圆与方程导学案
- 格式:pptx
- 大小:429.89 KB
- 文档页数:19
圆与圆的方程2.1圆的标准方程(导学案)使用说明:1.用15分钟左右的时间,阅读课本内容,自主高效预习,理解公式中各量的含义。
2.限时完成导学案的预习案部分,找出自己的疑惑和需要解决的问题,准备课上讨论探究。
【学习目标】⑴ 掌握确定圆的几何要素⑵ 掌握圆的标准方程,会根据不同条件求圆的标准方程 ⑶ 能从圆的标准方程中求出它的圆心和半径【重点难点】重点是圆的标准方程,难点是根据不同的条件求圆的标准方程相关知识:1.在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?2.什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?教材助读:1.设圆心坐标为(,)C a b ,半径为r ,设),(y x P 为这个圆上任意一点,那么P,C 与r 有什么关系?能用坐标表示吗?2.圆心在(,)C a b ,半径为r 的圆的标准方程:___________________________________________________________________3.圆心为坐标原点、半径为r 的圆的方程是: 圆心在圆点、半径为1的圆的方程: 思考:确定圆的标准方程的基本要素?预习自测1.写出下列各圆的方程:(1) 以C(2,-1)为圆心,半径等于3; (2) 圆心在圆点,半径为5;(3) 经过点P(5,1),圆心在点C(6,-2); (4) 以A(2,5),B(0,-1)为直径的圆。
2.圆22(3)(2)13x y -++=的圆心为 半径为基础知识探究1.试由圆的标准方程的推导过程思考,若点P 在圆内,在圆上,在圆外时,00,x y 应满足怎样的关系式P P P ⇒⎧⎪⇒⎨⎪⇒⎩点在圆内点在圆外点在圆上2.若点),3(a 在圆1622=+y x 的内部,则a 的取值范围是综合应用探究1.已知ABC Rt ∆ 的斜边AB 的端点A 的坐标为(-2,1),B 的坐标为(4,3),直角顶点C 在什么曲线上?并求出它的方程?预习案 探究案2.求圆心在直线02=-+y x 上,且经过两点)2,1(),0,1(-Q P 的圆的方程。
2.4.2 圆的一般方程学习目标:1.探索并掌握圆的一般方程.2.能判断圆的一般方程并求圆心及半径.3.会利用待定系数法求圆的一般方程.重难点:重点:求圆的一般方程及其圆心半径难点:圆的一般方程的探究过程探索新知:活动一 探究圆的一般方程复习:圆的标准方程是什么?写出以C(1,-2)为圆心,2为半径的圆的标准方程是什么?思考1►►►将以上圆的标准方程展开后可得到什么式子?那么二元二次方程与圆有着怎样的关系呢?是否所有的二元二次方程表示的就是圆呢?(1) x 2+y 2+2x +2y +8=0;(2) x 2+y 2+2x +2y +2=0;(3) x 2+y 2+2x +2y =0.探究►►►形如022=++++C Ey Dx y x 的方程,它要表示圆,系数D 、E 、F 需要满足什么条件呢?方程022=++++C Ey Dx y x 配方得(1)当 时,方程表示一个点,该点的坐标为 .(2)当 时,方程不表示任何图形.(3)当 时,方程表示的曲线为圆,它的圆心坐标为 ,半径为 .上述方程称为圆的一般方程.思考2►►►圆的标准方程与圆的一般方程各有什么特点?活动二巩固圆的一般方程,能由圆的一般方程确定圆心和半径例1 下列方程是否表示圆?若表示圆,写出其圆心的坐标和半径.(1)x2+2y2-6x+4y-1=0(2)x2+y2-12x+6y+50=0(3)x2+y2-3xy+5x+2y=0(4)2x2+2y2-12x+4y=0(5)x2+y2-2x+4y-4=0活动三能根据已知条件求圆的方程例2 求过三点O(0,0),M1(1,1),M2(4,2)的圆的一般方程,并求这个圆的圆心坐标和半径.思考3►►►确定一个圆的一般方程需要几个独立条件?方法点拨:用待定系数法求圆的方程的步骤:(1) 设:根据题意,设圆的标准方程或一般方程;(2) 列:根据条件列出关于a,b,r或D,E,F的方程组;(3) 解:解方程组得到a,b,r或D,E,F的值;(4) 代:代入圆的标准方程或一般方程,即可得解;练习△ABC的三个顶点分别为A(0,0),B(1,0),C(0,-1)的圆的方程,并求这个圆的圆心坐标和半径.课堂小结这节课你学到了什么?有什么收获?。
高二数学教案:圆的参数方程学案
【摘要】欢迎来高二数学教案栏目,教案逻辑思路清晰,符合认识规律, 培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:“高二数学教案:圆的参数方程学案”希望能为您的提供到帮助。
本文题目:高二数学教案:圆的参数方程学案
2.1.2 圆的参数方程
学习目标
1.通过求做匀速圆周运动的质点的参数方程,掌握求一般曲线的参数方程的基本步骤.
2.熟悉圆的参数方程,进一步体会参数的意义。
学习过程
一、学前准备
1.在直角坐标系中圆的标准方程和一般方程是什幺?
二、新课导学。
第四章 4.1 圆的方程 编号041【学习目标】1.把握圆的标准方程的特点,能依据所给有关圆心、半径的具体条件精确 地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简洁的实际问题.2.通过圆的标准方程的推导,培育同学利用求曲线的方程的一般步骤解决一些实际问题的力量.3.通过圆的标准方程,解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想训练.【学习重点】(1)圆的标准方程的推导步骤;(2)依据具体条件正确写出圆的标准方程. 【学问链接】(1)圆的定义;(2)直线方程的定义,直线上点的坐标与直线方程解得关系。
【基础学问】探究一:如何建立圆的标准方程呢?1.建系设点: 2.写点集: 3.列方程: 4.化简方程:探究二:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?【例题讲解】例1: 写出下列各圆的方程:(1)圆心在原点,半径是3; (2)圆心在C(3,4),半径为5 (3)经过点P(5,1),圆心在点C(8,-3); 变式训练1: 说出下列圆的圆心和半径:(1)5)2()3(22=-+-y x ;(2)7)3()4(22=+++y x ;(3)4)2(22=+-y x例2: (1)已知两点P (4,9)和P (6, 3),求以PP 为直径的圆的方程;(2)试推断点M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?【基础学问】问题1.方程222410x y x y +-++=表示什么图形?方程222460x y x y +-++=表示什么图形?问题2.方程220x y Dx Ey F ++++=在什么条件下表示圆?新知:方程220x y Dx Ey F ++++=表示的轨迹. ⑴当2240D E F +->时,表示以(,)22D E --为圆心,22142D E F +-为半径的圆;⑵当2240D E F +-=时,方程只有实数解2D x =-,2E y =-,即只表示一个点(-2D ,-2E );(3)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形小结:方程220x y Dx Ey F ++++=表示的曲线不肯定是圆只有当2240D E F +->时,它表示的曲线才是圆,形如220x y Dx Ey F ++++=的方程称为圆的一般方程思考:1.圆的一般方程的特点?2.圆的标准方程与一般方程的区分?例3:推断下列二元二次方程是否表示圆的方程?假如是,恳求出圆的圆心及半径.⑴224441290x y x y +-++=; ⑵2244412110x y x y +-++=例4 :已知线段AB 的端点B 的坐标是(4,3),端点A 在圆上()2214x y ++=运动,求线段AB 的中点M 的轨迹方程.【达标检测】1.圆(x +1)2+(y -2)2=4的圆心、半径是 ( D )A .(1,-2),4B .(1,-2),2C .(-1,2),4D .(-1,2),22.过点A(4,1)的圆C 与直线10x y --=相切于点B(2,1),则圆C 的方程为2)3(22=+-y x 3.一个等腰三角形底边上的高等于5,底边两端点的坐标是(-4,0)和(4,0),求它的外接圆的方程.4.圆2)1()1(22=++-y x 的周长是( C ) A.π2 B.π2 C.2π2 D.π45.点P(5,2m )与圆2422=+y x 的位置关系是( A ) A.在圆外 B.在圆内 C.在圆上 D.不确定6.已知圆C与圆1)1(22=+-y x 关于直线x y -=对称,则圆C的方程为( C ) A1)1(22=++y x B.122=+y x C.1)1(22=++y x D.1)1(22=-+y x 7.已知圆C 的圆心是直线x-y+1=0与x 轴的交点,且圆C 与直线x+y+3=0相切,求圆C 的方程.2)1(22=++y x8.已知圆心在x的圆O 位于y 轴左侧,且与直线x+y=0相切,求圆O 的方程.2)2(22=++y x9.方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示圆,则实数m 的取值范围是( A )A.-71<m <1 B.-1<m <71 C.m <-71或m >1 D.m <-1或m >7110.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于直线x +y =0对称,则有( A ) A.D +E =0 B.D +F =0 C.E +F =0 D.D +E +F =0 11.经过三点A (0,0)、B (1,0)、C (2,1)的圆的方程为( D ) A.x 2+y 2+x -3y -2=0 B. x 2+y 2+3x +y -2=0 C. x 2+y 2+x +3y =0 D. x 2+y 2-x -3y =0 12.方程220x y x y k +-++=表示一个圆,则实数k 的取值范围是21<k .13.过点A (-2,0),圆心在(3,-2)的圆的一般方程为0164622=-+-+y x y x . 14.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点的轨迹方程,并说明它的轨迹是什么.轨迹方程是)5,3(0104822≠≠=+--+x x y x y x 轨迹是以A 为圆心10为半径的圆但除去两点【问题与收获】。
2.4圆的方程2.4.1圆的标准方程【学习目标】1.能描述确定圆的几何要素,能根据给定圆的几何要素推导出圆的标准方程.2.能分析圆的标准方程中相关量的几何意义.3.能根据给定圆的几何要素求出圆的标准方程.◆知识点一圆的标准方程1.圆的标准方程圆心为A(a,b),半径为r的圆的标准方程是.和分别确定了圆的位置和大小,从而确定了圆,所以只要a,b,r(r>0)三个量确定了,圆的方程就唯一确定了.2.几种常见的特殊的圆的方程条件方程形式圆心在原点x2+y2=r2(r>0)过原点(x-a)2+(y-b)2= a2+b2(a2+b2≠0)圆与x轴相切(x-a)2+(y-b)2=b2(b≠0)圆与y轴相切(x-a)2+(y-b)2=a2(a≠0)圆与两坐标轴都相切(x-a)2+(y-b)2=a2(|a|=|b|≠0)【诊断分析】判断正误.(请在括号中打“√”或“×”)(1)确定一个圆的几何要素是圆心和半径.( )(2)方程(x-a)2+(y-b)2=m2一定表示圆. ( )(3)圆(x-1)2+(y-2)2=4的圆心坐标是(1,2),半径是4.( )(4)已知A为定点,点M满足集合P={M||MA|=r(r>0)},则点M的轨迹为圆.( )◆知识点二点与圆的位置关系点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2(r>0)的位置关系及判断方法位置关系判断方法几何法代数法点M在圆上|CM|r (x0-a)2+(y0-b)2r2 点M在圆外|CM|r (x0-a)2+(y0-b)2r2 点M在圆内|CM|r (x0-a)2+(y0-b)2r2◆探究点一求圆的标准方程例1根据下列条件,求圆的标准方程:(1)圆心为点A(2,-1),且经过点B(-2,2);(2)经过点C(0,0)和点D(0,2),半径为2;(3)E(1,2),F(3,4)为直径的两个端点;(4)圆心在直线l:2x+3y-8=0上,且经过点P(1,0)和点Q(3,2).例2已知半径为3的圆C的圆心与点P(-2,1)关于直线x-y+1=0对称,则圆C的标准方程为( )A.(x+1)2+(y-1)2=9B.(x-1)2+(y-1)2=9C.x2+(y+1)2=9D.x2+y2=9变式1圆心在直线y=x+3上,且过点A(2,4),B(1,-3)的圆的标准方程为.变式2已知点A(1,-2),B(-1,4),求:(1)过点A,B且周长最小的圆的标准方程;(2)过点A,B且圆心在直线2x-y-4=0上的圆的标准方程.[素养小结]求圆的标准方程一般有两种方法:(1)直接法.通过研究圆的几何性质,确定圆心坐标与半径长,即得到圆的标准方程.(2) 待定系数法.设圆的标准方程为(x-a)2+(y-b)2=r2(r>0),先根据条件列出关于a,b,r的方程组,然后解出a,b,r,最后代入标准方程.拓展已知二次函数y=x2-4x+3的图象交x轴于A,B两点,交y轴于C点.若圆M过A,B,C三点,求圆M的标准方程.◆探究点二判断点与圆的位置关系例3 (1)已知两点P1(3,8)和P2(5,4),求以线段P1P2为直径的圆的标准方程,并判断点M(5,3),N(3,4),P(3,5)与圆的位置关系.(2)写出圆心为点(3,4),半径为5的圆的标准方程,并判断点A(0,0),B(1,3)与该圆的位置关系.(3)已知点M(5√a+1,√a)在圆(x-1)2+y2=26的内部,求a的取值范围.。
