( )A .√6B .√6或−√6C .−√6D .3答案:B分析:令x +1x =t ,配凑可得f (t )=t 2−2,再根据f (m )=4求解即可令x+1x =t(t≥2或t≤−2),x2+1x2=(x+1x)2−2=t2−2,∴f(t)=t2−2,f(m)=m2−2=4,∴m=±√6.故选;B4、已知函数f(1x+1)=2x+3.则f(2)的值为()A.6B.5C.4D.3答案:B分析:根据题意,令1x +1=2可得x的值,将x的值代入f(1x+1)=2x+3,即可得答案.解:根据题意,函数f(1x +1)=2x+3,若1x+1=2,解可得x=1,将x=1代入f(1x+1)=2x+3,可得f(2)=5,故选:B.5、定义在R上的偶函数f(x)在[0,+∞)上单调递增,且f(2)=0,则不等式x⋅f(x)>0的解集为()A.(−∞,−2)∪(2,+∞)B.(−2,0)∪(0,2)C.(−2,0)∪(2,+∞)D.(−∞,−2)∪(0,2)答案:C分析:结合函数的单调性与奇偶性解不等式即可.义在R上的偶函数f(x)在[0,+∞)上单调递增,且f(2)=0,所以f(x)在(−∞,0)上单调递减,且f(−2)=0,x⋅f(x)>0⇒{x>0f(x)>0或{x<0f(x)<0,故x>2或−2<x<0,故选:C6、已知f(2x+1)=4x2+3,则f(x)=().A.x2−2x+4B.x2+2x C.x2−2x−1D.x2+2x+3答案:A分析:利用配凑法直接得出函数的解析式.因为f (2x +1)=4x 2+3=(2x +1)2−2(2x +1)+4,所以f (x )=x 2−2x +4.故选:A7、设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f(x)=ax 2+b .若f (0)+f (3)=6,则f (92)=( )A .−94B .−32C .74D .52 答案:D分析:通过f (x +1)是奇函数和f (x +2)是偶函数条件,可以确定出函数解析式f (x )=−2x 2+2,进而利用定义或周期性结论,即可得到答案.[方法一]:因为f (x +1)是奇函数,所以f (−x +1)=−f (x +1)①;因为f (x +2)是偶函数,所以f (x +2)=f (−x +2)②.令x =1,由①得:f (0)=−f (2)=−(4a +b ),由②得:f (3)=f (1)=a +b ,因为f (0)+f (3)=6,所以−(4a +b )+a +b =6⇒a =−2,令x =0,由①得:f (1)=−f (1)⇒f (1)=0⇒b =2,所以f (x )=−2x 2+2.思路一:从定义入手.f (92)=f (52+2)=f (−52+2)=f (−12) f (−12)=f (−32+1)=−f (32+1)=−f (52) −f (52)=−f (12+2)=−f (−12+2)=−f (32) 所以f (92)=−f (32)=52.[方法二]:因为f (x +1)是奇函数,所以f (−x +1)=−f (x +1)①;因为f (x +2)是偶函数,所以f (x +2)=f (−x +2)②.令x =1,由①得:f (0)=−f (2)=−(4a +b ),由②得:f (3)=f (1)=a +b ,因为f (0)+f (3)=6,所以−(4a +b )+a +b =6⇒a =−2,令x =0,由①得:f (1)=−f (1)⇒f (1)=0⇒b =2,所以f (x )=−2x 2+2.思路二:从周期性入手由两个对称性可知,函数f (x )的周期T =4.所以f (92)=f (12)=−f (32)=52.故选:D .小提示:在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.8、已知函数f(x)是定义在R 上的奇函数,且x >1时,满足f(2−x)=−f(x),当x ∈(0,1]时,f(x)=x 2,则f(−2021)+f(2022)=( )A .−4B .4C .−1D .1答案:C分析:由已知条件可得x >1时f(x +2)=f(x),然后利用f(−2021)+f(2022)= −f(1)+f(0)求解即可. 因为函数f(x)是定义在R 上的奇函数,且x >1时,满足f(2−x)=−f(x),所以f(0)=0,f(2−x)=−f(x)=f(−x),即可得x >1时f(x +2)=f(x),因为当x ∈(0,1]时,f(x)=x 2,所以f(−2021)+f(2022)=−f(2×1010+1)+f(2×1011+0)=−f(1)+f(0)=−1+0=−1,故选:C多选题9、已知函数f (x )的定义域是(0,+∞),且f (xy )=f (x )+f (y ),当x >1时,f (x )<0,f (2)=−1,则下列说法正确的是( )A .f (1)=0B .函数f (x )在(0,+∞)上是减函数C .f (12022)+f (12021)+⋅⋅⋅+f (13)+f (12)+f (2)+f (3)+⋅⋅⋅+f (2021)+f (2022)=2022D .