高中数学《圆的标准方程》导学案
- 格式:doc
- 大小:278.00 KB
- 文档页数:12
圆与圆的方程2.1圆的标准方程(导学案)使用说明:1.用15分钟左右的时间,阅读课本内容,自主高效预习,理解公式中各量的含义。
2.限时完成导学案的预习案部分,找出自己的疑惑和需要解决的问题,准备课上讨论探究。
【学习目标】⑴ 掌握确定圆的几何要素⑵ 掌握圆的标准方程,会根据不同条件求圆的标准方程 ⑶ 能从圆的标准方程中求出它的圆心和半径【重点难点】重点是圆的标准方程,难点是根据不同的条件求圆的标准方程相关知识:1.在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?2.什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?教材助读:1.设圆心坐标为(,)C a b ,半径为r ,设),(y x P 为这个圆上任意一点,那么P,C 与r 有什么关系?能用坐标表示吗?2.圆心在(,)C a b ,半径为r 的圆的标准方程:___________________________________________________________________3.圆心为坐标原点、半径为r 的圆的方程是: 圆心在圆点、半径为1的圆的方程: 思考:确定圆的标准方程的基本要素?预习自测1.写出下列各圆的方程:(1) 以C(2,-1)为圆心,半径等于3; (2) 圆心在圆点,半径为5;(3) 经过点P(5,1),圆心在点C(6,-2); (4) 以A(2,5),B(0,-1)为直径的圆。
2.圆22(3)(2)13x y -++=的圆心为 半径为基础知识探究1.试由圆的标准方程的推导过程思考,若点P 在圆内,在圆上,在圆外时,00,x y 应满足怎样的关系式P P P ⇒⎧⎪⇒⎨⎪⇒⎩点在圆内点在圆外点在圆上2.若点),3(a 在圆1622=+y x 的内部,则a 的取值范围是综合应用探究1.已知ABC Rt ∆ 的斜边AB 的端点A 的坐标为(-2,1),B 的坐标为(4,3),直角顶点C 在什么曲线上?并求出它的方程?预习案 探究案2.求圆心在直线02=-+y x 上,且经过两点)2,1(),0,1(-Q P 的圆的方程。
.高中数学必修2 新授课导学案2.3.1圆的标准方程(一)学习目标:1.知识与技能目标:(1)理解并掌握圆的标准方程,会根据不同条件求得圆的标准方程,并从圆的标准方程中熟练地求出圆心和半径;(2)运用圆的标准方程解决一些简单的实际问题。
2.过程与方法目标:(1)通过对圆的标准方程的推导,渗透数形结合、待定系数法等数学思想,进一步提高学生的观察、比较、分析、概括等思维能力;(2)学会借助实例分析探究数学问题 3.情感、态度与价值观目标:(1)通过学生的主动参与,师生、生生的合作交流,提高学生的学习兴趣,激发其求知欲,培养探索精神; (2)树立事物之间相互联系、相互转化的辩证唯物主义的观点。
(二)学习重点和难点:1.重点:圆的标准方程的推导以及根据已知条件求圆的标准方程。
2.难点:运用圆的标准方程解决一些简单的实际问题。
(三)学习过程: 一、课前准备复习回顾: 1.已知点),(),,(2211y x B y x A ,两点间的距离AB =___________ 。
2.已知点,直线,点A 到直线l 的距离为3.圆的定义:平面内到一_____的距离等于_____的点的轨迹是圆,_____是圆心,___是半径。
二、新课导学探究1:在平面直角坐标系中,求圆心为点C 、半径为r 的圆的方程。
( 思考:如何建立平面直角坐标系? )MC r新知1:圆的标准方程: _______ ,圆心为C(,),半径为。
写出下列方程表示的圆的圆心坐标和半径.说明:y探究2:点与圆的位置关系试一试:写出圆心为C(0,0)半径为2的圆的方程,在平面直角坐标系中,画出此圆, 2并判断点与圆的位置关系。
1-2 -10 1 2 x新知2:判断点A(与圆C:()()222rbyax=-+-(r>0)的位置关系的方法:(1)点A在圆内 |CA| rA A A(2)点A在圆上 |CA| rC.(3)点A在圆外 |CA| r 三、新知应用例1:根据下列条件,求圆的标准方程:(1)圆心在点C(-2,1),并过点A(2,-2)。
高中数学圆的标准方程教案高中数学圆与方程教案三高中数学圆的标准方程教案高中数学圆与方程教案篇七一、具体目标:1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。
通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学……二、本学期要达到的教学目标1.双基要求:在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。
在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。
2.能力培养:能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。
3.思想教育:培养高一学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。
高中数学圆的标准方程教案高中数学圆与方程教案篇八高一下学期数学教学计划精选本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。
圆的标准方程学案圆的标准方程学案一、教学目标1、理解圆的标准方程的意义,掌握圆的标准方程的推导过程;2、会根据圆的标准方程求出圆心坐标和半径,掌握圆的标准方程的应用;3、通过对圆的标准方程的学习,初步了解解析几何的基本思想和方法,提高数学思维能力和解决实际问题的能力。
二、教学内容1、圆的标准方程的推导2、圆的标准方程的形式及其意义3、圆的标准方程的应用三、教学过程1、引入:通过实例展示圆的结构和特点,引出圆的标准方程的概念。
2、圆的标准方程的推导:通过几何法和代数法两种方法,推导出圆的标准方程。
3、圆的标准方程的形式及其意义:介绍圆的标准方程的形式,解释各项参数的意义,明确圆心坐标和半径的求解方法。
4、圆的标准方程的应用:通过实例演示,说明圆的标准方程在解决实际问题中的应用,如求圆与直线的交点、求圆的外接正方形边长等。
四、教学步骤1、教师引导学生通过实例理解圆的结构和特点,引出圆的标准方程的概念。
2、教师介绍圆的标准方程的推导过程,通过几何法和代数法两种方法,推导出圆的标准方程。
3、教师解释圆的标准方程的形式,说明各项参数的意义,明确圆心坐标和半径的求解方法。
4、教师通过实例演示,说明圆的标准方程在解决实际问题中的应用,如求圆与直线的交点、求圆的外接正方形边长等。
五、教学重点与难点1、教学重点:掌握圆的标准方程的推导过程,理解圆的标准方程的意义,掌握圆的标准方程的应用。
2、教学难点:理解圆的标准方程的意义,掌握圆的标准方程的应用。
六、教学方法与手段1、教学方法:讲解、演示、练习、互动交流。
2、教学手段:PPT、板书、实物展示。
七、教学评估1、课堂练习:通过练习题检验学生对圆的标准方程的理解和掌握情况。
2、课后作业:布置相关题目,加强学生对圆的标准方程的掌握和应用能力。
3、课堂讨论:引导学生对圆的标准方程的应用进行讨论,提高学生对该知识的理解和应用能力。
八、教学反思1、总结课堂效果:对本次课程的教学效果进行总结,分析学生的掌握情况。
4.1.1圆的标准方程教学设计1.内容和内容解析:内容:圆的标准方程。
内容解析:解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究图形的几何性质,体现数形结合的重要思想方法。
其中圆的标准方程的教学目标主要是:一是经历通过平面直角坐标系建立圆的代数方程的过程,在这个过程中进一步体会坐标法研究几何问题的思想和步骤;二是用两种方法求解圆的方程。
圆是解析几何中一类重要的曲线,在学生学习了直线与方程的基础知识之后,知道了在直角坐标系中通过建立方程可以达到研究图形性质,圆的标准方程正是这一知识运用的延续,处于直线与方程和点,直线与圆的关系的结合点和交汇点上。
学好圆的方程可以为圆锥曲线的学习奠定基础,有利于学生进一步体会数形结合的思想,形成用代数法解决几何问题的能力。
也是培养学生运用能力和运算能力的重要素材。
从知识的结构和内容上都起到相当重要的作用。