4.2.1 直线与圆的位置关系[学习目标] 1.理解直线和圆的三种位置关系.2.会用代数与几何两种方法判断直线和圆的位置关系.知识点一 直线与圆的位置关系及判断思考 用代数法与几何法判断直线与圆的位置关系时,二者在侧重点上有什么不同? 答 代数法与几何法都能判断直线与圆的位置关系,只是角度不同,代数法侧重于“数”的计算,几何法侧重于“形”的直观. 知识点二 圆的切线问题 1.求圆的切线的方法(1)求过圆上一点(x 0,y 0)的圆的切线方程:先求切点与圆心的连线的斜率k ,则由垂直关系,知切线斜率为-1k ,由点斜式方程可求得切线方程.如果k =0或k 不存在,则由图形可直接得切线方程为y =y 0或x =x 0. (2)求过圆外一点(x 0,y 0)的圆的切线方程:几何法:设切线方程为y -y 0=k (x -x 0),即kx -y -kx 0+y 0=0.由圆心到直线的距离等于半径,可求得k ,切线方程即可求出.并注意检验当k 不存在时,直线x =x 0是否为圆的切线. 代数法:设切线方程y -y 0=k (x -x 0),即y =kx -kx 0+y 0,代入圆的方程,得到一个关于x 的一元二次方程,由Δ=0求得k ,切线方程即可求出.并注意检验当k 不存在时,直线x =x 0是否为圆的切线. 2.切线段的长度公式(1)从圆外一点P (x 0,y 0)引圆(x -a )2+(y -b )2=r 2的切线,则P 到切点的切线段长为 d =(x 0-a )2+(y 0-b )2-r 2.(2)从圆外一点P (x 0,y 0)引圆x 2+y 2+Dx +Ey +F =0的切线,则P 到切点的切线段长为d =x 20+y 20+Dx 0+Ey 0+F .题型一 直线与圆的位置关系的判断例1 已知直线方程mx -y -m -1=0,圆的方程x 2+y 2-4x -2y +1=0.当m 为何值时,圆与直线(1)有两个公共点; (2)只有一个公共点; (3)没有公共点.解 方法一 将直线mx -y -m -1=0代入圆的方程化简整理得, (1+m 2)x 2-2(m 2+2m +2)x +m 2+4m +4=0. ∵Δ=4m (3m +4),∴当Δ>0,即m >0或m <-43时,直线与圆相交,即直线与圆有两个公共点;当Δ=0,即m =0或m =-43时,直线与圆相切,即直线与圆只有一个公共点;当Δ<0,即-43<m <0时,直线与圆相离,即直线与圆没有公共点.方法二 已知圆的方程可化为(x -2)2+(y -1)2=4, 即圆心为C (2,1),半径r =2.圆心C (2,1)到直线mx -y -m -1=0的距离 d =|2m -1-m -1|1+m 2=|m -2|1+m 2.当d <2,即m >0或m <-43时,直线与圆相交,即直线与圆有两个公共点;当d =2,即m =0或m =-43时,直线与圆相切,即直线与圆只有一个公共点;当d >2,即-43<m <0时,直线与圆相离,即直线与圆没有公共点.反思与感悟 直线与圆位置关系判断的三种方法:(1)几何法:由圆心到直线的距离d 与圆的半径r 的大小关系判断. (2)代数法:根据直线与圆的方程组成的方程组解的个数来判断.(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系,但有一定的局限性,必须是过定点的直线系.跟踪训练1 若直线4x -3y +a =0与圆x 2+y 2=100有如下关系:①相交;②相切;③相离.试分别求实数a 的取值范围. 解 方法一 (代数法)由方程组⎩⎪⎨⎪⎧4x -3y +a =0,x 2+y 2=100,消去y ,得25x 2+8ax +a 2-900=0. Δ=(8a )2-4×25(a 2-900)=-36a 2+90 000. ①当直线和圆相交时,Δ>0, 即-36a 2+90 000>0,-50<a <50; ②当直线和圆相切时,Δ=0, 即a =50或a =-50; ③当直线和圆相离时,Δ<0, 即a <-50或a >50. 方法二 (几何法)圆x 2+y 2=100的圆心为(0,0),半径r =10, 则圆心到直线的距离d =|a |32+42=|a |5, ①当直线和圆相交时,d <r , 即|a |5<10,-50<a <50; ②当直线和圆相切时,d =r , 即|a |5=10,a =50或a =-50; ③当直线和圆相离时,d >r , 即|a |5>10,a <-50或a >50. 题型二 圆的切线问题例2 过点A (4,-3)作圆(x -3)2+(y -1)2=1的切线,求此切线的方程. 解 因为(4-3)2+(-3-1)2=17>1,所以点A 在圆外.(1)若所求直线的斜率存在,设切线斜率为k , 则切线方程为y +3=k (x -4).即kx -y -3-4k =0, 因为圆心C (3,1)到切线的距离等于半径1, 所以|3k -1-3-4k |k 2+1=1,即|k +4|=k 2+1, 所以k 2+8k +16=k 2+1.解得k =-158.所以切线方程为y +3=-158(x -4),即15x +8y -36=0. (2)若直线斜率不存在,圆心C (3,1)到直线x =4的距离也为1,这时直线与圆也相切,所以另一条切线方程是x =4. 综上,所求切线方程为15x +8y -36=0或x =4.反思与感悟 1.过一点P (x 0,y 0)求圆的切线方程问题,首先要判断该点与圆的位置关系,若点在圆外,切线有两条,一般设点斜式y -y 0=k (x -x 0)用待定系数法求解,但要注意斜率不存在的情况,若点在圆上,则切线有一条,用切线垂直于过切点的半径求切线的斜率,再由点斜式可直接得切线方程.2.一般地,有关圆的切线问题,若已知切点则用k 1·k 2=-1(k 1,k 2分别为切线和圆心与切点连线的斜率)列式,若未知切点则用d =r (d 为圆心到切线的距离,r 为半径)列式.跟踪训练2 圆C 与直线2x +y -5=0相切于点(2,1),且与直线2x +y +15=0也相切,求圆C 的方程.解 设圆C 的方程为(x -a )2+(y -b )2=r 2. 因为两切线2x +y -5=0与2x +y +15=0平行, 所以2r =|15-(-5)|22+12=4 5.所以r =2 5.所以|2a +b +15|22+1=r =25,即|2a +b +15|=10;①|2a +b -5|22+1=r =25,即|2a +b -5|=10.② 又因为过圆心和切点的直线与切线垂直, 所以b -1a -2=12.③联立①②③,解得⎩⎪⎨⎪⎧a =-2,b =-1.故所求圆C 的方程为(x +2)2+(y +1)2=20. 题型三 圆的弦长问题例3 求直线x -3y +23=0被圆x 2+y 2=4截得的弦长.解 方法一 直线x -3yy +23=0和圆x 2+y 2=4的公共点坐标就是方程组⎩⎨⎧x -3y +23=0,x 2+y 2=4的解. 解这个方程组,得⎩⎨⎧x 1=-3,y 1=1,⎩⎪⎨⎪⎧x 2=0,y 2=2. 所以公共点的坐标为(-3,1),(0,2),所以直线x -3y +23=0被圆x 2+y 2=4截得的弦长为(-3-0)2+(1-2)2=2. 方法二 如图,设直线x -3y +23=0与圆x 2+y 2=4交于A ,B 两点,弦AB 的中点为M ,则OM ⊥AB (O 为坐标原点), 所以|OM |=|0-0+23|12+(-3)2= 3.所以|AB |=2|AM |=2OA 2-OM 2 =222-(3)2=2. 反思与感悟求直线与圆相交时弦长的两种方法:(1)几何法:如图1,直线l 与圆C 交于A ,B 两点,设弦心距为d ,圆的半径为r ,弦长为|AB |,则有⎝⎛⎭⎫|AB |22+d 2=r 2. 即|AB |=2r 2-d 2.(2)代数法:如图2所示,将直线方程与圆的方程联立,设直线与圆的两交点分别是A (x 1,y 1),B (x 2,y 2), 则|AB |=(x 1-x 2)2+(y 1-y 2)2 =1+k 2|x 1-x 2| =1+1k2|y 1-y 2|, 其中k 为直线l 的斜率.跟踪训练3 直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( ) A.1 B.2 C.4 D.46 答案 C解析圆的方程可化为C:(x-1)2+(y-2)2=5,其圆心为C(1,2),半径r=5.如图所示,取弦AB的中点P,连接CP,则CP⊥AB,圆心C到直线AB的距离d=|CP|=|1+4-5+5|12+22=1.在Rt△ACP中,|AP|=r2-d2=2,故直线被圆截得的弦长|AB|=4.数形结合思想例4直线y=x+b与曲线x=1-y2有且只有一个交点,则b的取值范围是()A.|b|= 2B.-1<b≤1或b=-2C.-1≤b<1D.非以上答案分析曲线x=1-y2变形为x2+y2=1(x≥0),表示y轴右侧(含与y轴的交点)的半圆,直线y=x+b表示一系列斜率为1的直线,利用数形结合思想在同一平面直角坐标系内作出两种图形求解.解析曲线x=1-y2含有限制条件,即x≥0,故曲线并非表示整个单位圆,仅仅是单位圆在y轴右侧(含与y轴的交点)的部分.在同一平面直角坐标系中,画出y=x+b与曲线x=1-y2(就是x2+y2=1,x≥0)的图象,如图所示.相切时,b=-2,其他位置符合条件时需-1<b≤1.故选B.答案B解后反思求解直线与曲线公共点的问题,首先要借助图形进行思考;其次要注意作图的完整准确,使得图形能够反映问题的全部;最后在求解中还要细心缜密,保证计算无误.1.对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心答案C解析方法一圆心(0,0)到直线kx-y+1=0的距离d=11+k2≤1<2=r,∴直线与圆相交,且圆心(0,0)不在该直线上.方法二 直线kx -y +1=0恒过定点(0,1),而该点在圆内,故直线与圆相交,且圆心不在该直线上.2.已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A.相切 B.相交 C.相离 D.不确定 答案 B解析 ∵点M (a ,b )在圆x 2+y 2=1外,∴a 2+b 2>1. ∴圆心(0,0)到直线ax +by =1的距离d =1a 2+b2<1=r ,则直线与圆的位置关系是相交. 3.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A.2x -y +5=0或2x -y -5=0 B.2x +y +5=0或2x +y -5=0 C.2x -y +5=0或2x -y -5=0 D.2x +y +5=0或2x +y -5=0 答案 D解析 依题意可设所求切线方程为2x +y +c =0,则圆心(0,0)到直线2x +y +c =0的距离为|c |22+12=5,解得c =±5.故所求切线的直线方程为2x +y +5=0或2x +y -5=0. 4.设A 、B 为直线y =x 与圆x 2+y 2=1的两个交点,则|AB |等于( ) A.1 B. 2 C. 3 D.2 答案 D解析 直线y =x 过圆x 2+y 2=1的圆心C (0,0), 则|AB |=2.5.过原点的直线与圆x 2+y 2-2x -4y +4=0相交所得弦的长为2,则该直线的方程为________. 答案 2x -y =0解析 设所求直线方程为y =kx ,即kx -y =0.由于直线kx -y =0被圆截得的弦长等于2,圆的半径是1,因此圆心到直线的距离等于12-⎝⎛⎭⎫222=0,即圆心(1,2)位于直线kx -y =0上.于是有k -2=0,即k =2,因此所求直线方程是2x -y =0.1.判断直线和圆的位置关系的两种方法中,几何法要结合圆的几何性质进行判断,一般计算较简单.而代数法则是通过解方程组进行消元,计算量大,不如几何法简捷.2.一般地,在解决圆和直线相交时,应首先考虑圆心到直线的距离,弦长的一半,圆的半径构成的直角三角形.还可以联立方程组,消去y ,组成一个一元二次方程,利用方程根与系数的关系表达出弦长l =k 2+1·(x 1+x 2)2-4x 1x 2=k 2+1|x 1-x 2|.3.研究圆的切线问题时要注意切线的斜率是否存在.过一点求圆的切线方程时,要考虑该点是否在圆上.当点在圆上时,切线只有一条;当点在圆外时,切线有两条.一、选择题1.直线l :y -1=k (x -1)和圆x 2+y 2-2y =0的位置关系是( ) A.相离 B.相切或相交 C.相交 D.相切 答案 C解析 l 过定点A (1,1),∵12+12-2×1=0,∴点A 在圆上,∵直线x =1过点A 且为圆的切线,又l 斜率存在, ∴l 与圆一定相交,故选C.2.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A.x +y -2=0 B.x -y +2=0 C.x +y -3=0 D.x -y +3=0答案 D解析 圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.3.已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A.(x +1)2+(y -1)2=2B.(x -1)2+(y +1)2=2C.(x -1)2+(y -1)2=2D.(x +1)2+(y +1)2=2答案 B解析 由条件,知x -y =0与x -y -4=0都与圆相切,且平行,所以圆C 的圆心C 在直线x -y -2=0上.由⎩⎪⎨⎪⎧x -y -2=0,x +y =0,得圆心C (1,-1).又因为两平行线间距离d =42=22,所以所求圆的半径长r =2,故圆C 的方程为(x -1)2+(y +1)2=2.4.过点P (-3,-1)的直线l 与圆x 2+y 2=1相切,则直线l 的倾斜角是( ) A.0° B.45° C.0°或45° D.0°或60° 答案 D解析 设过点P 的直线方程为y =k (x +3)-1,则由直线与圆相切知|3k -1|1+k 2=1,解得k =0或k =3,故直线l 的倾斜角为0°或60°.5.圆x 2+y 2-4x +6y -12=0过点(-1,0)的最大弦长为m ,最小弦长为n ,则m -n 等于( )A.10-27B.5-7C.10-3 3D.5-322答案 A解析 圆的方程x 2+y 2-4x +6y -12=0化为标准方程为(x -2)2+(y +3)2=25. 所以圆心为(2,-3),半径长为5. 因为(-1-2)2+(0+3)2=18<25, 所以点(-1,0)在已知圆的内部, 则最大弦长即为圆的直径,即m =10. 