不等式f (1x )−f (x −3)≥2的解集为[4,+∞)答案:ABD分析:利用赋值法求得f (1)=0,判断A ;根据函数的单调性定义结合抽象函数的性质,可判断函数的单调性,判断B;利用f (xy )=f (x )+f (y ),可求得C 中式子的值,判断C ;求出f (14)=f (12)+f (12)=2,将f (1x )−f (x −3)≥2转化为f (1x )+f (1x−3)≥f (14),即可解不等式组求出其解集,判断D.对于A ,令x =y =1 ,得f (1)=f (1)+f (1)=2f (1),所以f (1)=0,故A 正确;对于B ,令y =1x >0,得f (1)=f (x )+f (1x )=0,所以f (1x )=−f (x ),任取x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 2)−f (x 1)=f (x 2)+f (1x 1)=f (x2x 1), 因为x 2x 1>1,所以f (x2x 1)<0,所以f (x 2)<f (x 1), 所以f (x )在(0,+∞)上是减函数,故B 正确;对于C ,f (12022)+f (12021)+⋅⋅⋅+f (13)+f (12)+f (2)+f (3)+⋅⋅⋅+f (2021)+f (2022) =f (12022×2022)+f (12021×2021)+⋅⋅⋅+f (13×3)+f (12×2)=f (1)+f (1)+⋅⋅⋅+f (1)+f (1)=0,故C 错误;对于D ,因为f (2)=−1,且f (1x )=−f (x ),所以f (12)=−f (2)=1,所以f (14)=f (12)+f (12)=2,所以f (1x )−f (x −3)≥2等价于f (1x )+f (1x−3)≥f (14), 又f (x )在(0,+∞)上是减函数,且f (xy )=f (x )+f (y ),所以{ 1x (x−3)≤141x >01x−3>0, 解得x ≥4,故D 正确,故选:ABD .10、定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则下列说法正确的是( )A .f (0)=0B .f (x )为奇函数C .f (x )在区间[m,n ]上有最大值f (n )D .f (x −1)+f (x 2−1)>0的解集为{x |−2<x <1 }答案:ABD分析:令x =y =0可判断A 选项;令y =−x ,可得f (x )+f (−x )=f (0)=0,得到f (−x )=−f (x )可判断B 选项;任取x 1,x 2∈R ,且x 1<x 2,则x 1−x 2<0,f (x 1−x 2)>0,根据单调性的定义得到函数f (x )在R 上的单调性,可判断C 选项;由f (x −1)+f (x 2−1)>0可得f (x 2−1)>−f (x −1)=f (1−x ),结合函数f (x )在R 上的单调性可判断D 选项.对于A 选项,在f (x +y )=f (x )+f (y )中,令x =y =0,可得f (0)=2f (0),解得f (0)=0,A 选项正确; 对于B 选项,由于函数f (x )的定义域为R ,在f (x +y )=f (x )+f (y )中,令y =−x ,可得f (x )+f (−x )=f (0)=0,所以f (−x )=−f (x ),则函数f (x )为奇函数,B 选项正确;对于C 选项,任取x 1,x 2∈R ,且x 1<x 2,则x 1−x 2<0,f (x 1−x 2)>0,所以f (x 1)−f (x 2)=f (x 1)+f (−x 2)=f (x 1−x 2)>0,所以f (x 1)>f (x 2),则函数f (x )在R 上为减函数,所以f (x )在区间[m,n ]上有最小值f (n ),C 选项错误;对于D 选项,由f (x −1)+f (x 2−1)>0可得f (x 2−1)>−f (x −1)=f (1−x ),又函数f (x )在R 上为减函数,则x 2−1<1−x ,整理得x 2+x −2<0,解得−2<x <1,D 选项正确.故选:ABD .11、已知函数f(x)的定义域为R ,且f(x +1)为奇函数,f(x +2)为偶函数,且对任意的x 1,x 2∈(1,2),且x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2>0,则下列结论正确的是( )A .f(x)是奇函数B .f(1023)=0C .f(x)的图像关于(1,0)对称D .f(−74)>f(198)答案:BCD分析:根据题设有f(x)=−f(2−x)、f(−x)=f(x +4),进而可得f(x)=f(x +4) =f(−x),即可判断f(x)的对称性、奇偶性,再由周期性、奇偶性求f(1023),最后结合f(x)在(1,2)上的单调性及对称性和周期性判断(2,4)上的单调性,比较函数值大小.