2.教学目标:知识与技能(1)在平面直角坐标系中,探索并掌握圆的标准方程;(2)能根据圆心坐标、半径及其特殊情况熟练地写出圆的标准方程;(3)会根据条件选择并求出圆的方程;过程与方法(1)通过平面直角坐标系建立圆的代数方程的过程,让学生进一步体会坐标法在研究几何问题的思想和步骤;(2)通过类比直线方程的学习,发现并理解圆的方程与直线方程学习中相同的知识结构,进一步体会类比的思想;(3)通过求解圆标准的方程,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想;情感态度与价值观通过与直线方程的对比,体会类比思想的应用,让学生学会用联系的观点分析问题,认识事物之间的相互联系与转化;3.教学重难点:重点:(1)类比直线方程的学习,掌握圆的标准方程;难点:(1)圆的代数方程的建立过程;(2)圆的标准方程的灵活应用;落实的途径:(1)通过表格,建立直线与方程,圆与方程的结构图,在复习旧知的同时帮助学生经历坐标法建立圆的代数方程的如下过程:首先将几何问题代数化,用代数语言描述几何要素及其关系,进而将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题。
高中数学《圆的方程》教案作为一位默默奉献的教育工作者,常常会需要准备好教案,通过教案准备可以更好地根据具体情形对教学进程做适当的必要的调剂。
优秀的教案都具有一些什么特点呢?这里给大家分享一些关于高中数学圆的方程教案,方便大家学习。
高中数学《圆的方程》教案1、教学目标(1)知识目标:1、在平面直角坐标系中,探索并掌控圆的标准方程;2、会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程;3、利用圆的方程解决与圆有关的实际问题。
(2)能力目标:1、进一步培养学生用解析法研究几何问题的能力;2、使学生加深对数形结合思想和待定系数法的知道;3、增强学生用数学的意识。
(3)情感目标:培养学生主动探究知识、合作交换的意识,在体验数学美的进程中激发学生的学习爱好。
2、教学重点、难点(1)教学重点:圆的标准方程的求法及其运用。
(2)教学难点:①会根据不同的已知条件,利用待定系数法求圆的标准方程②挑选恰当的坐标系解决与圆有关的实际问题。
3、教学进程(一)创设情境(启发思维)问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。
7m,高为3m的货车能不能驶入这个隧道?[引导]:画图建系[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2+y2=16(y≥0)将x=2。
7代入,得即在离隧道中心线2。
7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)问题二:1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?答:x2+y2=r22、如果圆心在,半径为时又如何呢?[学生活动]:探究圆的方程。
[教师预设]:方法一:坐标法如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={M||MC|=r}由两点间的距离公式,点M合适的条件可表示为①把①式两边平方,得(x―a)2+(y―b)2=r2方法二:图形变换法方法三:向量平移法(三)运用举例(巩固提高)I.直接运用(内化新知)问题三:1、写出下列各圆的方程(课本P77练习1)(1)圆心在原点,半径为3;(2)圆心在,半径为(3)经过点,圆心在点2、根据圆的方程写出圆心和半径II.灵活运用(提升能力)问题四:1、求以为圆心,并且和直线相切的圆的方程。
2.4圆的方程2.4.1圆的标准方程【学习目标】1.能描述确定圆的几何要素,能根据给定圆的几何要素推导出圆的标准方程.2.能分析圆的标准方程中相关量的几何意义.3.能根据给定圆的几何要素求出圆的标准方程.◆知识点一圆的标准方程1.圆的标准方程圆心为A(a,b),半径为r的圆的标准方程是.和分别确定了圆的位置和大小,从而确定了圆,所以只要a,b,r(r>0)三个量确定了,圆的方程就唯一确定了.2.几种常见的特殊的圆的方程条件方程形式圆心在原点x2+y2=r2(r>0)过原点(x-a)2+(y-b)2= a2+b2(a2+b2≠0)圆与x轴相切(x-a)2+(y-b)2=b2(b≠0)圆与y轴相切(x-a)2+(y-b)2=a2(a≠0)圆与两坐标轴都相切(x-a)2+(y-b)2=a2(|a|=|b|≠0)【诊断分析】判断正误.(请在括号中打“√”或“×”)(1)确定一个圆的几何要素是圆心和半径.( )(2)方程(x-a)2+(y-b)2=m2一定表示圆. ( )(3)圆(x-1)2+(y-2)2=4的圆心坐标是(1,2),半径是4.( )(4)已知A为定点,点M满足集合P={M||MA|=r(r>0)},则点M的轨迹为圆.( )◆知识点二点与圆的位置关系点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2(r>0)的位置关系及判断方法位置关系判断方法几何法代数法点M在圆上|CM|r (x0-a)2+(y0-b)2r2 点M在圆外|CM|r (x0-a)2+(y0-b)2r2 点M在圆内|CM|r (x0-a)2+(y0-b)2r2◆探究点一求圆的标准方程例1根据下列条件,求圆的标准方程:(1)圆心为点A(2,-1),且经过点B(-2,2);(2)经过点C(0,0)和点D(0,2),半径为2;(3)E(1,2),F(3,4)为直径的两个端点;(4)圆心在直线l:2x+3y-8=0上,且经过点P(1,0)和点Q(3,2).例2已知半径为3的圆C的圆心与点P(-2,1)关于直线x-y+1=0对称,则圆C的标准方程为( )A.(x+1)2+(y-1)2=9B.(x-1)2+(y-1)2=9C.x2+(y+1)2=9D.x2+y2=9变式1圆心在直线y=x+3上,且过点A(2,4),B(1,-3)的圆的标准方程为.变式2已知点A(1,-2),B(-1,4),求:(1)过点A,B且周长最小的圆的标准方程;(2)过点A,B且圆心在直线2x-y-4=0上的圆的标准方程.[素养小结]求圆的标准方程一般有两种方法:(1)直接法.通过研究圆的几何性质,确定圆心坐标与半径长,即得到圆的标准方程.(2) 待定系数法.设圆的标准方程为(x-a)2+(y-b)2=r2(r>0),先根据条件列出关于a,b,r的方程组,然后解出a,b,r,最后代入标准方程.拓展已知二次函数y=x2-4x+3的图象交x轴于A,B两点,交y轴于C点.若圆M过A,B,C三点,求圆M的标准方程.◆探究点二判断点与圆的位置关系例3 (1)已知两点P1(3,8)和P2(5,4),求以线段P1P2为直径的圆的标准方程,并判断点M(5,3),N(3,4),P(3,5)与圆的位置关系.(2)写出圆心为点(3,4),半径为5的圆的标准方程,并判断点A(0,0),B(1,3)与该圆的位置关系.(3)已知点M(5√a+1,√a)在圆(x-1)2+y2=26的内部,求a的取值范围.。
圆的一般方程一、教学目标(一)知识教学点使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.(二)能力训练点使学生掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方法,熟练地用待定系数法由已知条件导出圆的方程,培养学生用配方法和待定系数法解决实际问题的能力.(三)学科渗透点通过对待定系数法的学习为进一步学习数学和其他相关学科的基础知识和基本方法打下牢固的基础.二、教材分析1.重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由已知条件导出圆的方程.(解决办法:(1)要求学生不要死记配方结果,而要熟练掌握通过配方求圆心和半径的方法;(2)加强这方面题型训练.)2.难点:圆的一般方程的特点.(解决办法:引导学生分析得出圆的一般方程的特点,并加以记忆.)3.疑点:圆的一般方程中要加限制条件D2+E2-4F>0.(解决办法:通过对方程配方分三种讨论易得限制条件.)三、活动设计讲授、提问、归纳、演板、小结、再讲授、再演板.四、教学过程(一)复习引入新课前面,我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成x2+y2+Dx+Ey+F=0.