当(-1,0)为弦的中点时,此时弦长最小. 弦心距d =(2+1)2+(-3-0)2=32, 所以最小弦长为2r 2-d 2=225-18=27, 所以m -n =10-27.6.在圆x 2+y 2+2x +4y -3=0上且到直线x +y +1=0的距离为2的点共有( ) A.1个 B.2个 C.3个 D.4个 答案 C解析 圆心为(-1,-2),半径r =22,而圆心到直线的距离d =|-1-2+1|2=2,故圆上有3个点满足题意.7.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( ) A.⎣⎡⎦⎤-34,0 B.⎝⎛⎦⎤-∞,-34∪[0,+∞) C.⎣⎡⎦⎤-33,33 D.⎣⎡⎦⎤-23,0 答案 A解析 设圆心为C ,弦MN 的中点为A ,当|MN |=23时,|AC |=|MC |2-|MA |2=4-3=1.∴当|MN |≥23时,圆心C 到直线y =kx +3的距离d ≤1. ∴|3k -2+3|k 2+(-1)2≤1,∴(3k +1)2≤k 2+1. 由二次函数的图象可得 -34≤k ≤0. 二、填空题8.设直线ax -y +3=0与圆(x -1)2+(y -2)2=4相交于A ,B 两点,且弦AB 的长为23,则a =________. 答案 0解析 圆心到直线的距离d =|a -2+3|a 2+1=22-(3)2=1,解得a =0. 9.圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________. 答案 (x -2)2+(y -1)2=4解析 设圆C 的圆心为(a ,b )(b >0),由题意得a =2b >0,且a 2=(3)2+b 2,解得a =2,b =1.所以所求圆的标准方程为(x -2)2+(y -1)2=4.10.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 答案2555解析 圆心为(2,-1),半径r =2.圆心到直线的距离d =|2+2×(-1)-3|1+4=355,所以弦长为2r 2-d 2=222-(355)2=2555.11.若直线l :y =x +b 与曲线C :y =1-x 2有两个公共点,则b 的取值范围是_______. 答案 [1,2)解析 如图所示,y =1-x 2是一个以原点为圆心,长度1为半径的半圆,y =x +b 是一个斜率为1的直线,要使直线与半圆有两个交点,连接A (-1,0)和B (0,1),直线l 必在AB 以上的半圆内平移,直到直线与半圆相切,则可求出两个临界位置直线l 的b 值,当直线l 与AB 重合时,b =1;当直线l 与半圆相切时,b = 2.所以b 的取值范围是[1,2). 三、解答题12.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)求证不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时的l 的方程.(1)证明 因为l 的方程为(x +y -4)+m (2x +y -7)=0(m ∈R ),所以⎩⎪⎨⎪⎧2x +y -7=0,x +y -4=0,解得⎩⎪⎨⎪⎧x =3,y =1, 即l 恒过定点A (3,1).第11页 共11页 因为圆心为C (1,2),|AC |=5<5(半径),所以点A 在圆C 内,从而直线l 与圆C 恒交于两点.(2)解 由题意可知弦长最小时,l ⊥AC .因为k AC =-12,所以l 的斜率为2. 又l 过点A (3,1),所以l 的方程为2x -y -5=0.13.已知直线l 过点P (1,1)并与直线l 1:x -y +3=0和l 2:2x +y -6=0分别交于点A ,B ,若线段AB 被点P 平分,求:(1)直线l 的方程;(2)以原点O 为圆心且被l 截得的弦长为855的圆的方程. 解 (1)依题意可设A (m ,n ),B (2-m,2-n ), 则⎩⎪⎨⎪⎧ m -n +3=0,2(2-m )+(2-n )-6=0,即⎩⎪⎨⎪⎧m -n =-3,2m +n =0, 解得A (-1,2).又l 过点P (1,1),易得直线AB 的方程为x +2y -3=0, 即直线l 的方程为x +2y -3=0.(2)设圆的半径长为r ,则r 2=d 2+⎝⎛⎭⎫4552,其中d 为弦心距,d =35,可得r 2=5,故所求圆的方程为x 2+y 2=5.。
圆的一般方程一、课前导学1、自学课本P121-P1232、完成 P123 练习1(1) 、 。
(2) 、 。
(3) 、 。
(填入答案)3、(1) (2) (3)4、方程x 2+y 2+Dx +Ey +F =0配方得:⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4. (1)当D 2+E 2-4F =0时,方程表示一个 ,坐标为 ;(2)当D 2+E 2-4F <0时,方程 ;(3)当D 2+E 2-4F >0时,方程表示的曲线为 ,它的圆心坐标为 ,半径等于 ,上述方程称为圆的一般方程.2.比较二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0和圆的一般方程x 2+y 2+Dx +Ey +F =0,可以得出以下结论:当二元二次方程具有条件:(1)x 2和y 2的系数相同,且不等于0,即(2)没有xy 项,即 ; (3) 时,它才表示圆.二、课堂导学要点一 圆的一般方程的概念例1 下列方程能否表示圆?若能表示圆,求出圆心和半径.(1)2x 2+y 2-7y +5=0;(2)x 2-xy +y 2+6x +7y =0;(3)x 2+y 2-2x -4y +10=0;(4)2x 2+2y 2-5x =0.规律方法 二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆,应满足的条件是:①A =C ≠0,②B =0,③D 2+E 2-4AF >0.跟踪演练1 如果x2+y2-2x+y+k=0是圆的方程,则实数k的范围是________.要点二求圆的一般方程例2 已知△ABC的三个顶点为A(1,4),B(-2,3),C(4,-5),求△ABC的外接圆方程、圆心坐标和外接圆半径.(多种方法)规律方法应用待定系数法求圆的方程时:(1)如果由已知条件容易求得圆心坐标、半径或需利用圆心的坐标或半径列方程的问题,一般采用圆的标准方程,再用待定系数法求出a,b,r.(2)如果已知条件与圆心和半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出常数D、E、F.(3)已知圆上两个点,可以考虑用垂径定理跟踪演练2 已知A(2,2),B(5,3),C(3,-1),求三角形ABC的外接圆的方程.三、课堂小结四、课堂练习1.圆x2+y2-4x+6y=0的圆心坐标是( )A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)2.方程x2+y2-x+y+k=0表示一个圆,则实数k的取值范围为( )A.k≤12B.k=12C.k≥12D.k<123.方程x2+y2+2ax+2by+a2+b2=0表示的图形为( )A.以(a,b)为圆心的圆B.以(-a,-b)为圆心的圆C.点(a,b)D.点(-a,-b)4.圆x2+y2+2x-4y+m=0的直径为3,则m的值为________.5.圆C:x2+y2-2x-4y+4=0的圆心到直线3x+4y+4=0的距离d=________.。
班级:姓名:日期:圆的标准方程导学案地位:本节内容选自《普通高中数学选择性必修第一册》人教A版(2019)第二章直线和圆的方程2.4 圆的方程学习目标:1.会用定义推导圆的标准方程,并掌握圆的标准方程的特征,培养数学抽象的核心素养.2.能根据所给条件求圆的标准方程,培养数学运算的核心素养.3.掌握点与圆的位置关系并能解决相关问题,提升逻辑推理的核心素养.学习重难点:重点:会用定义推导圆的标准方程,掌握点与圆的位置关系难点:根据所给条件求圆的标准方程自主预习:1.本节所处教材的第页.2.复习——①圆的定义:3.预习——圆的标准方程:点与圆的位置关系:新课导学学习探究(一)新知导入《古朗月行》唐李白小时不识月,呼作白玉盘。
又疑瑶台镜,飞在青云端。
月亮,是中国人心目中的宇宙精灵,古代人们在生活中崇拜、敬畏月亮,在文学作品中也大量描写、如果把天空看作一个平面,月亮当做一个圆,建立一个平面直角坐标系,那么圆的坐标方程如何表示?(二)圆的标准方程知识点1 圆的标准方程【思考1】圆是怎样定义的?确定它的要素又是什么呢?各要素与圆有怎样的关系?【思考2】已知圆心为A(a,b),半径为你能推导出圆的方程吗?◆(1)圆的定义:圆是平面上到定点的距离等于定长的点的集合,定点称为圆的圆心,定长称为圆的半径.用集合表示为P={M||MA|=r}.(2)圆的标准方程:①圆心为A(a,b),半径为r的圆的标准方程为(x-a)2+(y-b)2=r2.②圆心在坐标原点,半径为r的圆的标准方程为x2+y2=r2.【做一做1】(教材P85练习1改编)以原点为圆心,2为半径的圆的标准方程是()A.x2+y2=2 B.x2+y2=4C.(x-2)2+(y-2)2=8 D.x2+y2=2【做一做2】圆C:(x-2)2+(y+1)2=3的圆心坐标是()A.(2,1) B.(2,-1)C.(-2,1) D.(-2,-1)知识点2 点与圆的位置关系【思考3】1.点A(1,1),B(3,0),C(2,2)与圆x2+y2=4的关系如图所示,则|OA|,|OB|,|OC|与圆的半径r=2什么关系?2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系如何判断?◆点与圆的位置关系圆A:(x-a)2+(y-b)2=r2(r>0),其圆心为A(a,b),半径为r,点P(x0,y0),设d=|P A|.【做一做1】点P (-2,-2)和圆x 2+y 2=4的位置关系是( )A .在圆上B .在圆外C .在圆内D .以上都不对【做一做2】(教材P83例1改编) 已知两点P (-5,6)和Q (5,-4),求以P ,Q 为直径端点的圆的标准方程,并判断点A (2,2),B (1,8),C (6,5)是在圆上,在圆内,还是在圆外.(三)典型例题1.求圆的标准方程例1.求满足下列条件的圆的标准方程.(1)圆心为(3,4)且经过坐标原点;(2)经过A (3,1),B (-1,3)且圆心在直线3x -y -2=0上.【类题通法】圆的标准方程的两种求法(1)几何法:它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法:由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(xa )2+(yb )2=r 2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.【巩固练习1】△ABC的三个顶点的坐标是A(5,1),B(7,-3),C(2,-8).求它的外接圆的方程.2.点与圆的位置关系的应用例2.已知A(-1,4),B(5,-4).求以AB为直径的圆的标准方程,并判断C(5,1),D(6,-3),E(-5,1)与圆的位置关系.【变式探究】在本例的条件下,若点A(a,a-1)在此圆的外部,则实数a的取值范围是_________.【类题通法】点与圆的位置关系及其应用点与圆的位置关系有三种:点在圆内、点在圆上、点在圆外.判断点与圆的位置关系有两种方法:一是用圆心到该点的距离与半径比较,二是代入圆的标准方程,判断与r 2的大小关系.通过点与圆的位置关系建立方程或不等式可求参数值或参数的取值范围.【巩固练习2】若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是() A.-1<a<1B.0<a<1C.a<-1或a>1 D.a=±13.最值问题例3.(1)已知x,y满足x2+(y+4)2=4,求(x+1)2+(y+1)2的最大值与最小值.(2)若P(x,y)是圆C(x-3)2+y2=4上任意一点,请求出P(x,y)到直线x-y+1=0的距离的最大值和最小值.【类题通法】与圆有关的最值问题的求解策略(1)本题将最值转化为线段长度问题,从而使问题得以顺利解决.充分体现了数形结合思想在解题中的强大作用.(2)涉及与圆有关的最值,可借助图形性质,利用数形结合求解.【巩固练习3】已知实数x,y满足(x+5)2+(y-12)2=25,那么x2+y2的最小值为()A.5 B.8 C.13 D.18(四)操作演练素养提升1.圆(x-2)2+(y+3)2=2的圆心和半径分别为()A.(-2,3),1 B.(2,-3),3C.(-2,3), 2 D.(2,-3),22.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)()A.在圆心B.在圆上C.在圆内D.在圆外3.过两点P(2,2),Q(4,2),且圆心在直线x-y=0上的圆的标准方程是()A.(x-3)2+(y-3)2=2 B.(x+3)2+(y+3)2=2C.(x-3)2+(y-3)2=2D.(x+3)2+(y+3)2=24.已知圆心在x轴上的圆C与x轴交于两点A(1,0),B(5,0),此圆的标准方程为( ) A.(x-3)2+y2=4 B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4课堂小结1.通过这节课,你学到了什么知识?2.在解决问题时,用到了哪些数学思想?学习评价【自我评价】你完成本节导学案的情况为()A.很好B.较好C.一般D.较差【导学案评价】本节导学案难度如何()A.很好B.较好C.一般D.较差【建议】你对本节导学案的建议:课后作业完成教材:第85页练习第1,2,3,4题第88页习题2.4 第1,2,3,4,6题。