由题设,f(−x+1)=−f(x+1),即f(x)=−f(2−x),则f(x)关于(1,0)对称,C正确;f(−x+2)=f(x+2),即f(−x)=f(x+4),f(x)关于x=2对称,所以f(x)=−f(x+2)=f(x+4),即f(x)周期为4,且f(x)=f(−x),即f(x)为偶函数,A错误;则f(1023)=f(4×256−1)=f(−1)=f(1)=0,B正确;又x1,x2∈(1,2),且x1≠x2,都有f(x1)−f(x2)x1−x2>0,即f(x)在(1,2)上递增,综上,f(x)在(0,1)上递增,则(2,4)上递减,故f(−74)=f(74)>f(198),D正确.故选:BCD填空题12、函数y=√3−x−√2x+4的值域为_______________.答案:[−√10,√5]分析:根据函数的单调性确定最值即可.解:因为{3−x≥02x+4≥0所以−2≤x≤3,所以此函数的定义域为[−2,3],又因为y=√3−x−√2x+4是减函数,当x=−2时y=√3−x−√2x+4取得最大值√5,当x=3时y=√3−x−√2x+4取得最小值−√10,所以值域为[−√10,√5]所以答案是:[−√10,√5].13、幂函数y=(m2−m+1)x m的图象与y轴没有交点,则m=___________. 答案:0分析:根据幂函数的定义求出m,在验证,求解即可根据幂函数的定义得m2−m+1=1,解得m=1或m=0;当m=1时,y=x,图象与y轴有交点,不满足题意;当m=0时,y=x0,图象与y轴没有交点,满足题意;综上,m=0,所以答案是:0。
高中函数定义域题型及解题方法高中数学中,函数是一个重要的概念,而定义域则是函数的重要属性之一。
在高考数学中,定义域的求解也是一个重要的题型。
本文将介绍高中函数定义域的题型及解题方法。
一、定义域的概念定义域是指函数的取值范围,即函数的自变量可能取值的集合。
例如,函数 f(x) = x^2 + 1 的定义域是 R,因为 x 的取值可以任意取实数,且 x 的取值不影响函数的值。
二、常见定义域的题型1. 直接求解定义域有些函数的定义域是可以直接求解的,例如函数 f(x) = x^2 + 1 的定义域是 R,因为 x 的取值可以任意取实数,且 x 的取值不影响函数的值。
2. 求解函数的定义域在求解函数的定义域时,我们需要根据函数的符号和函数的表达式来确定自变量的取值范围。
例如,函数 g(x) = x^2 - 2x + 1 的定义域是 x 不等于 1。
3. 求解函数的值域有些函数的定义域和值域是一致的,例如函数 f(x) = x^2 + 1 的值域是 R。
而有些函数的定义域和值域是不同的,例如函数 g(x) = x^2 - 2x + 1 的定义域是 x 不等于 1,但函数的值域是 [-1,1]。
4. 求函数的定义域或值域在求解函数的定义域或值域时,我们需要根据函数的符号、表达式和定义域来确定自变量的取值范围。
例如,函数 h(x) = x^2 + 1 的定义域是 x 不等于 0,但函数的值域是 [1,+∞),因为 x 的取值可以任意增大。
三、解题方法1. 观察函数的符号和表达式,确定自变量的取值范围。
2. 根据函数的定义域和值域,结合函数的符号和表达式,求解定义域或值域。
3. 熟练掌握常见的函数定义域的求解方法,例如求解函数的定义域需要根据函数的符号和表达式来确定自变量的取值范围。
4. 学会分析函数的性质,例如奇偶性、单调性等,从而帮助求解定义域。
高中数学中,函数是一个重要的概念,而定义域则是函数的重要属性之一。
高中函数值域的7类题型和16种方法函数值域是指函数输出值的集合。
在高中数学中,我们常常遇到一些关于函数值域的问题。
下面将介绍高中函数值域的7类题型以及解决这些问题的16种方法。
1. 函数值域的确定式题:给出一个函数的解析式,要求确定函数的值域。
解决方法:- 通过分析函数的定义域和性质推导函数的值域。
- 使用函数的图像来确定函数的值域。
- 借助导数和极值的概念来确定函数的值域。
2. 函数值域的确定性问题:给出一个函数的图像,要求确定函数的值域。
解决方法:- 通过观察图像的特点,确定函数的最大值和最小值。
- 借助极值和区间的概念,确定函数的值域。
3. 函数值域的不等式问题:给出一个函数的不等式解析式,要求确定函数的值域。
解决方法:- 分析给定不等式的解集,确定函数的值域。
- 将不等式转化为等式,解出方程,确定函数的值域。
4. 函数值域的集合表示问题:给出一个函数的值域,要求将其表示为集合。
解决方法:- 分析函数的定义域和性质,将函数的值域表示为集合。
- 借助函数的图像来表示函数的值域。
5. 函数值域的推导题:给出一个函数的值域,要求推导出函数的解析式。
解决方法:- 分析给定的值域,推导出函数的定义域和性质,再根据推导出的定义域和性质写出函数的解析式。
6. 函数值域的综合题:综合运用多种方法,确定函数的值域。
解决方法:- 根据题目要求,运用不同的方法来确定函数的值域。
- 分析题目中给出的条件,结合函数的性质来确定函数的值域。