请大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题.复习引出课题为“圆的一般方程”.(二)圆的一般方程的定义1.分析方程x3+y2+Dx+Ey+F=0表示的轨迹将方程x2+y2+Dx+Ey+F=0左边配方得:(1)(1)当D2+E2-4F>0时,方程(1)与标准方程比较,可以看出方程半径的圆;(3)当D2+E2-4F<0时,方程x2+y2+Dx+Ey+F=0没有实数解,因而它不表示任何图形.这时,教师引导学生小结方程x2+y2+Dx+Ey+F=0的轨迹分别是圆、法.2.圆的一般方程的定义当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0称为圆的一般方程.(三)圆的一般方程的特点请同学们分析下列问题:问题:比较二元二次方程的一般形式Ax2+Bxy+Cy2+Dx+Ey+F=0.(2)与圆的一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0).(3)的系数可得出什么结论?启发学生归纳结论.当二元二次方程 Ax2+Bxy+Cy2+Dx+Ey+F=0具有条件:(1)x2和y2的系数相同,不等于零,即A=C≠0;(2)没有xy项,即B=0;(3)D2+E2-4AF>0.它才表示圆.条件(3)通过将方程同除以A或C配方不难得出.教师还要强调指出:(1)条件(1)、(2)是二元二次方程(2)表示圆的必要条件,但不是充分条件;(2)条件(1)、(2)和(3)合起来是二元二次方程(2)表示圆的充要条件.(四)应用与举例同圆的标准方程(x-a)2+(y-b)2=r2一样,方程x2+y2+Dx+Ey+F=0也含有三个系数D、E、F,因此必具备三个独立的条件,才能确定一个圆.下面看一看它们的应用.例1求下列圆的半径和圆心坐标:(1)x2+y2-8x+6y=0,(2)x2+y2+2by=0.此例由学生演板,教师纠错,并给出正确答案:(1)圆心为(4,-3),半径为5;(2)圆心为(0,-b),半径为|b|,注意半径不为b.同时强调:由圆的一般方程求圆心坐标和半径,一般用配方法,这要熟练掌握.例2求过三点O(0,0)、A(1,1)、B(4,2)的圆的方程.解:设所求圆的方程为x2+y2+Dx+Ey+F=0,由O、A、B在圆上,则有解得:D=-8,E=6,F=0,故所求圆的方程为x2+y2-8x+6=0.例2小结:1.用待定系数法求圆的方程的步骤:(1)根据题意设所求圆的方程为标准式或一般式;(2)根据条件列出关于a、b、r或D、E、F的方程;(3)解方程组,求出a、b、r或D、E、F的值,代入所设方程,就得要求的方程.2.关于何时设圆的标准方程,何时设圆的一般方程:一般说来,如果由已知条件容易求圆心的坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程;如果已知条件和圆心坐标或半径都无直接关系,往往设圆的一般方程.再看下例:例3求圆心在直线l:x+y=0上,且过两圆C1∶x2+y2-2x+10y-24=0和C2∶x2+y2+2x+2y-8=0的交点的圆的方程.(0,2).设所求圆的方程为(x-a)2+(y-b)2=r2,因为两点在所求圆上,且圆心在直线l上所以得方程组为故所求圆的方程为:(x+3)2+(y-3)2=10.这时,教师指出:(1)由已知条件容易求圆心坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程.(2)此题也可以用圆系方程来解:设所求圆的方程为:x2+ y2-2x+10y-24+λ(x2+y2+2x+2y-8)=0(λ≠-1)整理并配方得:由圆心在直线l上得λ=-2.将λ=-2代入所假设的方程便可得所求圆的方程为x2+y2+6x-6y+8=0.此法到圆与圆的位置关系中再介绍,此处为学生留下悬念.的轨迹,求这个曲线的方程,并画出曲线.此例请两位学生演板,教师巡视,并提示学生:(1)由于曲线表示的图形未知,所以只能用轨迹法求曲线方程,设曲线上任一点M(x,y),由求曲线方程的一般步骤可求得;(2)应将圆的一般方程配方成标准方程,进而得出圆心坐标、半径,画出图形.(五)小结1.圆的一般方程的定义及特点;2.用配方法求出圆的圆心坐标和半径;3.用待定系数法,导出圆的方程.五、布置作业1.求下列各圆的一般方程:(1)过点A(5,1),圆心在点C(8,-3);(2)过三点A(-1,5)、B(5,5)、C(6,-2).2.求经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.3.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点的轨迹方程,并说明它的轨迹是什么.4.A、B、C为已知直线上的三个定点,动点P不在此直线上,且使∠APB=∠BPC,求动点P的轨迹.作业答案:1.(1)x2+y2-16x+6y+48=0(2)x2+y2-4x-2y-20=02.x2+y2-x+7y-32=03.所求的轨迹方程为x2+y2-8x-4y+10=0(x≠3,x≠5),轨迹是以4.以B为原点,直线ABC为x轴建立直角坐标系,令A(-a,0),C(c,0)(a >0,c>0),P(x,y),可得方程为:(a2-c2)x2+(a2-c2)y2-2ac(a+c)x=0.当a=c时,则得x=0(y≠0),即y轴去掉原点;当a≠c时,则得(x-与x轴的两个交点.六.板书设计。
§4.1.1圆的标准方程单元名称圆的方程授课班级备考班授课时间2020年4月2日授课地点B座四楼语训室学习内容分析《圆的标准方程》选自普通高中实验教科书新课程标准数学必修2第四章第一节第一课时。
在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究圆的方程,它与其他图形的位置关系及其应用。
圆是解析几何中一类重要的曲线,而圆的标准方程的学习是在学生学习了直线与方程的基础知识之后,知道了在直角坐标系中通过建立方程可以达到研究图形性质这一基础上进行展开的,在学习中充分体现了数形结合的思想,以及用代数方法解决几何问题的思想,是进一步学习圆锥曲线的基础。
由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,通过小组合作,引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来。
教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题。
学习者分析学习对象为备考班学生,虽然有一定的学习能力,但基础普遍较差,对数学存在畏难情绪。
加上聋生学生几何知识困难,学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难,需要将抽象问题具体化,形象化。
另外学生在探究问题的能力,合作交流的意识等方面有待加强。
知识与技能:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程。
过程与方法:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解;③培养学生自主探究的能力。
圆的标准方程【课标解读】栏目功能:按课程标准和考试要求,分课标要求和学习目标两方面去写,通过本栏目,使教师的教学更具有针对性,学生的学习更具有目的性。
编写要求:课标要求和学习目标左右栏排版单独成块,课标要求主要围绕三维目标进行展开,学习目标是从学生应该掌握的角度进行写作。
【学习策略】栏目功能:说明学习本节内容时应注意的问题和应采用的策略,以便学生更好的理解和掌握本章内容。
编写要求:注意要用条目式呈现,层次性条理性要强。
1.在本节的学习中,要注意圆的标准方程222)()(r b y a x =-+-,通过两点间的距离公式理解和记忆,且通过圆的标准方程可以直接得到圆心和半径、通过圆心和半径可以直接得到圆的标准方程。
2.在掌握了标准方程之后,要能从“是”、“否”两个方面来判断点与方程的关系, 3.要注意数形结合思想及方程思想的运用。
4.求标准方程常用待定系数法,根据题目的条件列出关于A 、B .r 的方程或方程组。
【学习过程】一、情景创设栏目功能:激起学生的学习本节知识、探究问题、发现问题的兴趣和斗志,同时也能更好地体现新课标理念。