高二数学必修2 第四章 圆与方程第四章 圆与方程§4.1圆的方程§4.1.1圆的标准方程(1)【学习目标】1.能根据圆心、半径写出圆的标准方程.2.利用圆的标准方程,会判断点与圆的位置关系.【学习重点】求圆的标准方程.【学习难点】根据不同的已知条件,判断点与圆的位置关系.【学习过程】一、自主学习(阅读课本第118-119页,完成自主学习)1.已知两点(2,5),(6,9)A B -,求它们之间的距离?若已知(3,8),(,)C D x y -,求它们之间的距离.2.图中哪个点是定点?哪个点是动点?动点具有什么性质?3.具有什么性质的点的轨迹称为圆? 圆心和半径分别确定了圆的_______和_______.4.我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,在平面内确定圆的条件是什么?5.在平面直角坐标系中,若一个圆的圆心(,)C a b ,半径为r (其中,,a b r 都是常数, 0r >),圆的标准方程为__________________________________.6.当圆心在原点时,圆的标准方程是_________________ .思考:圆的标准方程222()()x a y b r -+-=中,只要求出___、___、___,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中____是圆的定位条件,_____是圆的定形条件.二、合作探究例1:写出圆心为(2,3)A -半径长等于5的圆的方程,判断12(5,7),(1)M M --是否在这个圆上.推广:设点00(,)M x y ,圆的方程为222()()x a y b r -+-=.1,M 在圆上⇔2200()()x a y b -+- 2r ;2,M 在圆外⇔2200()()x a y b -+- 2r ;3,M 在圆内⇔2200()()x a y b -+- 2r ;例2:圆的一条直径的两个端点分别是(2,0),(2,2)A B -,求圆的标准方程,并判断点(0,0),C (2,2)D -与该圆的位置关系推广:已知圆的一条直径的端点分别是1222(,),(,),A x y B x y 求证此圆的方程是1212()()()()0.x x x x y y y y --+--=三、达标检测1.写出下列各圆的标准方程.(1) 圆心在原点,半径是3;(2) 圆心在(3,4)C(3) 经过点(5,1)P ,圆心在点(8,3)C -;2.写出下列各圆的圆心坐标和半径:(1) 22(1)6x y -+= (2) 22(1)(2)9x y ++-= (3) 22(2)(3)3x y -++=3.已知圆心在点(3,4),C --且经过原点,求该圆的标准方程,并判断点12(,0),(1,1),P P -- 3(3,4)P -和圆的位置关系.四、学习小结1.圆的标准方程 .2.求圆的标准方程的方法有:高二数学必修2 第四章 圆与方程§4.1.1圆的标准方程(2)【学习目标】会用待定系数法求圆的标准方程.【学习重点】掌握求圆的标准方程的思路方法.【学习难点】领会用数形结合求圆的标准方程的思想.【学习过程】一、自主学习(阅读课本第119-120页,完成自主学习)1.圆的定义是什么?2.圆的标准方程是怎样的?3.点M(x 0,y 0)与圆(x -a )2+(y -b )2=r 2的关系的判断方法:(1)当点M(x 0,y 0)在圆(x -a )2+(y -b )2=r 2上时,点M 的坐标_____方程(x -a )2+(y -b )2=r 2.(2)当点M(x 0,y 0)不在圆(x -a )2+(y -b )2=r 2上时,点M 的坐标______方程(x -a )2+(y -b )2=r 2.(3)用点到圆心的距离和半径的大小来说明应为:1°点到圆心的距离大于半径⇔点在圆外⇔_________________.2°点到圆心的距离等于半径⇔点在圆上⇔_________________.3°点到圆心的距离小于半径⇔点在圆内⇔_________________.二、合作探究例1:ABC ∆的三个顶点的坐标分别是(5,1),(2,8),(7,3)A B C --,求它的外接圆的方程.例2:求经过点(1,1)A ,(2,2)B -,且圆心在直线:10l x y -+=上的圆的标准方程.三、达标检测1.写出下列各圆的标准方程:(1) 圆心在y 轴上,半径长为1,且过点(1,2)的圆的方程;(2)圆心在x 轴上,半径长为1,且过点(2,1)的圆的方程.2.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,求圆C 的标准方程.3.求经过两点(1,4),(3,2)A B -且圆心在y 轴上的圆的方程.四、学习小结1.确定圆的方程主要方法是_____________法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:1°根据题意,设所求的圆的标准方程________________;2°根据已知条件,建立关于__________________的方程组;3°解方程组,求出___________的值,并把它们代入所设的方程中去,就得到所求圆的方程.2.思想方法总结:高二数学必修2 第四章 圆与方程§4.1.2圆的一般方程(1)【学习目标】能用圆的一般方程确定圆的圆心、半径.【学习重点】把握圆的一般方程的代数特征,能根据已知条件待定方程中的系数,,D E F .【学习难点】根据已知条件选择待定圆的标准方程或一般方程.【学习过程】一、自主学习(阅读课本第121-122页,完成自主学习)1.写出圆心为(,)a b ,半径为r 的圆的标准方程_______________________________.2.将以(,)C a b 为圆心, r 为半径的圆的标准方程展开并整理得________________.3.如果2222,2,D a E b F a b r =-=-=+-,得到方程____________________,这说明圆的 方程还可以表示成另外一种非标准方程形式.4.思考:能不能说方程220x y Dx Ey F ++++=所表示的曲线一定是圆呢?二、合作探究1.222()()x a y b r -+-=中0r >时表示___ _;0r =时表示____________;2.把式子220x y Dx Ey F ++++=配方得_________________________________.(ⅰ)当2240D E F +->时,表示以_________为圆心,_____________ _为半径的圆; (ⅱ)当2240D E F +-=时,方程只有实数解x =______y =______,即只表示__________; (ⅲ)当2240D E F +-<时,方程______(有或没有)实数解,因而它_________________.方程220x y Dx Ey F ++++=表示的曲线_________(一定或不一定)是圆;但圆的方程都能写成_________________的形式,只有当_____________时,它表示的曲线才是圆. 我们把形如220x y Dx Ey F ++++=表示圆的方程称为圆的_________方程.3.圆的一般方程形式上的特点:(1)x 2和y 2的系数_______且________. (2)没有_________这样的二次项.例1:判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径.(1) 224441290x y x y +-++= (2) 2220x y by ++=例2:求过三点(0,0),(1,1),(4,2)O M N 的圆的一般方程,并求圆的半径长和圆心坐标.三、达标检测1.判断下列方程(1) 2260x y y +-=(2)222460x y x y +-+-=(3)224220200x y mx my m +-++-=能否表示圆,若能表示圆,求出圆心和半径.2.ABC ∆的三个顶点分别为(1,5),(2,2),(5,5)A B C ---,求其外接圆的一般方程.四、学习小结用待定系数法求圆的方程的步骤是:1.____________________________________________2._____________________________________________3._____________________________________________高二数学必修2 第四章 圆与方程§4.1.2圆的一般方程(2)【学习目标】掌握圆的一般方程及其特点,会由圆的方程求出圆心、半径会用待定系数法求圆的一般方程.【学习重点】圆的一般方程的特征和求圆的一般方程.【学习难点】用相关点法求轨迹方程.【学习过程】一、自主学习(阅读课本第122-123页,完成自主学习)1.将下列圆的方程化为标准方程,并写出圆心坐标和半径:(1)222220(0);(2)22420.x y my m x y ax ++=≠++-=2.圆C :222440x y x y +--+=的圆心到直线3440x y ++=的距离_____d =.二、合作探究例:已知线段AB 的端点B 的坐标是(4,3),端点A 在圆22(1)4x y ++=上运动,求线段AB 的中点M 的轨迹方程.三、达标检测1.求以(1,1)A -为圆心,且经过点(0,1)B 的圆的一般方程.2.若(5,0),(1,0),(3,3)A B C --三点的外接圆为圆M ,求圆M 的方程,若点(,3)D m 在圆M 上,求m 的值.3.求圆心在直线230x y --=上,且过点(5,2),(3,2)A B -的圆的方程.4.已知点P 在圆的C :2286210x y x y +--+=上运动,求线段OP 的中点坐标M 的轨迹方程.四、学习小结相关点法求轨迹方程的步骤:1._______________________________________________________;2._______________________________________________________;3._______________________________________________________;4._______________________________________________________;。
2.4.2圆的一般方程导学案【学习目标】1.正确理解圆的方程的形式及特点,会由一般式求圆心和半径2.会在不同条件下求圆的一般方程【自主学习】知识点一圆的一般方程【合作探究】探究一 圆的一般方程的概念【例1】若方程x 2+y 2+2mx -2y +m 2+5m =0表示圆,求实数m 的取值范围,并写出圆心坐标和半径. 解 由表示圆的条件,得(2m )2+(-2)2-4(m 2+5m )>0, 解得m <15,即实数m 的取值范围为(-∞,15).圆心坐标为(-m,1),半径为1-5m .归纳总结:形如x 2+y 2+Dx +Ey +F =0的二元二次方程,判定其是否表示圆时可有如下两种方法(1)由圆的一般方程的定义,令D 2+E 2-4F >0成立,则表示圆,否则不表示圆. (2)将方程配方后,根据圆的标准方程的特征求解.应用这两种方法时,要注意所给方程是不是x 2+y 2+Dx +Ey +F =0这种标准形式,若不是,则要化为这种形式再求解.【练习1】(1)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标为________,半径为________.(2)点M 、N 在圆x 2+y 2+kx +2y -4=0上,且点M 、N 关于直线x -y +1=0对称,则该圆的面积为________.【答案】 (1)(-2,-4) 5 (2)9π 解析 (1)由圆的一般方程的形式知, a +2=a 2,得a =2或-1.当a =2时,该方程可化为x 2+y 2+x +2y +52=0,∵D 2+E 2-4F =12+22-4×52<0,∴a =2不符合题意.当a =-1时,方程可化为x 2+y 2+4x +8y -5=0, 即(x +2)2+(y +4)2=25,∴圆心坐标为(-2,-4),半径为5.(2)圆x 2+y 2+kx +2y -4=0的圆心坐标为(-k2,-1),由圆的性质知,直线x -y +1=0经过圆心, ∴-k2+1+1=0,得k =4,∴圆x 2+y 2+4x +2y -4=0的半径为1242+22+16=3,∴该圆的面积为9π. 探究二 求圆的一般方程【例2】已知A (2,2),B (5,3),C (3,-1). (1)求△ABC 的外接圆的方程;(2)若点M (a,2)在△ABC 的外接圆上,求a 的值.解 (1)设△ABC 外接圆的方程为x 2+y 2+Dx +Ey +F =0, 由题意,得⎩⎪⎨⎪⎧22+22+2D +2E +F =0,52+32+5D +3E +F =0,32+(-1)2+3D -E +F =0,解得⎩⎪⎨⎪⎧D =-8,E =-2,F =12.即△ABC 的外接圆的方程为x 2+y 2-8x -2y +12=0.(2)由(1)知,△ABC 的外接圆的方程为x 2+y 2-8x -2y +12=0, ∵点M (a,2)在△ABC 的外接圆上, ∴a 2+22-8a -2×2+12=0, 即a 2-8a +12=0,解得a =2或6.归纳总结:应用待定系数法求圆的方程时应注意(1)如果由已知条件容易求得圆心坐标、半径或需利用圆心坐标或半径列方程,一般采用圆的标准方程,再用待定系数法求出a ,b ,r .(2)如果已知条件与圆心和半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出常数D ,E ,F .【练习2】已知一圆过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段长为43,求圆的方程.解 方法一 (待定系数法)设圆的方程为x 2+y 2+Dx +Ey +F =0, 将P ,Q 的坐标分别代入上式,得⎩⎪⎨⎪⎧4D -2E +F +20=0, ①D -3E -F -10=0. ② 令x =0,得y 2+Ey +F =0, ③由已知得|y 1-y 2|=43,其中y 1,y 2是方程③的根, ∴|y 1-y 2|2=(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=E 2-4F =48. ④ 联立①②④解得⎩⎪⎨⎪⎧D =-2,E =0,F =-12或⎩⎪⎨⎪⎧D =-10,E =-8,F =4.故圆的方程为x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0. 