7. 函数值域的实际问题:将函数值域与实际问题联系起来,解决实际问题。
解决方法:- 将实际问题转化为函数模型,通过确定函数的值域来解决实际问题。
- 根据实际问题给出的条件和约束,运用适当的方法来确定函数的值域,作为问题的解答。
以上是高中函数值域的7类题型和16种方法。
对于不同类型的问题,我们可以根据题目要求和给定条件,选择合适的方法来求解函数的值域。
通过练习这些题型,我们可以提高对函数值域的理解和分析能力。
高一函数题型及解题技巧函数是数学中非常重要的一个概念,高中阶段学习的函数包括常用基本函数、一次函数、二次函数、指数函数、对数函数、幂函数等。
掌握函数的概念和特点可以帮助学生更好地理解数学知识,并且在解题过程中能够更加灵活地运用函数的性质和特点。
接下来就让我们来了解一下高一阶段常见的函数题型及其解题技巧。
一次函数一次函数是一种最为基础也最为常见的函数类型,它的一般形式为y = kx + b,其中k和b是常数。
在一次函数的解题过程中,常见的题型有求解函数的值、求解函数的解析式、函数的图像、函数的特性等。
求解函数的值:对于给定的一次函数y = kx + b,当给定x的值时,我们需要计算出对应的y的值。
这样的题目主要考察对一次函数的计算能力,需要注意根据函数的解析式直接代入x的值并计算得出结果。
求解函数的解析式:有时候我们需要根据已知的函数图像或者函数的性质来求解一次函数的解析式。
这种题型需要根据已知条件列方程组,然后解方程求解函数的解析式。
函数的图像:对于给定的一次函数,有时我们需要根据函数的解析式画出函数的图像。
这里需要注意一次函数的图像是一条直线,根据函数的解析式可以确定其斜率和截距,并且根据斜率和截距可以画出函数的图像。
函数的特性:一次函数的斜率和截距是其最为重要的特性,根据斜率和截距可以确定函数的增减性、奇偶性、单调性等特性。
在解题过程中需要根据函数的特性来分析问题并求解答案。
二次函数二次函数是另外一种比较常见的函数类型,它的一般形式为y = ax^2 + bx + c,其中a、b和c是常数。
在解题过程中,常见的题型有求解函数的值、求解函数的解析式、函数的图像、函数的特性等。
求解函数的值:对于给定的二次函数y = ax^2 + bx + c,当给定x的值时,我们需要计算出对应的y的值。
这需要我们将x的值代入函数的解析式中,并通过计算得出对应的y的值。
求解函数的解析式:有时候我们需要根据已知的函数图像或者函数的性质来求解二次函数的解析式。
高中数学函数题的解题技能高中数学中的函数是非常难的,很多同学在函数部分都会丢分,那么高中数学函数题型及解题技能是什么?下面是作者为大家整理的关于高中数学函数题的解题技能,期望对您有所帮助!高中数学函数解题思路方法一视察法1.视察函数中的特别函数;2.利用这些特别函数的有界性,结合不等式推导出函数的值域方法二分离常数法1.视察函数类型,型如;2.对函数变形成情势;3.求出函数在定义域范畴内的值域,进而求函数的值域方法三配方法1.将二次函数配方成;2.根据二次函数的图像和性质即可求出函数的值域方法四反函数法1.求已知函数的反函数;2.求反函数的定义域;3.利用反函数的定义域是原函数的值域的关系即可求出原函数的值域方法五换元法1.第一步视察函数解析式的情势,函数变量较多且相互关联;2.另新元代换整体,得一新函数,求出新函数的值域即为原函数的值域数学函数题解题技能1.函数值域常见求法和解题技能函数的值域与最值是两个不同的概念,一样说来,求出了一个函数的最值,未必能肯定该函数的值域,反之,一个函数的值域被肯定,这个函数也未必有最大值或最小值.但是,在许多常见的函数中,函数的值域与最值的求法是相通的、类似的.关于求函数值域与最值的方法也是多种多样的,但是有许多方法是类似的,归纳起来常用的方法有:视察法、配方法、换元法、反函数法、判别式法、不等式法、利用函数的单调性、利用三角函数的有界性、数形结合法等,在挑选方法时,要注意所给函数表达式的结构,不同的结构挑选不同的解法。
2.函数奇偶性的判定方法及解题策略肯定函数的奇偶性,一样先考核函数的定义域是否关于原点对称,然后判定与的关系,常用方法有:①利用奇偶性定义判定;②利用图象进行判定,若函数的图象关于原点对称则函数为奇函数,若函数的图象关于轴对称则函数为偶函数;③利用奇偶性的一些常见结论:奇奇奇,偶偶偶,奇奇偶,偶偶偶,偶奇奇,奇奇偶,偶偶偶,奇偶奇,偶奇奇;④对于偶函数可利用,这样可以免对自变量的繁琐的分类讨论。
函数的单调性、奇偶性、对称性、周期性10大题型命题趋势函数的性质是函数学习中非常重要的内容,对于选择题和填空题部分,重点考查基本初等函数的单调性,利用性质判断函数单调性及求最值、解不等式、求参数范围等,难度较小,属于基础题;对于解答题部分,一般与导数结合,考查难度较大。