编写说明:1.在报刊、网络或相关信息上精选或精编一段新颖的、可读性强的、趣味性强的与本节相关的生产、生活、社会、科技等美文、小故事、图片等,作为本节知识的导入,引导学生去探索、发现问题,激发学生的学习兴趣。
2.如果与本节相关的材料确实不好找,也可以从知识回顾的角度或自己精编一个与本节有关的问题去写。
3.注意篇幅不易过长。
同学们,你们做过摩天轮吗?登高而望远,不亦乐乎。
世界上最巨大的摩天轮是座落于泰晤士河畔的英航伦敦眼,距地总高达135公尺。
然而,由于伦敦眼属于观景摩天轮结构,有些人认为其在排行上应该与重力式摩天轮分开来计算。
因此目前世界最大的重力式摩天轮应位于日本福冈的天空之梦福冈,是直径112公尺,离地总高12021的摩天轮。
对于这些摩天轮,我们如何通过建立平面直角坐标系,利用方程的知识来研究呢? 二、合作探究栏目功能:通过对本节重要知识点和典型解题方法的探究,进一步强化学生对知识和方法的探索感悟和认知过程,使学生对问题的认识是一个层层递进、不断攀升、不断升华的过程,从而遵循由特殊到一般的认识问题和解决问题的基本思路、基本方法编写要求:1.对于基本概念、公式、定理、方法的讲解。
高中圆的标准方程教案文档一、教学目标1. 知识与技能:(1)理解圆的定义及相关概念;(2)掌握圆的标准方程及其推导过程;(3)能够运用圆的标准方程解决实际问题。
2. 过程与方法:(1)通过观察、分析、推理等方法,探究圆的标准方程的形成;(2)运用数学符号、图形等工具,表示圆的位置和大小;(3)培养学生的逻辑思维能力和几何直观能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的精神;(3)培养学生合作交流的能力。
二、教学内容1. 圆的定义及相关概念:(1)圆的定义;(2)圆心、半径、直径等概念;(3)圆的性质。
2. 圆的标准方程:(1)圆的标准方程的推导;(2)圆的标准方程的形式;(3)圆的标准方程的应用。
三、教学重点与难点1. 教学重点:(1)圆的定义及相关概念的理解;(2)圆的标准方程的推导和应用。
2. 教学难点:(1)圆的标准方程的推导过程;(2)圆的标准方程在实际问题中的应用。
四、教学方法与手段1. 教学方法:(1)采用问题驱动法,引导学生主动探究;(2)运用分组讨论法,培养学生的合作能力;(3)采用案例分析法,让学生感受数学与生活的联系。
2. 教学手段:(1)利用多媒体课件,直观展示圆的定义和性质;(2)运用几何画板,动态演示圆的标准方程的形成;(3)提供实际问题,引导学生运用圆的标准方程解决。
五、教学过程1. 导入新课:(1)复习相关概念:点、线、角等;(2)引入圆的定义,引导学生观察生活中的圆;(3)提出问题:如何用数学语言表示圆的位置和大小?2. 探究圆的标准方程:(1)引导学生通过观察、分析、推理等方法,探究圆的标准方程的形成;(2)讲解圆的标准方程的推导过程,引导学生理解并掌握;(3)让学生运用圆的标准方程,解决实际问题。
3. 巩固练习:(1)提供一些有关圆的标准方程的练习题,让学生独立完成;(2)组织学生进行小组讨论,共同解答练习题;(3)教师对学生的解答进行点评和指导。
高二数学必修2 第四章 圆与方程第四章 圆与方程§4.1圆的方程§4.1.1圆的标准方程(1)【学习目标】1.能根据圆心、半径写出圆的标准方程.2.利用圆的标准方程,会判断点与圆的位置关系.【学习重点】求圆的标准方程.【学习难点】根据不同的已知条件,判断点与圆的位置关系.【学习过程】一、自主学习(阅读课本第118-119页,完成自主学习)1.已知两点(2,5),(6,9)A B -,求它们之间的距离?若已知(3,8),(,)C D x y -,求它们之间的距离.2.图中哪个点是定点?哪个点是动点?动点具有什么性质?3.具有什么性质的点的轨迹称为圆? 圆心和半径分别确定了圆的_______和_______.4.我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,在平面内确定圆的条件是什么?5.在平面直角坐标系中,若一个圆的圆心(,)C a b ,半径为r (其中,,a b r 都是常数, 0r >),圆的标准方程为__________________________________.6.当圆心在原点时,圆的标准方程是_________________ .思考:圆的标准方程222()()x a y b r -+-=中,只要求出___、___、___,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中____是圆的定位条件,_____是圆的定形条件.二、合作探究例1:写出圆心为(2,3)A -半径长等于5的圆的方程,判断12(5,7),(1)M M --是否在这个圆上.推广:设点00(,)M x y ,圆的方程为222()()x a y b r -+-=.1,M 在圆上⇔2200()()x a y b -+- 2r ;2,M 在圆外⇔2200()()x a y b -+- 2r ;3,M 在圆内⇔2200()()x a y b -+- 2r ;例2:圆的一条直径的两个端点分别是(2,0),(2,2)A B -,求圆的标准方程,并判断点(0,0),C (2,2)D -与该圆的位置关系推广:已知圆的一条直径的端点分别是1222(,),(,),A x y B x y 求证此圆的方程是1212()()()()0.x x x x y y y y --+--=三、达标检测1.写出下列各圆的标准方程.(1) 圆心在原点,半径是3;(2) 圆心在(3,4)C(3) 经过点(5,1)P ,圆心在点(8,3)C -;2.写出下列各圆的圆心坐标和半径:(1) 22(1)6x y -+= (2) 22(1)(2)9x y ++-= (3) 22(2)(3)3x y -++=3.已知圆心在点(3,4),C --且经过原点,求该圆的标准方程,并判断点12(,0),(1,1),P P -- 3(3,4)P -和圆的位置关系.四、学习小结1.圆的标准方程 .2.求圆的标准方程的方法有:高二数学必修2 第四章 圆与方程§4.1.1圆的标准方程(2)【学习目标】会用待定系数法求圆的标准方程.【学习重点】掌握求圆的标准方程的思路方法.【学习难点】领会用数形结合求圆的标准方程的思想.【学习过程】一、自主学习(阅读课本第119-120页,完成自主学习)1.圆的定义是什么?2.圆的标准方程是怎样的?3.点M(x 0,y 0)与圆(x -a )2+(y -b )2=r 2的关系的判断方法:(1)当点M(x 0,y 0)在圆(x -a )2+(y -b )2=r 2上时,点M 的坐标_____方程(x -a )2+(y -b )2=r 2.(2)当点M(x 0,y 0)不在圆(x -a )2+(y -b )2=r 2上时,点M 的坐标______方程(x -a )2+(y -b )2=r 2.(3)用点到圆心的距离和半径的大小来说明应为:1°点到圆心的距离大于半径⇔点在圆外⇔_________________.2°点到圆心的距离等于半径⇔点在圆上⇔_________________.3°点到圆心的距离小于半径⇔点在圆内⇔_________________.二、合作探究例1:ABC ∆的三个顶点的坐标分别是(5,1),(2,8),(7,3)A B C --,求它的外接圆的方程.例2:求经过点(1,1)A ,(2,2)B -,且圆心在直线:10l x y -+=上的圆的标准方程.三、达标检测1.写出下列各圆的标准方程:(1) 圆心在y 轴上,半径长为1,且过点(1,2)的圆的方程;(2)圆心在x 轴上,半径长为1,且过点(2,1)的圆的方程.2.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,求圆C 的标准方程.3.求经过两点(1,4),(3,2)A B -且圆心在y 轴上的圆的方程.四、学习小结1.确定圆的方程主要方法是_____________法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:1°根据题意,设所求的圆的标准方程________________;2°根据已知条件,建立关于__________________的方程组;3°解方程组,求出___________的值,并把它们代入所设的方程中去,就得到所求圆的方程.2.思想方法总结:高二数学必修2 第四章 圆与方程§4.1.2圆的一般方程(1)【学习目标】能用圆的一般方程确定圆的圆心、半径.