方法二 (几何法)由题意得线段PQ 的垂直平分线方程为x -y -1=0, ∴所求圆的圆心C 在直线x -y -1=0上, 设其坐标为(a ,a -1). 又圆C 的半径长r =|CP |=(a -4)2+(a +1)2.①由已知得圆C 截y 轴所得的线段长为43,而圆心C 到y 轴的距离为|a |, ∴r 2=a 2+(432)2,代入①整理得a 2-6a +5=0, 解得a 1=1,a 2=5, ∴r 1=13,r 2=37.故圆的方程为(x -1)2+y 2=13或(x -5)2+(y -4)2=37.探究三 与圆有关的轨迹方程【例3】已知圆的方程为x 2+y 2-6x -6y +14=0,求过点A (-3,-5)的直线交圆的弦PQ 的中点M 的轨迹方程.解 设所求轨迹上任一点M (x ,y ),圆的方程可化为(x -3)2+(y -3)2=4,圆心坐标为C (3,3).因为CM ⊥AM ,所以k CM ·k AM =-1, 即y -3x -3·y +5x +3=-1, 即x 2+(y +1)2=25.所以弦PQ 的中点M 的轨迹方程为x 2+(y +1)2=25(已知圆内的部分). 归纳总结:求轨迹方程的三种常用方法(1)直接法:根据题目条件,建立坐标系,设出动点坐标,找出动点满足的条件,然后化简、证明.(2)定义法:当动点的运动轨迹符合圆的定义时,可利用定义写出动点的轨迹方程. (3)代入法:若动点P (x ,y )依赖于某圆上的一个动点Q (x 1,y 1)而运动,把x 1,y 1用x ,y 表示,再将Q 点的坐标代入到已知圆的方程中,得P 点的轨迹方程.【练习3】已知点P 在圆C :x 2+y 2-8x -6y +21=0上运动,求线段OP 的中点M 的轨迹方程.解 设点M (x ,y ),点P (x 0,y 0),则⎩⎨⎧x =x 02,y =y2,∴⎩⎪⎨⎪⎧x 0=2x ,y 0=2y . ∵点P (x 0,y 0)在圆C :x 2+y 2-8x -6y +21=0上,∴x 20+y 20-8x 0-6y 0+21=0, ∴(2x )2+(2y )2-8×(2x )-6×(2y )+21=0,21即点M的轨迹方程为x2+y2-4x-3y+4=0.课后作业A 组 基础题一、选择题1.圆x 2+y 2-2x +4y +3=0的圆心到直线x -y =1的距离为( )A .2 B.22C .1 D.2 【答案】 D解析 因为圆心坐标为(1,-2),所以圆心到直线x -y =1的距离为d =|1+2-1|2= 2.2.方程x 2+y 2+2ax +2by +a 2+b 2=0表示的图形为( ) A .以(a ,b )为圆心的圆 B .以(-a ,-b )为圆心的圆 C .点(a ,b ) D .点(-a ,-b ) 【答案】 D解析 原方程可化为(x +a )2+(y +b )2=0,∴⎩⎪⎨⎪⎧ x +a =0,y +b =0,即⎩⎪⎨⎪⎧x =-a ,y =-b . ∴方程表示点(-a ,-b ).3.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( ) A .x 2+y 2-2x +4y =0 B .x 2+y 2+2x +4y =0 C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0 【答案】 C解析 直线(a -1)x -y +a +1=0可化为(-x -y +1)+a (1+x )=0,由⎩⎪⎨⎪⎧-x -y +1=0,x +1=0,得C (-1,2). ∴圆的方程为(x +1)2+(y -2)2=5, 即x 2+y 2+2x -4y =0.4.方程x 2+y 2+ax -2ay +2a 2+3a =0表示的图形是半径为r (r >0)的圆,则该圆的圆心在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】 D解析 因为方程x 2+y 2+ax -2ay +2a 2+3a =0表示的图形是圆, 又方程可化为(x +a 2)2+(y -a )2=-34a 2-3a ,故圆心坐标为(-a 2,a ),r 2=-34a 2-3a .由r 2>0,即-34a 2-3a >0,解得-4<a <0,故该圆的圆心在第四象限.5.若点(1,-1)在圆x 2+y 2-x +y +m =0外,则m 的取值范围是( ) A .m >0 B .m <12C .0<m <12D .0≤m ≤12【答案】 C解析 x 2+y 2-x +y +m =0可化为(x -12)2+(y +12)2=12-m ,则12-m >0,解得m <12. 因为点(1,-1)在圆外,所以1+1-1-1+m >0, 即m >0,所以0<m <12.故选C.6.当点P 在圆x 2+y 2=1上变动时,它与定点Q (3,0)的连线PQ 的中点的轨迹方程是( ) A .(x +3)2+y 2=4 B .(x -3)2+y 2=1 C .(2x -3)2+4y 2=1 D .(2x +3)2+4y 2=1 【答案】 C解析 设P (x 1,y 1),PQ 的中点M 的坐标为(x ,y ), ∵Q (3,0),∴⎩⎨⎧x =x 1+32,y =y 1+02,∴x 1=2x -3,y 1=2y . 又点P 在圆x 2+y 2=1上, ∴(2x -3)2+(2y )2=1,故选C.7.已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.213 C.253 D.43 【答案】 B解析 设△ABC 外接圆的方程为x 2+y 2+Dx +Ey +F =0,由题意得⎩⎨⎧ 1+D +F =0,3+3E +F =0,4+3+2D +3E +F =0,解得D =-2,E =-433,F =1. 即△ABC 外接圆的方程为x 2+y 2-2x -433y +1=0. ∴圆心坐标为(1,233), ∴圆心到原点的距离为 12+(233)2=213. 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为( )A .x 2+y 2-2x -3=0B .x 2+y 2+4x =0C .x 2+y 2+2x -3=0D .x 2+y 2-4x =0【答案】 D解析 设圆心C 的坐标为(a,0),a >0,∴d =|3a +4|5=2, ∴a =2,∴圆C 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0.二、填空题9.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a =________.【答案】 -2解析 由题意知,直线l :x -y +2=0过圆心(-1,-a 2),则-1+a 2+2=0,得a =-2. 10.如果圆的方程为x 2+y 2+kx +2y +k 2=0,那么当圆的面积最大时,圆心坐标为_____.【答案】 (0,-1)解析 因为r =12k 2+4-4k 2=124-3k 2, 所以当k =0时,r 最大,此时圆的面积最大,圆的方程可化为x 2+y 2+2y =0,即x 2+(y +1)2=1,圆心坐标为(0,-1).11.已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称图形,则a -b 的取值范围是________.【答案】 (-∞,1)解析 由题意知,直线y =2x +b 过圆心,而圆心坐标为(-1,2),代入直线方程,得b =4, 所以圆的方程化为标准方程为(x +1)2+(y -2)2=5-a ,所以a <5,由此得a -b <1.三、解答题12.已知圆C :x 2+y 2+Dx +Ey +3=0,圆心在直线x +y -1=0上,且圆心在第二象限,半径长为2,求圆的一般方程.解 圆心C 的坐标为(-D 2,-E 2), 因为圆心在直线x +y -1=0上,所以-D 2-E 2-1=0,即D +E =-2. ①又r =D 2+E 2-122=2,所以D 2+E 2=20. ②由①②可得⎩⎪⎨⎪⎧ D =2,E =-4或⎩⎪⎨⎪⎧D =-4,E =2. 又圆心在第二象限,所以-D 2<0,即D >0, 所以⎩⎪⎨⎪⎧D =2,E =-4, 所以圆的一般方程为x 2+y 2+2x -4y +3=0.13.如图,已知线段AB 的中点C 的坐标是(4,3),端点A 在圆(x +1)2+y 2=4上运动,求线段AB 的端点B 的轨迹方程.解 设B 点坐标是(x ,y ),点A 的坐标是(x 0,y 0),由于点C 的坐标是(4,3)且点C 是线段AB的中点,所以4=x 0+x 2,3=y 0+y 2, 于是有x 0=8-x ,y 0=6-y . ①因为点A 在圆(x +1)2+y 2=4上运动,所以点A 的坐标满足方程(x +1)2+y 2=4,即(x 0+1)2+y 20=4, ②把①代入②,得(8-x +1)2+(6-y )2=4,整理,得(x -9)2+(y -6)2=4.所以点B 的轨迹方程为(x -9)2+(y -6)2=4.B 组 能力提升一、选择题1.若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第二象限内,则a 的取值范围为( )A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(2,+∞) 【答案】 D解析 曲线C 的方程可化为(x +a )2+(y -2a )2=4,则曲线C 表示的是以(-a,2a )为圆心,2为半径的圆.要使圆C 上所有的点均在第二象限内,则圆心(-a,2a )必须在第二象限,从而有a >0,并且圆心到两坐标轴的最短距离应该大于圆C 的半径.易知圆心到两坐标轴的最短距离为|-a |,则有|-a |>2,故a >2.2.使方程x 2+y 2-ax +2ay +2a 2+a -1=0表示圆的实数a 的可能取值为( )A .-2B .0C .1D .34【答案】B[该方程若表示圆,则有(-a )2+(2a )2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23,其中B 项满足条件,应选B.]3.关于方程x 2+y 2+2ax -2ay =0表示的圆,下列叙述正确的是( )A .圆心在直线y =-x 上B .圆心在直线y =x 上C .圆过原点D .圆的半径为2|a |【答案】ACD[圆x 2+y 2+2ax -2ay =0可化为(x +a )2+(y -a )2=2a 2.圆心坐标为(-a ,a )适合方程y =-x .∴A 正确,不适合y =x ,∴B 错误,把(0,0)代入圆的方程适合,∴C 正确,又r 2=2a 2,∴r =2|a |,∴D 正确.故选ACD.]二、填空题4.M (3,0)是圆C :x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程为________,最短的弦所在的直线方程是________.【答案】x -y -3=0 x +y -3=0[由圆的几何性质可知,过圆内一点M 的最长的弦是直径,最短的弦是与该点和圆心的连线CM 垂直的弦.易求出圆心为C (4,1),k CM =1-04-3=1,∴最短的弦所在的直线的斜率为-1,由点斜式,分别得到方程y =x -3和y =-(x -3),即x -y -3=0和x +y -3=0.] 5.过点(1,2)总可作两条直线与圆2222150x y kx y k ++++-=相切,则实数k 的取值范围是___________.【答案】8332,⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【解析】解:把圆的方程化为标准方程得22213()(1)1624x k y k +++=-,所以231604k ->,解得k <<, 因为过点(1,2)总可作两条直线与圆2222150x y kx y k ++++-=相切,所以可知点(1,2)在圆外,所以2144150k k ++++->,即可(2)(3)0k k -+>, 解得2k >或3k <-,所以实数k 的取值范围为8332,33⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故答案为:8332,33⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭三、解答题 6.设△ABC 的顶点坐标A (0,a ),B (-3a ,0),C (3a ,0),其中a >0,圆M 为△ABC 的外接圆.(1)求圆M 的方程;(2)当a 变化时,圆M 是否过某一定点?请说明理由.[解] (1)设圆M 的方程为x 2+y 2+Dx +Ey +F =0.∴圆M 过点A (0,a ),B (-3a ,0),C (3a ,0),∴⎩⎨⎧ a 2+aE +F =0,3a -3aD +F =0,3a +3aD +F =0,解得D =0,E =3-a ,F =-3a .∴圆M 的方程为x 2+y 2+(3-a )y-3a =0.(2)圆M 的方程可化为(3+y )a -(x 2+y 2+3y )=0.由⎩⎪⎨⎪⎧3+y =0,x 2+y 2+3y =0, 解得x =0,y =-3.∴圆M 过定点(0,-3).7.已知方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示的图形是圆.(1)求t 的取值范围;(2)求其中面积最大的圆的方程;(3)若点P (3,4t 2)恒在所给圆内,求t 的取值范围.解 (1)已知方程可化为(x -t -3)2+(y +1-4t 2)2=(t +3)2+(1-4t 2)2-16t 4-9, ∴r 2=-7t 2+6t +1>0,由二次函数的图象,解得-17<t <1.∴t 的取值范围为(-17,1). (2)由(1)知r =-7t 2+6t +1= -7(t -37)2+167, ∴当t =37∈(-17,1)时,r max =477,此时圆的面积最大, 所对应的圆的方程是(x -247)2+(y +1349)2=167. (3)当且仅当32+(4t 2)2-2(t +3)×3+2(1-4t 2)×(4t 2)+16t 4+9<0时,点P 恒在圆内, ∴8t 2-6t <0,∴0<t <34,满足圆的定义. ∴t 的取值范围为(0,34).。