满分技巧一、单调性定义的等价形式: 1、函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x f x f x x .2、函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x f x f x x .二、判断函数奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x −与()f x ±之一是否相等.2、验证法:在判断()f x −与()f x 的关系时,只需验证()f x −()f x ±=0及()1()f x f x −=±是否成立. 3、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.4、性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.5、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x −与()f x 的关系.首先要特别注意x 与x −的范围,然后将它代入相应段的函数表达式中,()f x 与()f x −对应不同的表达式,而它们的结果按奇偶函数的定义进行比较. 三、常见奇、偶函数的类型1、()x x f x a a −=+(00a a >≠且)为偶函数;2、()x x f x a a −=−(00a a >≠且)为奇函数;3、()2211x x x x x xa a a f x a a a −−−−==++(00a a >≠且)为奇函数; 4、()log ab xf x b x−=+(00,0a a b >≠≠且)为奇函数;5、())log a f x x =±(00a a >≠且)为奇函数;6、()f x ax b ax b ++−为偶函数;7、()f x ax b ax b +−−为奇函数; 四、函数的周期性与对称性常用结论1、函数的周期性的常用结论(a 是不为0的常数)(1)若()()+=f x a f x ,则=T a ; (2)若()()+=−f x a f x a ,则2=T a ; (3)若()()+=−f x a f x ,则2=T a ; (4)若()()1+=f x a f x ,则2=T a ; (5)若()()1+=−f x a f x ,则2=T a ; (6)若()()+=+f x a f x b ,则=−T a b (≠a b ); 2、函数对称性的常用结论(1)若()()+=−f a x f a x ,则函数图象关于=x a 对称;(2)若()()2=−f x f a x ,则函数图象关于=x a 对称; (3)若()()+=−f a x f b x ,则函数图象关于2+=a bx 对称; (4)若()()22−=−f a x b f x ,则函数图象关于(),a b 对称; 3、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=−f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=−f x f x ,函数为偶函数,即偶函数为特殊的线对称函数; (2)若函数()f x 满足()()22−=−f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()−=−f x f x ,函数为奇函数,即奇函数为特殊的点对称函数; 4、函数对称性与周期性的关系(1)若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2−b a ; (2)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2−b a ; (3)若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4−b a . 5、函数的奇偶性、周期性、对称性的关系(1)①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a . (2)①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a . (3)①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a . (4)①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a .其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。