【学习重点】把握圆的一般方程的代数特征,能根据已知条件待定方程中的系数,,D E F .【学习难点】根据已知条件选择待定圆的标准方程或一般方程.【学习过程】一、自主学习(阅读课本第121-122页,完成自主学习)1.写出圆心为(,)a b ,半径为r 的圆的标准方程_______________________________.2.将以(,)C a b 为圆心, r 为半径的圆的标准方程展开并整理得________________.3.如果2222,2,D a E b F a b r =-=-=+-,得到方程____________________,这说明圆的 方程还可以表示成另外一种非标准方程形式.4.思考:能不能说方程220x y Dx Ey F ++++=所表示的曲线一定是圆呢?二、合作探究1.222()()x a y b r -+-=中0r >时表示___ _;0r =时表示____________;2.把式子220x y Dx Ey F ++++=配方得_________________________________.(ⅰ)当2240D E F +->时,表示以_________为圆心,_____________ _为半径的圆; (ⅱ)当2240D E F +-=时,方程只有实数解x =______y =______,即只表示__________; (ⅲ)当2240D E F +-<时,方程______(有或没有)实数解,因而它_________________.方程220x y Dx Ey F ++++=表示的曲线_________(一定或不一定)是圆;但圆的方程都能写成_________________的形式,只有当_____________时,它表示的曲线才是圆. 我们把形如220x y Dx Ey F ++++=表示圆的方程称为圆的_________方程.3.圆的一般方程形式上的特点:(1)x 2和y 2的系数_______且________. (2)没有_________这样的二次项.例1:判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径.(1) 224441290x y x y +-++= (2) 2220x y by ++=例2:求过三点(0,0),(1,1),(4,2)O M N 的圆的一般方程,并求圆的半径长和圆心坐标.三、达标检测1.判断下列方程(1) 2260x y y +-=(2)222460x y x y +-+-=(3)224220200x y mx my m +-++-=能否表示圆,若能表示圆,求出圆心和半径.2.ABC ∆的三个顶点分别为(1,5),(2,2),(5,5)A B C ---,求其外接圆的一般方程.四、学习小结用待定系数法求圆的方程的步骤是:1.____________________________________________2._____________________________________________3._____________________________________________高二数学必修2 第四章 圆与方程§4.1.2圆的一般方程(2)【学习目标】掌握圆的一般方程及其特点,会由圆的方程求出圆心、半径会用待定系数法求圆的一般方程.【学习重点】圆的一般方程的特征和求圆的一般方程.【学习难点】用相关点法求轨迹方程.【学习过程】一、自主学习(阅读课本第122-123页,完成自主学习)1.将下列圆的方程化为标准方程,并写出圆心坐标和半径:(1)222220(0);(2)22420.x y my m x y ax ++=≠++-=2.圆C :222440x y x y +--+=的圆心到直线3440x y ++=的距离_____d =.二、合作探究例:已知线段AB 的端点B 的坐标是(4,3),端点A 在圆22(1)4x y ++=上运动,求线段AB 的中点M 的轨迹方程.三、达标检测1.求以(1,1)A -为圆心,且经过点(0,1)B 的圆的一般方程.2.若(5,0),(1,0),(3,3)A B C --三点的外接圆为圆M ,求圆M 的方程,若点(,3)D m 在圆M 上,求m 的值.3.求圆心在直线230x y --=上,且过点(5,2),(3,2)A B -的圆的方程.4.已知点P 在圆的C :2286210x y x y +--+=上运动,求线段OP 的中点坐标M 的轨迹方程.四、学习小结相关点法求轨迹方程的步骤:1._______________________________________________________;2._______________________________________________________;3._______________________________________________________;4._______________________________________________________;。
圆的标准方程教案高中数学
一、教学目标:
1. 熟练掌握圆的标准方程的概念和计算方法;
2. 能够根据给定的信息,求解圆的标准方程;
3. 进一步理解圆的性质和应用。
二、教学内容:
1. 圆的标准方程的定义和示例;
2. 求解圆的标准方程的步骤;
3. 圆的相关性质和应用。
三、教学步骤:
1. 引入:通过举例说明圆的标准方程的重要性和应用场景;
2. 讲解:介绍圆的标准方程的定义和推导过程;
3. 演示:通过实例演示如何求解圆的标准方程;
4. 练习:让学生进行练习,巩固所学知识;
5. 总结:总结圆的标准方程的相关性质和应用。
四、教学材料:
1. 教科书《高中数学》;
2. 白板和彩色粉笔;
3. 课件PPT。
五、教学评估:
1. 学生通过练习题的答题情况;
2. 学生对于圆的标准方程的理解和应用程度。
六、拓展延伸:
1. 让学生自主探究圆的标准方程的推导过程;
2. 引导学生应用圆的标准方程解决实际问题。
通过以上教学方案,相信学生能够更好地掌握圆的标准方程的相关知识和技巧,为今后学习和工作打下坚实的基础。
1.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2,其中圆心是C(a,b),半径长是r.特别地,圆心在原点的圆的标准方程为x2+y2=r2.圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).(2)由于圆的方程均含有三个参变量(a,b,r或D,E,F),而确定这三个参数必须有三个独立的条件,因此,三个独立的条件可以确定一个圆.(3)求圆的方程常用待定系数法,此时要善于根据已知条件的特征来选择圆的方程.如果已知圆心或半径长,或圆心到直线的距离,通常可用圆的标准方程;如果已知圆经过某些点,通常可用圆的一般方程.2.点与圆的位置关系(1)点在圆上①如果一个点的坐标满足圆的方程,那么该点在圆上.②如果点到圆心的距离等于半径,那么点在圆上.(2)点不在圆上①若点的坐标满足F(x,y)>0,则该点在圆外;若满足F(x,y)<0,则该点在圆内.②点到圆心的距离大于半径则点在圆外;点到圆心的距离小于半径则点在圆内.注意:若P点是圆C外一定点,则该点与圆上的点的最大距离:d max=|PC|+r;最小距离:d min=|PC|-r.3.直线与圆的位置关系直线与圆的位置关系有三种:相交、相离、相切,其判断方法有两种:代数法(通过解直线方程与圆的方程组成的方程组,根据解的个数来判断)、几何法(由圆心到直线的距离d与半径长r的大小关系来判断).(1)当直线与圆相离时,圆上的点到直线的最大距离为d+r,最小距离为d-r,其中d为圆心到直线的距离.(2)当直线与圆相交时,圆的半径长、弦心距、弦长的一半构成直角三角形.(3)当直线与圆相切时,经常涉及圆的切线.①若切线所过点(x0,y0)在圆x2+y2=r2上,则切线方程为x0x+y0y=r2;若点(x0,y0)在圆(x -a)2+(y-b)2=r2上,则切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.②若切线所过点(x0,y0)在圆外,则切线有两条.此时解题时若用到直线的斜率,则要注意斜率不存在的情况也可能符合题意.(4)过直线l:Ax+By+C=0(A,B不同时为0)与圆C:x2+y2+Dx+Ey+F=0(D2+E2-4F>0)的交点的圆系方程是x2+y2+Dx+Ey+F+λ(Ax+By+C)=0,λ是待定的系数.4.