高一数学必修2导学案 主备人: 备课时间: 备课组长:圆的标准方程一、学习目标学问与技能:1、驾驭圆的标准方程,能依据圆心、半径写出圆的标准方程。
2、会用待定系数法求圆的标准方程。
过程与方法:进一步培育学生能用解析法探讨几何问题的实力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,留意培育学生视察问题、发觉问题和解决问题的实力。
情感看法与价值观:通过运用圆的学问解决实际问题的学习,从而激发学生学习数学的热忱和爱好。
二、学习重点、难点: 学习重点: 圆的标准方程学习难点: 会依据不同的已知条件,利用待定系数法求圆的标准方程。
三、运用说明及学法指导:1、先阅读教材118—120页,然后细致审题,细致思索、独立规范作答。
2、不会的,模棱两可的问题标记好。
3、对小班学生要求完成全部问题,试验班完成90℅以上,平行班完成80℅以上 四、学问链接: 1.两点间的距离公式?2.具有什么性质的点的轨迹称为圆?圆的定义?平面内与肯定点的距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径. 五、学习过程:(自主探究)A 问题1阅读教材118页内容,回答问题已知在平面直角坐标系中,圆心A 的坐标用(a ,b )来表示,半径用r 来表示,则我们如何写出圆的方程?问题2圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?例1:1写出下列各圆的方程:(1)圆心在原点,半径是3; (2) 圆心在C(3,4),半径是5 (3)经过点P(5,1),圆心在点C(8,-3); 2、写出下列各圆的圆心坐标和半径:(1) (x -1)2 + y 2 = 6 (2) (x +1)2+(y -2)2= 9(3) 222()()x a y a ++=例2:写出圆心为(2,3)A -半径长等于5的圆的方程,推断12(5,7),(1)M M --是否在这个圆上。
问题3点M 0(x 0,y 0)在圆(x-a)2+(y-b)2=r 2上、内、外的条件是什么?例3△ABC 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程例4已知圆心为C 的圆经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程.注:比较例3、例4可得出△ABC 外接圆的标准方程的两种求法:1.依据题设条件,列出关于a b r 、、的方程组,解方程组得到a b r 、、得值,写出圆的标准方程.2.依据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程. 六、达标检测1、已知两点P 1(4,9)和P 2(6,3),求以P 1P 2为直径的圆的方程,试推断点M(6,9)、N(3,3)、 Q(5,3)是在圆上,在圆内,还是在圆外?2、求圆心C 在直线 x+2y+4=0 上,且过两定点A(-1 , 1)、B(1,-1)的圆的方程。
4. 1.2 圆的一般方程【教学目标】1.使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.2.使学生掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方法,熟练地用待定系数法由已知条件导出圆的方程,培养学生用配方法和待定系数法解决实际问题的能力.3.通过对待定系数法的学习为进一步学习数学和其他相关学科的基础知识和基本方法打下牢固的基础.【教学重难点】教学重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由已知条件导出圆的方程.教学难点:圆的一般方程的特点.【教学过程】(一)情景导入、展示目标前面,我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成x2+y2+Dx+Ey+F=0.请大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题.复习引出课题为“圆的一般方程”.(二)检查预习、交流展示1.写出圆的标准方程.2.写出圆的标准方程中的圆心与半径.(三)合作探究、精讲精练探究一:圆的一般方程的定义1.分析方程x2+y2+Dx+Ey+F=0表示的轨迹将方程x2+y2+Dx+Ey+F=0左边配方得:(1)(1)当D2+E2-4F>0时,方程(1)与标准方程比较,可以看出方程半径的圆;(3)当D2+E2-4F<0时,方程x2+y2+Dx+Ey+F=0没有实数解,因而它不表示任何图形.这时,教师引导学生小结方程x2+y2+Dx+Ey+F=0的轨迹分别是圆、法.2.引出圆的一般方程的定义当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0称为圆的一般方程.探究二:圆的一般方程的特点请同学们分析下列问题:问题:比较二元二次方程的一般形式Ax2+Bxy+Cy2+Dx+Ey+F=0.(2)与圆的一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0).(3)的系数可得出什么结论?启发学生归纳结论.当二元二次方程 Ax2+Bxy+Cy2+Dx+Ey+F=0具有条件:(1)x2和y2的系数相同,不等于零,即A=C≠0;(2)没有xy项,即B=0;(3)D2+E2-4AF>0.它才表示圆.条件(3)通过将方程同除以A或C配方不难得出.强调指出:(1)条件(1)、(2)是二元二次方程(2)表示圆的必要条件,但不是充分条件;(2)条件(1)、(2)和(3)合起来是二元二次方程(2)表示圆的充要条件.例1 求下列圆的半径和圆心坐标:(1)x 2+y 2-8x+6y=0, (2)x 2+y 2+2by=0.解析:先配方,将方程化为标准形式,再求圆心和半径.解:(1)圆心为(4,-3),半径为5;(2)圆心为(0,-b),半径为|b|,注意半径不为b . 点拨:由圆的一般方程求圆心坐标和半径,一般用配方法,这要熟练掌握. 变式训练1:1.方程x 2+y 2+2kx +4y +3k +8=0表示圆的充要条件是( ) A.k >4或者k <-1 B.-1<k <4 C.k =4或者k =-1 D.以上答案都不对2.圆x 2+y 2+Dx +Ey +F =0与x 轴切于原点,则有( ) A.F =0,DE ≠0 B.E 2+F 2=0,D ≠0 C.D 2+F 2=0,E ≠0 D.D 2+E 2=0,F ≠0 答案:1.A 2.C例2 求过三点O(0,0)、A(1,1)、B(4,2)的圆的方程.解析:已知圆上的三点坐标,可设圆的一般方程,用待定系数法求圆的方程. 解:设所求圆的方程为x 2+y 2+Dx+Ey+F=0,由O 、A 、B 在圆上,则有解得:D=-8,E=6,F=0, 故所求圆的方程为x 2+y 2-8x+6=0. 点拨:1.用待定系数法求圆的方程的步骤: (1)根据题意设所求圆的方程为标准式或一般式; (2)根据条件列出关于a 、b 、r 或D 、E 、F 的方程;(3)解方程组,求出a 、b 、r 或D 、E 、F 的值,代入所设方程,就得要求的方程. 2.关于何时设圆的标准方程,何时设圆的一般方程:一般说来,如果由已知条件容易求圆心的坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程;如果已知条件和圆心坐标或半径都无直接关系,往往设圆的一般方程.变式训练2: 求圆心在直线 l :x+y=0上,且过两圆C 1∶x 2+y 2-2x+10y-24=0和C 2∶x 2+y 2+2x+2y-8=0的交点的圆的方程.解:解方程组⎩⎨⎧=+++=++08-2y 2x y x 024-10y 2x -y x 2222,得两圆交点为(-4,0),(0,2).设所求圆的方程为(x-a)2+(y-b)2=r 2,因为两点在所求圆上,且圆心在直线l 上所以得方程组为⎪⎩⎪⎨⎧--a+b=0=r+(2-b)a=r+ba222222)4( 解得a=-3,b=3,r=10. 故所求圆的方程为:(x+3)2+(y-3)2=10. (四)反馈测试 导学案当堂检测(五)总结反思、共同提高1.圆的一般方程的定义及特点; 2.用配方法求出圆的圆心坐标和半径; 3.用待定系数法,导出圆的方程. 【板书设计】一:圆的一般方程的定义1.分析方程x 2+y 2+Dx+Ey+F=0表示的轨迹 2.圆的一般方程的定义 二:圆的一般方程的特点 (1) (2) (3) 例1 变式训练1: 例2 变式训练2: 【作业布置】 导学案课后练习与提高4. 1. 2 圆的一般方程课前预习学案一.预习目标回顾圆的标准方程,了解用圆的一般方程及其特点.二.预习内容1.圆的标准方程形式是什么?圆心和半径呢?2.圆的一般方程形式是什么?圆心和半径呢?3.圆的方程的求法有哪些?三.提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中课内探究学案一.学习目标1.掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.2.掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方法,熟练地用待定系数法由已知条件导出圆的方程,培养用配方法和待定系数法解决实际问题的能力.3.通过对待定系数法的学习为进一步学习数学和其他相关学科的基础知识和基本方法打下牢固的基础.学习重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由已知条件导出圆的方程.学习难点:圆的一般方程的特点.二.学习过程前面,我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成x2+y2+Dx+E y+F=0.请大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题.复习引出课题为“圆的一般方程”.探究一:圆的一般方程的定义1.分析方程x2+y2+Dx+Ey+F=0表示的轨迹2.引出圆的一般方程的定义探究二:圆的一般方程的特点请同学们分析下列问题:问题:比较二元二次方程的一般形式Ax2+Bxy+Cy2+Dx+Ey+F=0.(2)与圆的一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0).(3)的系数可得出什么结论?例1 求下列圆的半径和圆心坐标:(1)x2+y2-8x+6y=0,(2)x2+y2+2by=0.变式训练1:1.方程x2+y2+2kx+4y+3k+8=0表示圆的充要条件是()A.k>4或者k<-1 B.-1<k<4C.k=4或者k=-1 D.以上答案都不对2.圆x2+y2+Dx+Ey+F=0与x轴切于原点,则有()A.F=0,DE≠0 B.E2+F2=0,D≠0C.D2+F2=0,E≠0 D.D2+E2=0,F≠0例2 求过三点O(0,0)、A(1,1)、B(4,2)的圆的方程.变式训练2:求圆心在直线l:x+y=0上,且过两圆C1∶x2+y2-2x+10y-24=0和C2∶x2+y2+2x+2y-8=0的交点的圆的方程.三.反思总结四.当堂检测 1.方程342-+-=x x y 表示的曲线是( )A.在x 轴上方的圆 B.在y 轴右方的圆 C.x 轴下方的半圆 D.x 轴上方的半圆2.以(0,0)、(6,-8)为直径端点的圆的方程是 . 3.求经过两圆x 2+y 2+6x-4=0和x 2+y 2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.参考答案:1.D 2.x 2+y 2-6x+8y=0 3.x 2+y 2-x+7y-32=0 课后练习与提高1.方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示圆,则实数m 的取值范围是( )A.-71<m <1 B.-1<m <71C.m <-71或m >1 D.m <-1或m >712.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于直线x +y =0对称,则有( )A.D +E =0 B.D +F =0 C.E +F =0 D.D +E +F =0 3.经过三点A (0,0)、B (1,0)、C (2,1)的圆的方程为( )A.x 2+y 2+x -3y -2=0 B. x 2+y 2+3x +y -2=0 C. x 2+y 2+x +3y =0 D. x 2+y 2-x -3y =04.方程220x y x y k +-++=表示一个圆,则实数k 的取值范围是 . 5.过点A (-2,0),圆心在(3,-2)的圆的一般方程为 . 6.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点的轨迹方程,并说明它的轨迹是什么.。