高中数学必修一第四章指数函数与对数函数考点题型与解题方法单选题1、若2x =3,2y =4,则2x+y 的值为( ) A .7B .10C .12D .34 答案:C分析:根据指数幂的运算性质直接进行求解即可. 因为2x =3,2y =4,所以2x+y =2x ⋅2y =3×4=12, 故选:C2、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53 答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a=5,b =log 83=13log 23,即23b=3,所以4a−3b=4a 43b=(2a )2(23b )2=5232=259.故选:C.3、已知实数a,b ∈(1,+∞),且log 2a +log b 3=log 2b +log a 2,则( ) A .a <√b <b B .√b <a <b C .b <√a <a D .√a <b <a 答案:B分析:对log 2a −log a 2<log 2b −log b 2,利用换底公式等价变形,得log 2a −1log 2a<log 2b −1log 2b,结合y =x −1x 的单调性判断b <a ,同理利用换底公式得log 2a −1log 2a<log 3b −1log 3b,即log 2a >log 3b ,再根据对数运算性质得log 2a >log 2√b ,结合y =log 2x 单调性, a >√b ,继而得解. 由log 2a +log b 3=log 2b +log a 2,变形可知log 2a −log a 2<log 2b −log b 2, 利用换底公式等价变形,得log 2a −1log2a<log 2b −1log 2b , 由函数f (x )=x −1x 在(0,+∞)上单调递增知,log 2a <log 2b ,即a <b ,排除C ,D ;其次,因为log 2b >log 3b ,得log 2a +log b 3>log 3b +log a 2,即log 2a −log a 2>log 3b −log b 3,同样利用f (x )=x −1x的单调性知,log 2a >log 3b ,又因为log 3b =log √3√b >log 2√b ,得log 2a >log 2√b ,即a >√b ,所以√b <a <b . 故选:B.4、设函数f(x)=ln|2x +1|−ln|2x −1|,则f (x )( )A .是偶函数,且在(12,+∞)单调递增B .是奇函数,且在(−12,12)单调递减 C .是偶函数,且在(−∞,−12)单调递增D .是奇函数,且在(−∞,−12)单调递减答案:D分析:根据奇偶性的定义可判断出f (x )为奇函数,排除AC ;当x ∈(−12,12)时,利用函数单调性的性质可判断出f (x )单调递增,排除B ;当x ∈(−∞,−12)时,利用复合函数单调性可判断出f (x )单调递减,从而得到结果.由f (x )=ln |2x +1|−ln |2x −1|得f (x )定义域为{x |x ≠±12},关于坐标原点对称,又f (−x )=ln |1−2x |−ln |−2x −1|=ln |2x −1|−ln |2x +1|=−f (x ), ∴f (x )为定义域上的奇函数,可排除AC ;当x ∈(−12,12)时,f (x )=ln (2x +1)−ln (1−2x ),∵y =ln (2x +1)在(−12,12)上单调递增,y =ln (1−2x )在(−12,12)上单调递减, ∴f (x )在(−12,12)上单调递增,排除B ;当x ∈(−∞,−12)时,f (x )=ln (−2x −1)−ln (1−2x )=ln 2x+12x−1=ln (1+22x−1), ∵μ=1+22x−1在(−∞,−12)上单调递减,f (μ)=lnμ在定义域内单调递增,根据复合函数单调性可知:f (x )在(−∞,−12)上单调递减,D 正确.故选:D.小提示:本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据f (−x )与f (x )的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.5、已知函数f(x)={a x ,x <0(a −2)x +3a,x ≥0,满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,则a 的取值范围是( )A .a ∈(0,1)B .a ∈[34,1)C .a ∈(0,13]D .a ∈[34,2)答案:C分析:根据条件知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ≤1,求a 的范围即可.∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R 上是减函数,∴{0<a <1a −2<0(a −2)×0+3a ≤a 0,解得0<a ≤13, ∴a 的取值范围是(0,13]. 故选:C .6、2021年10月16日,搭载神舟十三号载人飞船的长征二号F 遥十三运载火箭,在酒泉卫星发射中心成功发射升空,载人飞船精准进入预定轨道,顺利将3名宇航员送入太空,发射取得圆满成功.已知在不考虑空气阻力和地球引力的理想状态下,可以用公式v =v 0⋅ln Mm 计算火箭的最大速度v(m /s ),其中v 0(m /s )是喷流相对速度,m(kg )是火箭(除推进剂外)的质量,M(kg )是推进剂与火箭质量的总和,Mm 称为“总质比”.