圆与圆的位置关系两个不相等的圆的位置关系有五种:外离、外切、相交、内切、内含,其判断方法有两种:代数法(通过解两圆的方程组成的方程组,根据解的个数来判断)、几何法(由两圆的圆心距d 与半径长r,R的大小关系来判断).(1)求相交两圆的弦长时,可先求出两圆公共弦所在直线的方程,再利用相交两圆的几何性质和勾股定理来求弦长.(2)过圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的直线方程为(D1-D2)x+(E1-E2)y+F1-F2=0.5.空间直角坐标系(1)建立的空间直角坐标系要遵循右手法则,空间上的任意一点都与有序实数组(x,y,z)一一对应.(2)空间中P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=(x1-x2)2+(y1-y2)2+(z1-z2)2.(3)可利用“关于谁对称,谁保持不变,其余坐标相反”的方法来求空间直角坐标系下的对称点.题型一 求圆的方程求圆的方程主要是联想圆系方程、圆的标准方程和一般方程,利用待定系数法解题.采用待定系数法求圆的方程的一般步骤为:(1)选择圆的方程的某一形式;(2)由题意得a ,b ,r (或D ,E ,F )的方程(组);(3)解出a ,b ,r (或D ,E ,F );(4)代入圆的方程.例1 有一圆与直线l :4x -3y +6=0相切于点A (3,6),且经过点B (5,2),求此圆的方程. 解 方法一 设圆的方程为(x -a )2+(y -b )2=r 2,则圆心为C (a ,b ),由|CA |=|CB |,CA ⊥l , 得⎩⎪⎨⎪⎧(a -3)2+(b -6)2=(a -5)2+(b -2)2=r 2,b -6a -3×43=-1.解得a =5,b =92,r 2=254.∴圆的方程为(x -5)2+⎝⎛⎭⎫y -922=254. 方法二 设圆的方程为x 2+y 2+Dx +Ey +F =0,圆心为C ,由CA ⊥l ,A (3,6)、B (5,2)在圆上,得⎩⎪⎨⎪⎧32+62+3D +6E +F =0,52+22+5D +2E +F =0,-E 2-6-D 2-3×43=-1,解得⎩⎪⎨⎪⎧D =-10,E =-9,F =39.∴所求圆的方程为:x 2+y 2-10x -9y +39=0.方法三 设圆心为C ,则CA ⊥l ,又设AC 与圆的另一交点为P ,则CA 方程为y -6=-34(x-3),即3x +4y -33=0. 又k AB =6-23-5=-2,∴k BP =12,∴直线BP 的方程为x -2y -1=0.解方程组⎩⎪⎨⎪⎧ 3x +4y -33=0,x -2y -1=0,得⎩⎪⎨⎪⎧x =7,y =3.∴P (7,3).∴圆心为AP 中点⎝⎛⎭⎫5,92,半径为|AC |=52.∴所求圆的方程为(x -5)2+⎝⎛⎭⎫y -922=254. 跟踪训练1 若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是______. 答案 ()x -22+⎝⎛⎭⎫y +322=254解析 因为圆的弦的垂直平分线必过圆心,且圆经过点(0,0)和(4,0),所以设圆心为(2,m ).又因为圆与直线y =1相切,所以(4-2)2+(0-m )2=|1-m |,所以m 2+4=m 2-2m +1,解得m =-32,所以圆的方程为(x -2)2+⎝⎛⎭⎫y +322=254. 题型二 直线与圆、圆与圆的位置关系(1)直线与圆的位置关系是高考考查的重点,切线问题更是重中之重,判断直线与圆的位置关系以几何法为主,解题时应充分利用圆的几何性质以简化解题过程.(2)解决圆与圆的位置关系的关键是抓住它的几何特征,利用两圆圆心距与两圆半径的和、差的绝对值的大小来确定两圆的位置关系,以及充分利用它的几何图形的形象直观性来分析问题.例2 如图所示,在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程; (2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.解 (1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在.设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d ,因为直线l 被圆C 1截得的弦长为23,所以d =22-(3)2=1.由点到直线的距离公式得d =|-3k -1-4k |1+k 2,从而k (24k +7)=0.即k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k (x -a ).因为圆C 1和圆C 2的半径相等,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等,即|1-k (-3-a )-b |1+k 2=⎪⎪⎪⎪5+1k (4-a )-b 1+1k2,整理得|1+3k +ak -b |=|5k +4-a -bk |,从而1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b = -5k -4+a +bk ,即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5, 因为k 的取值范围有无穷多个,所以⎩⎪⎨⎪⎧ a +b -2=0,b -a +3=0或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0,解得⎩⎨⎧a =52,b =-12或⎩⎨⎧a =-32,b =132.这样点P 只可能是点P 1⎝⎛⎭⎫52,-12或点P 2⎝⎛⎭⎫-32,132. 经检验点P 1和P 2满足题目条件.跟踪训练2 已知圆M :(x -1)2+(y -1)2=4,直线l 过点P (2,3)且与圆M 交于A ,B 两点,且|AB |=23,求直线l 的方程.解 (1)当直线l 存在斜率时,设直线l 的方程为y -3=k (x -2),即kx -y +3-2k =0.作示意图如图,作MC ⊥AB 于C . 在Rt △MBC 中, |BC |=3,|MB |=2, 故|MC |=|MB |2-|BC |2=1,由点到直线的距离公式得|k -1+3-2k |k 2+1=1, 解得k =34.所以直线l 的方程为3x -4y +6=0.(2)当直线l 的斜率不存在时,其方程为x =2, 且|AB |=23,所以适合题意.综上所述,直线l 的方程为3x -4y +6=0或x =2. 题型三 与圆有关的最值问题在解决有关直线与圆的最值和范围问题时,最常用的方法是函数法,把要求的最值或范围表示为某个变量的关系式,用函数或方程的知识,尤其是配方的方法求出最值或范围;除此之外,数形结合的思想方法也是一种重要方法,直接根据图形和题设条件,应用图形的直观位置关系得出要求的范围.例3 在△ABO 中,|OB |=3,|OA |=4,|AB |=5,P 是△ABO 的内切圆上一点,求以|P A |,|PB |,|PO |为直径的三个圆面积之和的最大值与最小值. 解 如图所示,建立平面直角坐标系,使A ,B ,O 三点的坐标分别为A (4,0),B (0,3),O (0,0). 设内切圆的半径为r ,点P 的坐标为(x ,y ), 则2r +|AB |=|OA |+|OB |,∴r =1.故内切圆的方程为(x -1)2+(y -1)2=1, 整理得x 2+y 2-2x -2y =-1.①由已知得|P A |2+|PB |2+|PO |2=(x -4)2+y 2+x 2+(y -3)2+x 2+y 2 =3x 2+3y 2-8x -6y +25.② 由①可知x 2+y 2-2y =2x -1,③将③代入②得|P A |2+|PB |2+|PO |2=3(2x -1)-8x +25=-2x +22. ∵0≤x ≤2,∴|P A |2+|PB |2+|PO |2的最大值为22,最小值为18.又三个圆的面积之和为π⎝⎛⎭⎫|P A |22+π⎝⎛⎭⎫|PB |22+π⎝⎛⎭⎫|PO |22=π4(|P A |2+|PB |2+|PO |2), ∴以|P A |,|PB |,|PO |为直径的三个圆面积之和的最大值为112π,最小值为92π.