1.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2,其中圆心是C(a,b),半径长是r.特别地,圆心在原点的圆的标准方程为x2+y2=r2.圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).(2)由于圆的方程均含有三个参变量(a,b,r或D,E,F),而确定这三个参数必须有三个独立的条件,因此,三个独立的条件可以确定一个圆.(3)求圆的方程常用待定系数法,此时要善于根据已知条件的特征来选择圆的方程.如果已知圆心或半径长,或圆心到直线的距离,通常可用圆的标准方程;如果已知圆经过某些点,通常可用圆的一般方程.2.点与圆的位置关系(1)点在圆上①如果一个点的坐标满足圆的方程,那么该点在圆上.②如果点到圆心的距离等于半径,那么点在圆上.(2)点不在圆上①若点的坐标满足F(x,y)>0,则该点在圆外;若满足F(x,y)<0,则该点在圆内.②点到圆心的距离大于半径则点在圆外;点到圆心的距离小于半径则点在圆内.注意:若P点是圆C外一定点,则该点与圆上的点的最大距离:d max=|PC|+r;最小距离:d min=|PC|-r.3.直线与圆的位置关系直线与圆的位置关系有三种:相交、相离、相切,其判断方法有两种:代数法(通过解直线方程与圆的方程组成的方程组,根据解的个数来判断)、几何法(由圆心到直线的距离d与半径长r的大小关系来判断).(1)当直线与圆相离时,圆上的点到直线的最大距离为d+r,最小距离为d-r,其中d为圆心到直线的距离.(2)当直线与圆相交时,圆的半径长、弦心距、弦长的一半构成直角三角形.(3)当直线与圆相切时,经常涉及圆的切线.①若切线所过点(x0,y0)在圆x2+y2=r2上,则切线方程为x0x+y0y=r2;若点(x0,y0)在圆(x -a)2+(y-b)2=r2上,则切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.②若切线所过点(x0,y0)在圆外,则切线有两条.此时解题时若用到直线的斜率,则要注意斜率不存在的情况也可能符合题意.(4)过直线l:Ax+By+C=0(A,B不同时为0)与圆C:x2+y2+Dx+Ey+F=0(D2+E2-4F>0)的交点的圆系方程是x2+y2+Dx+Ey+F+λ(Ax+By+C)=0,λ是待定的系数.4.圆与圆的位置关系两个不相等的圆的位置关系有五种:外离、外切、相交、内切、内含,其判断方法有两种:代数法(通过解两圆的方程组成的方程组,根据解的个数来判断)、几何法(由两圆的圆心距d 与半径长r,R的大小关系来判断).(1)求相交两圆的弦长时,可先求出两圆公共弦所在直线的方程,再利用相交两圆的几何性质和勾股定理来求弦长.(2)过圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的直线方程为(D1-D2)x+(E1-E2)y+F1-F2=0.5.空间直角坐标系(1)建立的空间直角坐标系要遵循右手法则,空间上的任意一点都与有序实数组(x,y,z)一一对应.(2)空间中P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=(x1-x2)2+(y1-y2)2+(z1-z2)2.(3)可利用“关于谁对称,谁保持不变,其余坐标相反”的方法来求空间直角坐标系下的对称点.题型一 求圆的方程求圆的方程主要是联想圆系方程、圆的标准方程和一般方程,利用待定系数法解题.采用待定系数法求圆的方程的一般步骤为:(1)选择圆的方程的某一形式;(2)由题意得a ,b ,r (或D ,E ,F )的方程(组);(3)解出a ,b ,r (或D ,E ,F );(4)代入圆的方程.例1 有一圆与直线l :4x -3y +6=0相切于点A (3,6),且经过点B (5,2),求此圆的方程. 解 方法一 设圆的方程为(x -a )2+(y -b )2=r 2,则圆心为C (a ,b ),由|CA |=|CB |,CA ⊥l , 得⎩⎪⎨⎪⎧(a -3)2+(b -6)2=(a -5)2+(b -2)2=r 2,b -6a -3×43=-1.解得a =5,b =92,r 2=254.∴圆的方程为(x -5)2+⎝⎛⎭⎫y -922=254. 方法二 设圆的方程为x 2+y 2+Dx +Ey +F =0,圆心为C ,由CA ⊥l ,A (3,6)、B (5,2)在圆上,得⎩⎪⎨⎪⎧32+62+3D +6E +F =0,52+22+5D +2E +F =0,-E 2-6-D 2-3×43=-1,解得⎩⎪⎨⎪⎧D =-10,E =-9,F =39.∴所求圆的方程为:x 2+y 2-10x -9y +39=0.方法三 设圆心为C ,则CA ⊥l ,又设AC 与圆的另一交点为P ,则CA 方程为y -6=-34(x-3),即3x +4y -33=0. 又k AB =6-23-5=-2,∴k BP =12,∴直线BP 的方程为x -2y -1=0.解方程组⎩⎪⎨⎪⎧ 3x +4y -33=0,x -2y -1=0,得⎩⎪⎨⎪⎧x =7,y =3.∴P (7,3).∴圆心为AP 中点⎝⎛⎭⎫5,92,半径为|AC |=52.∴所求圆的方程为(x -5)2+⎝⎛⎭⎫y -922=254. 跟踪训练1 若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是______. 答案 ()x -22+⎝⎛⎭⎫y +322=254解析 因为圆的弦的垂直平分线必过圆心,且圆经过点(0,0)和(4,0),所以设圆心为(2,m ).又因为圆与直线y =1相切,所以(4-2)2+(0-m )2=|1-m |,所以m 2+4=m 2-2m +1,解得m =-32,所以圆的方程为(x -2)2+⎝⎛⎭⎫y +322=254. 题型二 直线与圆、圆与圆的位置关系(1)直线与圆的位置关系是高考考查的重点,切线问题更是重中之重,判断直线与圆的位置关系以几何法为主,解题时应充分利用圆的几何性质以简化解题过程.(2)解决圆与圆的位置关系的关键是抓住它的几何特征,利用两圆圆心距与两圆半径的和、差的绝对值的大小来确定两圆的位置关系,以及充分利用它的几何图形的形象直观性来分析问题.例2 如图所示,在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程; (2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.解 (1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在.设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d ,因为直线l 被圆C 1截得的弦长为23,所以d =22-(3)2=1.由点到直线的距离公式得d =|-3k -1-4k |1+k 2,从而k (24k +7)=0.即k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k (x -a ).因为圆C 1和圆C 2的半径相等,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等,即|1-k (-3-a )-b |1+k 2=⎪⎪⎪⎪5+1k (4-a )-b 1+1k2,整理得|1+3k +ak -b |=|5k +4-a -bk |,从而1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b = -5k -4+a +bk ,即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5, 因为k 的取值范围有无穷多个,所以⎩⎪⎨⎪⎧ a +b -2=0,b -a +3=0或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0,解得⎩⎨⎧a =52,b =-12或⎩⎨⎧a =-32,b =132.这样点P 只可能是点P 1⎝⎛⎭⎫52,-12或点P 2⎝⎛⎭⎫-32,132. 经检验点P 1和P 2满足题目条件.跟踪训练2 已知圆M :(x -1)2+(y -1)2=4,直线l 过点P (2,3)且与圆M 交于A ,B 两点,且|AB |=23,求直线l 的方程.解 (1)当直线l 存在斜率时,设直线l 的方程为y -3=k (x -2),即kx -y +3-2k =0.作示意图如图,作MC ⊥AB 于C . 在Rt △MBC 中, |BC |=3,|MB |=2, 故|MC |=|MB |2-|BC |2=1,由点到直线的距离公式得|k -1+3-2k |k 2+1=1, 解得k =34.所以直线l 的方程为3x -4y +6=0.(2)当直线l 的斜率不存在时,其方程为x =2, 且|AB |=23,所以适合题意.综上所述,直线l 的方程为3x -4y +6=0或x =2. 题型三 与圆有关的最值问题在解决有关直线与圆的最值和范围问题时,最常用的方法是函数法,把要求的最值或范围表示为某个变量的关系式,用函数或方程的知识,尤其是配方的方法求出最值或范围;除此之外,数形结合的思想方法也是一种重要方法,直接根据图形和题设条件,应用图形的直观位置关系得出要求的范围.例3 在△ABO 中,|OB |=3,|OA |=4,|AB |=5,P 是△ABO 的内切圆上一点,求以|P A |,|PB |,|PO |为直径的三个圆面积之和的最大值与最小值. 解 如图所示,建立平面直角坐标系,使A ,B ,O 三点的坐标分别为A (4,0),B (0,3),O (0,0). 设内切圆的半径为r ,点P 的坐标为(x ,y ), 则2r +|AB |=|OA |+|OB |,∴r =1.故内切圆的方程为(x -1)2+(y -1)2=1, 整理得x 2+y 2-2x -2y =-1.①由已知得|P A |2+|PB |2+|PO |2=(x -4)2+y 2+x 2+(y -3)2+x 2+y 2 =3x 2+3y 2-8x -6y +25.② 由①可知x 2+y 2-2y =2x -1,③将③代入②得|P A |2+|PB |2+|PO |2=3(2x -1)-8x +25=-2x +22. ∵0≤x ≤2,∴|P A |2+|PB |2+|PO |2的最大值为22,最小值为18.又三个圆的面积之和为π⎝⎛⎭⎫|P A |22+π⎝⎛⎭⎫|PB |22+π⎝⎛⎭⎫|PO |22=π4(|P A |2+|PB |2+|PO |2), ∴以|P A |,|PB |,|PO |为直径的三个圆面积之和的最大值为112π,最小值为92π.跟踪训练3 已知实数x ,y 满足方程(x -3)2+(y -3)2=6,求x +y 的最大值和最小值. 解 设x +y =t ,由题意,知直线x +y =t 与圆(x -3)2+(y -3)2=6有公共点, 所以d ≤r ,即|3+3-t |2≤ 6.所以6-23≤t ≤6+2 3.所以x +y 的最小值为6-23,最大值为6+2 3.题型四 分类讨论思想分类讨论思想是中学数学的基本思想之一,是历年高考的重点,其实质就是将整体问题化为部分问题来解决,化成部分问题后,从而增加了题设的条件.在用二元二次方程表示圆时要分类讨论,在求直线的斜率问题时,用斜率表示直线方程时都要分类讨论.例4 已知直线l 经过点P (-4,-3),且被圆(x +1)2+(y +2)2=25截得的弦长为8,求直线l 的方程.解 圆(x +1)2+(y +2)2=25的圆心为(-1,-2),半径r =5.①当直线l 的斜率不存在时,则l 的方程为x =-4,由题意可知直线x =-4符合题意. ②当直线l 的斜率存在时,设其方程为y +3=k (x +4), 即kx -y +4k -3=0. 由题意可知⎝⎛⎭⎪⎫|-k +2+4k -3|1+k 22+⎝⎛⎭⎫822=52,解得k =-43,即所求直线方程为4x +3y +25=0.综上所述,满足题设的l 方程为x =-4或4x +3y +25=0.跟踪训练4 如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P . (1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. 解 (1)设圆A 的半径为r .由于圆A 与直线l 1:x +2y +7=0相切, ∴r =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意;②当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +2),即kx -y +2k =0.连接AQ ,则AQ ⊥MN . ∵|MN |=219, ∴|AQ |=20-19=1, 则由|AQ |=|k -2|k 2+1=1,得k =34.直线方程为3x -4y +6=0.综上,直线l 的方程为x =-2或3x -4y +6=0. 题型五 数形结合思想数形结合思想:在解析几何中,数形结合思想是必不可少的,而在本章中,数形结合思想最主要体现在几何条件的转化上,尤其是针对“方法梳理”中提到的第二类问题,往往题目会给出动点满足的几何条件,这就不能仅仅依靠代数来“翻译”了,必须结合图形,仔细观察分析,有时可能需要比较“绕”的转化才能将一个看似奇怪(或者不好利用)的几何条件列出一个相对简洁的式子,但这样可以在很大程度上减少计算量,大大降低出错的机率. 例5 已知三条直线l 1:x -2y =0,l 2:y +1=0,l 3:2x +y -1=0两两相交,先画出图形,再求过这三个交点的圆的方程. 解 画图如下:由直线方程易知l 2平行于x 轴,l 1与l 3互相垂直, ∴三个交点A ,B ,C 构成直角三角形, ∴经过A ,B ,C 三点的圆就是以AB 为直径的圆.由⎩⎪⎨⎪⎧ x -2y =0,y +1=0,解得⎩⎪⎨⎪⎧x =-2,y =-1.∴点A 的坐标为(-2,-1).由⎩⎪⎨⎪⎧ 2x +y -1=0,y +1=0,解得⎩⎪⎨⎪⎧x =1,y =-1.∴点B 的坐标为(1,-1).∴线段AB 的中点坐标为(-12,-1).又∵|AB |=|1-(-2)|=3.∴圆的方程是(x +12)2+(y +1)2=94.跟踪训练5 已知点A (-1,0),B (2,0),动点M (x ,y )满足|MA ||MB |=12,设动点M 的轨迹为C .(1)求动点M 的轨迹方程,并说明轨迹C 是什么图形; (2)求动点M 与定点B 连线的斜率的最小值;(3)设直线l :y =x +m 交轨迹C 于P ,Q 两点,是否存在以线段PQ 为直径的圆经过点A ?若存在,求出实数m 的值;若不存在,请说明理由. 解 (1)由题意,得|MA |=(x +1)2+y 2, |MB |=(x -2)2+y 2.∵|MA ||MB |=12,∴(x +1)2+y 2(x -2)2+y 2=12, 化简,得(x +2)2+y 2=4.∴轨迹C 是以(-2,0)为圆心,2为半径的圆. (2)设过点B 的直线为y =k (x -2). 由题意,得圆心到直线的距离d =|-4k |k 2+1≤2.解得-33≤k ≤33.即k min =-33. (3)假设存在,设P (x 1,y 1),Q (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =x +m ,(x +2)2+y 2=4,得2x 2+2(m +2)x +m 2=0. ∴x 1+x 2=-m -2,x 1x 2=m 22. ①y 1+y 2=m -2,y 1y 2=m 2-4m2. ②设以PQ 为直径经过点A 的圆的圆心为O ,则O 的坐标为O (x 1+x 22,y 1+y 22),|OA |=|OP |, (x 1+x 22+1)2+(y 1+y 22)2 =(x 1+x 22-x 1)2+(y 2-y 12)2. 整理得(x 1+x 2+2)2+(y 1+y 2)2=(x 1+x 2)2+(y 1+y 2)2-4x 1x 2-4y 1y 2,③ 将①②代入③得m 2-3m -1=0, 解得m =3±132.故当m =3±132时,存在线段PQ 为直径的圆经过点A .初中我们从平面几何的角度研究过圆的问题,本章则主要是利用圆的方程从代数角度研究了圆的性质,如果我们能够将两者有机地结合起来解决圆的问题,将在处理圆的有关问题时收到意想不到的效果.圆是非常特殊的几何图形,它既是中心对称图形又是轴对称图形,它的许多几何性质在解决圆的问题时往往起到事半功倍的作用,所以在实际解题中常用几何法,充分结合圆的平面几何性质.那么,我们来看经常使用圆的哪些几何性质:(1)圆的切线的性质:圆心到切线的距离等于半径;切点与圆心的连线垂直于切线;切线在切点处的垂线一定经过圆心;圆心、圆外一点及该点所引切线的切点构成直角三角形的三个顶点等等.(2)直线与圆相交的弦的有关性质:相交弦的中点与圆心的连线垂直于弦所在直线;弦的垂直平分线(中垂线)一定经过圆心;弦心距、半径、弦长的一半构成直角三角形的三边,满足勾股定理.(3)与直径有关的几何性质:直径是圆的最长的弦;圆的对称轴一定经过圆心;直径所对的圆周角是直角.。