若某型火箭的喷流相对速度为1000m /s ,当总质比为625时,该型火箭的最大速度约为( )(附:lge ≈0.434,lg2≈0.301)A .5790m /sB .6219m /sC .6442m /sD .6689m /s 答案:C分析:根据对数的换底公式运算可得结果. v =v 0 ln Mm =1000×ln625=1000×4lg5lg e=1000×4(1−lg2)lg e≈6442m/s .故选:C .7、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg 101≈2.0043,lg 99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg 100lg 1.010.99=lg 100lg 10199=2lg 101−lg 99 ≈22.0043−1.9956=20.0087≈230.故选:D . 8、已知函数f(x)=11+2x,则对任意实数x ,有( )A .f(−x)+f(x)=0B .f(−x)−f(x)=0C .f(−x)+f(x)=1D .f(−x)−f(x)=13 答案:C分析:直接代入计算,注意通分不要计算错误.f (−x )+f (x )=11+2−x +11+2x =2x1+2x +11+2x =1,故A 错误,C 正确; f (−x )−f (x )=11+2−x−11+2x =2x1+2x −11+2x =2x −12x +1=1−22x +1,不是常数,故BD 错误; 故选:C . 多选题9、已知函数f (x )=lg (x 2+ax −a −1),下列结论中正确的是( ) A .当a =0时,f (x )的定义域为(−∞,−1)∪(1,+∞) B .f (x )一定有最小值C .当a =0时,f (x )的值域为RD .若f (x )在区间[2,+∞)上单调递增,则实数a 的取值范围是{a |a ≥−4} 答案:AC分析:A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.对于A,当a=0时,f(x)=lg(x2−1),令x2−1>0,解得x<−1或x>1,则f(x)的定义域为(−∞,−1)∪(1,+∞),故A正确;对于B、C,当a=0时,f(x)=lg(x2−1)的值域为R,无最小值,故B错误,C正确;对于D,若f(x)在区间[2,+∞)上单调递增,则y=x2+ax−a−1在[2,+∞)上单调递增,且当x=2时,y> 0,则{−a2≤24+2a−a−1>0,解得a>−3,故D错误.故选:AC.10、已知函数f(x)=3x−3−x,则()A.f(x)的值域为RB.f(x)是R上的增函数C.f(x)是R上的奇函数D.f(x)有最大值答案:ABC分析:g(x)=3x∈(0,+∞),而ℎ(x)=−3−x∈(−∞,0)得到f(x)的值域为R,判断A正确,D错误,根据增函数加增函数还是增函数进行判断B选项,根据函数奇偶性定义判断得到C选项.g(x)=3x∈(0,+∞),而ℎ(x)=−3−x∈(−∞,0),所以f(x)=3x−3−x值域为R,A正确,D错误;因为g(x)=3x是递增函数,而ℎ(x)=−3−x是递增函数,所以f(x)=3x−3−x是递增函数,B正确;因为定义域为R,且f(−x)=3−x−3x=−f(x),所以f(x)是R上的奇函数,C正确;故选:ABC11、函数f(x)=2x+a2x(a∈R)的图象可能为()A.B.C.D.答案:ABD解析:根据函数解析式的形式,以及图象的特征,合理给a赋值,判断选项.当a=0时,f(x)=2x,图象A满足;当a=1时,f(x)=2x+1,f(0)=2,且f(−x)=f(x),此时函数是偶函数,关于y轴对称,图象B满足;2x,f(0)=0,且f(−x)=−f(x),此时函数是奇函数,关于原点对称,图象D满当a=−1时,f(x)=2x−12x足;图象C过点(0,1),此时a=0,故C不成立.故选:ABD小提示:思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 填空题12、里氏震级M 的计算公式为:M =lgA −lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为_________级. 答案:6分析:将A =1000,A 0=0.001代入等式M =lgA −lgA 0计算即可得解.将A =1000,A 0=0.001代入等式M =lgA −lgA 0得M =lg1000−lg0.001=lg106=6. 所以答案是:6.13、已知函数f (x )=x 2−2|x |−1,若关于x 的方程f (x )=x +m 有四个根,则实数m 的取值范围为______. 答案:(−54,−1)分析:分离变量,画出特定函数的图像即可.由f (x )=x +m ,得m =f (x )−x =x 2−2|x |−x −1 令g (x )=x 2−2|x |−x −1={x 2−3x −1,x ≥0x 2+x −1,x <0,画出图像由图可知,当−54<m <−1时,方程m =f (x )−x 有四解, 即方程f (x )=x +m 有四个根. 