跟踪训练3 已知实数x ,y 满足方程(x -3)2+(y -3)2=6,求x +y 的最大值和最小值. 解 设x +y =t ,由题意,知直线x +y =t 与圆(x -3)2+(y -3)2=6有公共点, 所以d ≤r ,即|3+3-t |2≤ 6.所以6-23≤t ≤6+2 3.所以x +y 的最小值为6-23,最大值为6+2 3.题型四 分类讨论思想分类讨论思想是中学数学的基本思想之一,是历年高考的重点,其实质就是将整体问题化为部分问题来解决,化成部分问题后,从而增加了题设的条件.在用二元二次方程表示圆时要分类讨论,在求直线的斜率问题时,用斜率表示直线方程时都要分类讨论.例4 已知直线l 经过点P (-4,-3),且被圆(x +1)2+(y +2)2=25截得的弦长为8,求直线l 的方程.解 圆(x +1)2+(y +2)2=25的圆心为(-1,-2),半径r =5.①当直线l 的斜率不存在时,则l 的方程为x =-4,由题意可知直线x =-4符合题意. ②当直线l 的斜率存在时,设其方程为y +3=k (x +4), 即kx -y +4k -3=0. 由题意可知⎝⎛⎭⎪⎫|-k +2+4k -3|1+k 22+⎝⎛⎭⎫822=52,解得k =-43,即所求直线方程为4x +3y +25=0.综上所述,满足题设的l 方程为x =-4或4x +3y +25=0.跟踪训练4 如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P . (1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. 解 (1)设圆A 的半径为r .由于圆A 与直线l 1:x +2y +7=0相切, ∴r =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意;②当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +2),即kx -y +2k =0.连接AQ ,则AQ ⊥MN . ∵|MN |=219, ∴|AQ |=20-19=1, 则由|AQ |=|k -2|k 2+1=1,得k =34.直线方程为3x -4y +6=0.综上,直线l 的方程为x =-2或3x -4y +6=0. 题型五 数形结合思想数形结合思想:在解析几何中,数形结合思想是必不可少的,而在本章中,数形结合思想最主要体现在几何条件的转化上,尤其是针对“方法梳理”中提到的第二类问题,往往题目会给出动点满足的几何条件,这就不能仅仅依靠代数来“翻译”了,必须结合图形,仔细观察分析,有时可能需要比较“绕”的转化才能将一个看似奇怪(或者不好利用)的几何条件列出一个相对简洁的式子,但这样可以在很大程度上减少计算量,大大降低出错的机率. 例5 已知三条直线l 1:x -2y =0,l 2:y +1=0,l 3:2x +y -1=0两两相交,先画出图形,再求过这三个交点的圆的方程. 解 画图如下:由直线方程易知l 2平行于x 轴,l 1与l 3互相垂直, ∴三个交点A ,B ,C 构成直角三角形, ∴经过A ,B ,C 三点的圆就是以AB 为直径的圆.由⎩⎪⎨⎪⎧ x -2y =0,y +1=0,解得⎩⎪⎨⎪⎧x =-2,y =-1.∴点A 的坐标为(-2,-1).由⎩⎪⎨⎪⎧ 2x +y -1=0,y +1=0,解得⎩⎪⎨⎪⎧x =1,y =-1.∴点B 的坐标为(1,-1).∴线段AB 的中点坐标为(-12,-1).又∵|AB |=|1-(-2)|=3.∴圆的方程是(x +12)2+(y +1)2=94.跟踪训练5 已知点A (-1,0),B (2,0),动点M (x ,y )满足|MA ||MB |=12,设动点M 的轨迹为C .(1)求动点M 的轨迹方程,并说明轨迹C 是什么图形; (2)求动点M 与定点B 连线的斜率的最小值;(3)设直线l :y =x +m 交轨迹C 于P ,Q 两点,是否存在以线段PQ 为直径的圆经过点A ?若存在,求出实数m 的值;若不存在,请说明理由. 解 (1)由题意,得|MA |=(x +1)2+y 2, |MB |=(x -2)2+y 2.∵|MA ||MB |=12,∴(x +1)2+y 2(x -2)2+y 2=12, 化简,得(x +2)2+y 2=4.∴轨迹C 是以(-2,0)为圆心,2为半径的圆. (2)设过点B 的直线为y =k (x -2). 由题意,得圆心到直线的距离d =|-4k |k 2+1≤2.解得-33≤k ≤33.即k min =-33. (3)假设存在,设P (x 1,y 1),Q (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =x +m ,(x +2)2+y 2=4,得2x 2+2(m +2)x +m 2=0. ∴x 1+x 2=-m -2,x 1x 2=m 22. ①y 1+y 2=m -2,y 1y 2=m 2-4m2. ②设以PQ 为直径经过点A 的圆的圆心为O ,则O 的坐标为O (x 1+x 22,y 1+y 22),|OA |=|OP |, (x 1+x 22+1)2+(y 1+y 22)2 =(x 1+x 22-x 1)2+(y 2-y 12)2. 整理得(x 1+x 2+2)2+(y 1+y 2)2=(x 1+x 2)2+(y 1+y 2)2-4x 1x 2-4y 1y 2,③ 将①②代入③得m 2-3m -1=0, 解得m =3±132.故当m =3±132时,存在线段PQ 为直径的圆经过点A .初中我们从平面几何的角度研究过圆的问题,本章则主要是利用圆的方程从代数角度研究了圆的性质,如果我们能够将两者有机地结合起来解决圆的问题,将在处理圆的有关问题时收到意想不到的效果.圆是非常特殊的几何图形,它既是中心对称图形又是轴对称图形,它的许多几何性质在解决圆的问题时往往起到事半功倍的作用,所以在实际解题中常用几何法,充分结合圆的平面几何性质.那么,我们来看经常使用圆的哪些几何性质:(1)圆的切线的性质:圆心到切线的距离等于半径;切点与圆心的连线垂直于切线;切线在切点处的垂线一定经过圆心;圆心、圆外一点及该点所引切线的切点构成直角三角形的三个顶点等等.(2)直线与圆相交的弦的有关性质:相交弦的中点与圆心的连线垂直于弦所在直线;弦的垂直平分线(中垂线)一定经过圆心;弦心距、半径、弦长的一半构成直角三角形的三边,满足勾股定理.(3)与直径有关的几何性质:直径是圆的最长的弦;圆的对称轴一定经过圆心;直径所对的圆周角是直角.。
湘教2021课标版必修三第七章《圆的标准方程》教学设计一、教材内容分析圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。
因此,本节课在本章中起着承上启下的重要作用。
二、教学目标(1)探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。
(2)通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。
(3) 激发学生学习数学的兴趣,感受学习成功的喜悦。
三、教学重点难点以及措施教学重点:圆的标准方程理解及运用教学难点:根据不同条件,利用待定系数求圆的标准方程。
根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循认知过程,设计出包括:观察、思考、交流等内容的教学流程。
并且充分利用现代化信息技术的教学手段提高教学效率。
以此使学生获取知识,给学生合作交流的机会。
学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。
四、教学设计1回顾复习:2检查学生导学案完成情况后,复习圆的定义,教师提出问题。
引导学生思考:直线可以用一个方程表示,那么圆可以用一个方程表示吗,引出本节主旨。
学生思考如何表示圆的方程。
3学生展示交流、合作探究,教师点拨讲解教师引导学生分组探讨,从旁巡视指导学生在自学和探讨中遇到的问题,并鼓励学生以小组为单位展示探究成果。