综合检测一、选择题1.点P (x 0,y 0)在圆x 2+y 2=r 2内,则直线x 0x +y 0y =r 2和已知圆的公共点的个数为( ) A.0 B.1 C.2 D.不能确定 答案 A 解析 ∵点P在圆内,∴x 20+y 20<r 2.又∵圆心O (0,0)到直线x 0x +y 0y =r 2的距离d =|r 2|x 20+y 2>r ,∴直线与圆无交点.2.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A.(0,4) B.(0,2) C.(-2,4) D.(4,-2) 答案 B解析 因为直线l 1与直线l 2关于点(2,1)对称,且直线l 1恒过定点(4,0),所以直线l 2必过点(4,0)关于点(2,1)对称的点(0,2).3.已知在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使其绕直线BC 旋转一周,则所形成的几何体的体积是( ) A.32π B.52π C.72π D.92π 答案 A解析 所得几何体是大圆锥挖去同底的一个小圆锥,所以所形成几何体的体积V =V 大圆锥-V 小圆锥=13πr 2(1+1.5-1)=13π(3)2×1.5=32π.4.若点P (x ,y )满足x 2+y 2-2x -2y -2≤0,则点P 到直线3x +4y -22=0的最大距离是( ) A.5 B.1 C.2-11 D.2+1 答案 A解析 由题意知,点P 在以(1,1)为圆心,2为半径的圆上或其内部,因为圆心到直线的距离d =|3+4-22|32+42=3,所以点P 到直线的最大距离为d +r =5.5.已知圆C :(x -a )2+(y -2)2=4(a >0)及直线l :x -y +3=0,当直线l 被圆C 截得的弦长为23时,则a 等于( )A. 2B.2- 2C.2-1D.2+1 答案 C解析 由题意,得⎝⎛⎭⎪⎫|a -2+3|22+(3)2=4(a >0),解得a =2-1.6.已知S ,A ,B ,C 是球O 表面上的点,若SA ⊥平面ABC ,AB ⊥BC ,SA =AB =1,BC =2,则球O的表面积为()A.4πB.3πC.2πD.π答案A解析由已知得球O的直径是以S,A,B,C为4个顶点的长方体的体对角线,即2R=12+(2)2+12=2,∴R=1,∴球O的表面积为4πR2=4π.①若a∥M,b∥M,则a∥b;②若b⊂M,a∥b,则a∥M;③若a⊥c,b⊥c,则a∥b;④若a⊥M,b⊥M,则a∥b.A.0个B.1个C.2个D.3个答案B解析①中可能有a∥b,a与b相交,a与b异面;②中可能有a∥M或a⊂M;③中a与b 可能平行、相交或异面;④正确,故选B.8.设长方体的长,宽,高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2答案B解析由题意可知,球的直径等于长方体的体对角线的长度,故2R=4a2+a2+a2,解得R=62a,所以球的表面积S=4πR2=6πa2.9.已知正三棱锥V-ABC的正视图、俯视图如图所示,其中VA=4,AC=23,则该三棱锥的表面积为()A.339B.339+ 3C.339+3 3D.39+33答案C解析由正视图与俯视图可得正三棱锥的直观图,如图所示,且VA=VB=VC=4,AB=BC =AC=2 3.取BC的中点D,连接VD,则VD⊥BC.有VD=VB2-BD2=42-(3)2=13,则S △VBC =12×VD ×BC =12×13×23=39,S △ABC =12×(23)2×32=3 3.所以三棱锥V -ABC 的表面积为3S △VBC +S △ABC =339+33=3(39+3).10.过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎝⎛⎦⎤0,π3C.⎣⎡⎦⎤0,π6D.⎣⎡⎦⎤0,π3 答案 D解析 方法一 如图,过点P 作圆的切线P A ,PB ,切点为A ,B . 由题意知|OP |=2,|OA |=1, 则sin α=12,所以α=π6,∠BP A =π3.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3.选D. 方法二 设过点P 的直线方程为y =k (x +3)-1,则由直线和圆有公共点知|3k -1|1+k 2≤1.解得0≤k ≤ 3.故直线l 的倾斜角的取值范围是[0,π3].二、填空题11.已知A (2,5,-6),点P 在y 轴上,P A =7,则点P 的坐标为________. 答案 (0,8,0)或(0,2,0)解析 设点P (0,y,0),则P A =22+(5-y )2+(-6)2=7,解得y =2或y =8.故点P 的坐标为(0,8,0)或(0,2,0).12.直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________. 答案 2解析 依题意,不妨设直线y =x +a 与单位圆相交于A ,B 两点, 则∠AOB =90°.如图,此时a =1,b =-1, 满足题意, 所以a 2+b 2=2.13.过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.答案 22解析 借助圆的几何性质,确定圆的最短弦的位置,利用半径、弦心距及半弦长的关系求弦长.设A (3,1),易知圆心C (2,2),半径r =2,当弦过点A (3,1)且与CA 垂直时为最短弦. |CA |=(2-3)2+(2-1)2= 2. ∴半弦长=r 2-|CA |2=4-2= 2. ∴最短弦长为2 2.14.已知△ABC 中,A ∈α,BC ∥α,BC =6,∠BAC =90°,AB ,AC 与平面α分别成30°,45°的角,则BC 到平面α的距离为________. 答案6解析 如图,分别过点B ,C 作BF ⊥α于点F ,CE ⊥α于点E .连接AF ,AE .设BC 到平面α的距离为h .∵∠BAF =30°,∠CAE =45°,∴BA =2h ,AC =2h .在Rt △ABC 中,BC 2=BA 2+AC 2,即(2h )2+(2h )2=36,解得h = 6.三、解答题15.已知两条直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m 、n 的值,使 (1)l 1与l 2相交于点(m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1. 解 (1)因为l 1与l 2相交于点(m ,-1), 所以点(m ,-1)在l 1、l 2上,将点(m ,-1)代入l 2,得2m -m -1=0,解得m =1. 又因为m =1,把(1,-1)代入l 1,所以n =7. 故m =1,n =7.(2)要使l 1∥l 2,m 2=8m≠-n ,则有⎩⎪⎨⎪⎧m 2-16=0,m ×(-1)-2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4n ≠2.(3)要使l 1⊥l 2,则有m ·2+8·m =0,得m =0. 则l 1为y =-n8,由于l 1在y 轴上的截距为-1,所以-n8=-1,即n =8.故m =0,n =8.16.如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =AC ,D ,E 分别为AA 1,B 1C 的中点. (1)证明:DE ∥平面ABC ;(2)设二面角A -BC -D 为60°,求BD 与平面BCC 1B 1所成的角的正弦值.(1)证明 设BC 的中点为F ,连接AF ,EF ,则EF ∥BB 1,且EF =12BB 1.又∵AD ∥BB 1,且AD =12BB 1,∴EF ∥AD ,且EF =AD ,∴四边形ADEF 是平行四边形,∴DE ∥AF .又∵DE ⊄平面ABC ,AF ⊂平面ABC ,∴DE ∥平面ABC .(2)解 连接DF ,BE .∵AB =AC ,F 为BC 的中点,∴AF ⊥BC .∵AA 1⊥平面ABC ,∴AA 1⊥BC . 又∵AA 1∩AF =A ,∴BC ⊥平面ADF ,∵BC ⊥DF ,∴∠AFD 为二面角A -BC -D 的平面角,即∠AFD =60°.∵平面ABC ⊥平面BCC 1B 1,平面ABC ∩平面BCC 1B 1=BC .AF ⊂平面ABC ,AF ⊥BC ,∴AF ⊥平面BCC 1B 1.∵DE ∥AF ,∴DE ⊥平面BCC 1B 1,∴∠DBE 为BD 与平面BCC 1B 1所成的角. 设AF =a ,则DE =a ,AD =3a ,AB =2a ,∴BD =5a ,∴sin ∠DBE =a 5a =55. 17.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在直线x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A ,PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 的面积的最小值.解 (1)设圆M 的标准方程为:(x -a )2+(y -b )2=r 2(r >0).根据题意得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解得a =b =1,r =2,故所求圆M 的标准方程为(x -1)2+(y -1)2=4. (2)因为四边形P AMB 的面积S =S △P AM +S △PBM =12|AM |·|P A |+12|BM |·|PB |,又因为|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |, 而|P A |=|PM |2-|AM |2=|PM |2-4,即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可,即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,由点到直线的距离公式得|PM |min =|3×1+4×1+8|32+42=3,18.已知圆C 过坐标原点O ,且与x 轴,y 轴分别交于点A ,B ,圆心坐标为C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0).(1)求证:△AOB 的面积为定值;(2)直线2x +y -4=0与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程;(3)在(2)的条件下,设点P ,Q 分别是直线l :x +y +2=0和圆C 上的动点,求|PB |+|PQ |的最小值及此时点P 的坐标.(1)证明 由题意知,圆C 的标准方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2, 化简得x 2-2tx +y 2-4ty =0.当y =0时,x =0或x =2t ,则A (2t,0); 当x =0时,y =0或y =4t ,则B ⎝⎛⎭⎫0,4t . ∴S △AOB =12|OA |·|OB |=12|2t |·|4t|=4,为定值.(2)解 ∵|OM |=|ON |,∴原点O 在MN 的中垂线上.设MN 的中点为H ,则CH ⊥MN ,∴C ,H ,O 三点共线,且直线OC 的斜率与直线MN 的斜率的乘积为-1,即直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2,∴圆心为C (2,1)或C (-2,-1),∴圆C 的标准方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5.当圆的方程为(x +2)2+(y +1)2=5时,圆心到直线2x +y -4=0的距离d >r ,此时直线与圆相离,故舍去.故圆C 的方程为(x -2)2+(y -1)2=5.(3)解 易求得点B (0,2)关于直线x +y +2=0的对称点B ′(-4,-2), 则|PB |+|PQ |=|PB ′|+|PQ |≥|B ′Q |, 又∵B ′到圆上点Q 的最短距离为|B ′C |-r =(-6)2+(-3)2-5=35-5=25,∴|PB |+|PQ |的最小值为25,又直线B ′C 的方程为y =12x x ,联立⎩⎪⎨⎪⎧y =12x ,x +y +2=0,解得⎩⎨⎧x =-43,y =-23,故|PB |+|PQ |取得最小值时点P 的坐标为⎝⎛⎭⎫-43,-23,最小值为2 5.。