故答案为:(−54,−1)14、已知log a x =2,log b x =3,log c x =5,则log abc x =______ 答案:3031分析:根据换底公式得到log x a =12,log x b =13,log x c =15,进而求出log x abc ,再用换底公式求出log abc x . 由log a x =2,log b x =3,log c x =5得:log x a =12,log x b =13,log x c =15,log x abc =log x a +log x b +log x c =12+13+15=3130,所以log abc x =3031所以答案是:3031解答题15、数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.因为运算,数的威力无限;没有运算,数就只是一个符号.对数运算与指数幂运算是两类重要的运算.(1)对数的运算性质降低了运算的级别,简化了运算,在数学发展史上是伟大的成就.对数运算性质的推导有很多方法.请同学们根据所学知识推导如下的对数运算性质:如果a >0,且a ≠1,M >0,那么log a M n =nlog a M (n ∈R );(2)请你运用上述对数运算性质计算lg3lg4(lg8lg9+lg16lg27)的值; (3)因为210=1024∈(103,104),所以210的位数为4(一个自然数数位的个数,叫做位数).请你运用所学过的对数运算的知识,判断20192020的位数.(注lg2019≈3.305) 答案:(1)见解析(2)1712 (3)20192020的位数为6677解析:(1)根据指数与对数的转换证明即可.(2)根据对数的运算性质将真数均转换成指数幂的形式再化简即可. (3)分析lg20192020的值的范围再判断位数即可. (1)方法一: 设x =log a M 所以M =a x所以M n =(a x )n =a nx所以log a M n =nx =nlog a M ,得证.设x=nlog a M所以xn=log a M所以a xn=M所以a x=M n所以x=log a M n所以nlog a M=log a M n方法三:因为a log a M n=M na nlog a M=(a log a M)n=M n 所以a log a M n=a nlog a M所以log a M n=nlog a M得证.(2)方法一:lg3 lg4(lg8lg9+lg16lg27)=lg3lg22(lg23lg32+lg24lg33) =lg32lg2(3lg22lg3+4lg23lg3)=lg32lg2⋅17lg26lg3=1712.方法二:lg3 lg4(lg8lg9+lg16lg27)=log43(log98+log2716) =log223(log3223+log3324)=12log23(32log32+43log32)=12log23⋅176log32=1712.设10k<20192020<10k+1,k∈N∗所以k<lg20192020<k+1所以k<2020lg2019<k+1所以k<2020×3.305<k+1所以6675.1<k<6676.1因为k∈N∗所以k=6676所以20192020的位数为6677方法二:设20192020=N所以2020lg2019=lgN所以2020×3.305=lgN所以lgN=6676.1所以N=106676.1=100.1×106676因为1<100.1<10,所以N有6677位数,即20192020的位数为6677小提示:本题主要考查了对数的运算以及利用对数的运算求解数字位数的问题,需要取对数分析对数值进行分析,属于中档题.。
高中函数题型及解题方法
一、高中函数题型
1、一元函数:一元函数是一种函数,它将一个变量映射到另
一个变量。
它只有一个自变量,只有一个因变量。
2、二元函数:二元函数是一种函数,它将两个变量映射到另
一个变量。
它有两个自变量,只有一个因变量。
3、指数函数:指数函数是一种函数,它将一个变量映射到另
一个变量,并且满足指数关系。
4、对数函数:对数函数是一种函数,它将一个变量映射到另
一个变量,并且满足对数关系。
5、反比例函数:反比例函数是一种函数,它将一个变量映射
到另一个变量,并且满足反比例关系。
6、三角函数:三角函数是一种函数,它将一个变量映射到另
一个变量,并且满足三角关系。
二、解题方法
1、分析问题:首先要仔细阅读题目,把握问题的内容,如果
是函数的问题,要确定函数的类型,以及函数的定义域和值域。
2、解方程:如果是求函数的值,要先把函数表示出来,然后
根据给出的条件解出方程,最后求出函数的值。
3、画图:如果需要求函数的图像,可以根据函数的定义,画出一些点,然后连接这些点,就可以得到函数的图像了。
4、总结:最后,要总结出问题的结果,把函数的定义域和值域,以及函数的图像都写出来。