探究一:在平面直角坐标系中,如何确定一个圆呢?圆心(点)A 的位置用坐标 a,b 表示,半径r 的大小等于圆上任意点M, 符合上述条件的圆的集合是什么?你能用描述法来表示这个集合吗?探究二:圆上任意点M, 与圆心A a,b 之间的距离能用什么公式表示?方程222)()(m b y a x =-+-一定表示圆吗?探究三:圆心在坐标原点,半径长为r 的圆的方程是什么?探究四:怎样判断点 ()000,y x M 在圆 222)()(r b y a x =-+- 内呢?还是在圆外呢?设计意图:通过合作探究和自我的展示,鼓励学生合作学习的品质4学以致用,总结提升例1 写出圆心为A2,-3,半径长等于5的圆的方程,并判断点()7,51-M ,()1,52--M 是否在这个圆上. 例2 ⊿ABC 的三个顶点的坐标分别是A5,1, B7,-3,C2,-8,求它的外接圆的方程例3 己知圆心为C 的圆经过点A1,1和B2,-2,且圆心在直线:-1=0上,求圆心为C 的圆的标准方程5课堂小结、总结拓展1你学到了哪些知识2你掌握了哪些技能3你体会到了哪些数学思想设计意图:采用提问的形式帮助学生回顾和分析本节所学。
圆的标准方程知识技能目标:1、掌握圆的标准方程2、要求学生会根据方程写出圆心和半径,会根据条件求圆的标准方程情感态度价值观目标:1、培养学生学生积极参与,大胆探索的精神和意识,通过让学生体验成功,增强学习数学的信心2、树立转化、化归意识。
培养一定条件事务可以互相转化的辩证唯物主义观点。
数学思想数学方法:数形结合,方程思想,待定系数法,渗透求点的轨迹方程基本思路教学重点和难点:圆的标准方程以及根据已知条件求圆的方程教学方法:教法上本着“教师为主导,学生为主体,问题解决为主线,能力发展为目标”的教学思想,主要采用问题探究式教学方法。
通过对圆标准方程的推导,渗透求点的轨迹基本思路。
通过几个例题,阶梯式练习,让学生在冲突中激发探索欲望;引导学生积极思考,灵活掌握知识,使学生从“懂”懂到“悟”。
同时借助于多媒体,增强教学的直观性,提高课堂效率。
教学过程一、复习引入:1、圆的定义2、议一议:已知圆心的坐标和半径怎样求圆的方程?二、讲解新课:探究一:圆方程的推导1、若圆上任意点M(x, y)与圆心C (a,b)之间的距离为r,圆的方程是什么?自己动手尝试:总结提升:(1)圆心是C(a,b ),半径长为r 的圆的方程是:方程称为圆的标准方程。
(2)圆心在坐标原点,半径长为r 的圆的方程是:跟踪练习:1 你能快速说出下列圆的标准方程吗?(1)圆心C (-3,4),半径为5(2)圆心(2,-1),半径为32 说出下列圆的圆心、半径:(1) (2) (3) 典型例题分析一:根据下列条件,求圆的方程:(1)圆心在点C(-2,1),并过点A(2,-2);(2)圆心在点C(1,3),并与直3x-4y-6=0相切;(3)过点(0,1)和点(2,1),总结归纳:法一 1、求圆心;2、求半径;法二:设方程,列方程组。
()()()()()22222212431615x y x y x y -+-=++-=++=典型例题分析二:已知圆心为C的圆经过点 A(6,0)和B(1,5),且圆心C在直线l :2x-7y+8=0上,求圆的方程.思路分析:法一:如何求圆心与半径?法二:设方程,列方程组怎么做?想一想,解方程组具体怎么进行?课堂练习写出圆心为 C(2,-3),半径长等于5的圆的方程,并判断点M(5,-7),M1,7) ,是否在这个圆上?2探究二点与圆的位置关系议一议:怎样判断点P(x0,y0)在圆222x a y b r-+-=内呢?还是在圆()()外呢?222-+-=⇔点P在圆上()()x a y b r222-+-<⇔()()x a y b r222()()-+->⇔x a y b r课堂提高:△ABC的三个顶点的坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.小结:1、知识小结:本节课我们学习了:2、数学思想与方法小结:本节课我们用到的数学方法与思想有:3、本节课主要题型是:《圆的标准方程》学情分析前面刚刚学习了直线方程,所以学生对于通过联立直线方程解方程组求交点已经很熟悉了。
2.1 圆的标准方程[学习目标] 1.会用定义推导圆的标准方程;掌握圆的标准方程的特点. 2.会根据已知条件求圆的标准方程. 3.能准确判断点与圆的位置关系.【主干自填】1.确定圆的条件(1)几何特征:圆上任一点到圆心的距离等于□01定长. (2)确定圆的条件:□02圆心和□03半径. 2.圆的标准方程(1)以C (a ,b )为圆心,半径为r □04(x -a )+(y -b )=r . (2)当圆心在坐标原点时,半径为r 的圆的标准方程为□05x +y =r . 3.中点坐标A (x 1,y 1),B (x 2,y 2)的中点坐标为□06⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.4.点与圆的位置关系点与圆有三种位置关系,即点在圆外、点在圆上、点在圆内,判断点与圆的位置关系有两种方法:(1)几何法:将所给的点M 与圆心C 的距离跟半径r 比较: 若|CM |=r ,则点M 在□07圆上; 若|CM |>r ,则点M 在□08圆外; 若|CM |<r ,则点M 在□09圆内.(2)代数法:可利用圆C的标准方程(x-a)2+(y-b)2=r2来确定:点M(m,n)在□10圆上⇔(m-a)2+(n-b)2=r2;点M(m,n)在□11圆外⇔(m-a)2+(n-b)2>r2;点M(m,n)在□12圆内⇔(m-a)2+(n-b)2<r2.【即时小测】1.思考下列问题若圆的标准方程为(x+a)2+(y+b)2=t2(t≠0),那么圆心坐标是什么?半径呢?提示:圆心坐标(-a,-b),半径:|t|.2.圆心是C(2,-3),且经过原点的圆的方程为()A.(x+2)2+(y-3)2=13B.(x-2)2+(y+3)2=13C.(x+2)2+(y-3)2=13D.(x-2)2+(y+3)2=13提示:B设圆的标准方程为(x-a)2+(y-b)2=r2,∵圆心是C(2,-3)且过原点,∴a=2,b=-3.∴r=(2-0)2+(-3-0)2=13,∴圆的方程为(x-2)2+(y+3)2=13.3.已知圆的方程是(x-2)2+(y-3)2=4,则点P(1,2)()A.是圆心B.在圆上C.在圆内D.在圆外提示:C∵(1-2)2+(2-3)2=2<4,∴点在圆内.4.圆C:(x-2)2+(y+3)2=4的面积等于()A.π B.2π C.4π D.8π提示:C由题可知r=2,∴S=πr2=4π.例1写出下列各圆的标准方程.(1)圆心在原点,半径为8;(2)圆心在(2,3),半径为2;(3)圆心在(2,-1)且过原点.[解]设圆的标准方程为(x-a)2+(y-b)2=r2.(1)∵圆心在原点,半径为8,即a=0,b=0,r=8,∴圆的方程为x2+y2=64.(2)∵圆心为(2,3),半径为2,即a=2,b=3,r=2,∴圆的方程为(x-2)2+(y-3)2=4.(3)∵圆心在(2,-1)且过原点,∴a=2,b=-1,r=(2-0)2+(-1-0)2= 5.∴圆的方程为(x-2)2+(y+1)2=5.类题通法求圆的标准方程的方法直接法求圆的标准方程时,一般先从确定圆的两个要素入手,即首先求出圆心坐标和半径,然后直接写出圆的标准方程.[变式训练1]求满足下列条件的圆的标准方程.(1)圆心为(2,-2),且过点(6,3);(2)过点A(-4,-5),B(6,-1)且以线段AB为直径;(3)圆心在直线x=2上且与y轴交于两点A(0,-4),B(0,-2).解(1)由两点间距离公式,得r=(6-2)2+(3+2)2=41,∴所求圆的标准方程为(x-2)2+(y+2)2=41.(2)圆心即为线段AB的中点,为(1,-3).又|AB|=(-4-6)2+(-5+1)2=229,∴半径r=29.∴所求圆的标准方程为(x-1)2+(y+3)2=29.(3)由圆的几何意义知圆心坐标(2,-3),半径r=(2-0)2+(-3+2)2=5,∴圆的方程为(x-2)2+(y+3)2=5.例2已知两点P1(3,6),P2(-1,2),求以线段P1P2为直径的圆的方程,并判断点M(2,2),N(5,0),Q(3,2)在圆上,在圆内,还是在圆外?[解]由已知得圆心坐标为C(1,4),圆的半径r=12|P1P2|=12(3+1)2+(6-2)2=2 2.∴所求圆的方程为(x-1)2+(y-4)2=8.∵(2-1)2+(2-4)2=5<8,(5-1)2+(0-4)2=32>8,(3-1)2+(2-4)2=8,∴点M在圆内,点N在圆外,点Q在圆上.类题通法判断点与圆位置关系的方法判定点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2的位置关系,即比较|MC|与r的关系:若点M在圆C上,则有(x0-a)2+(y0-b)2=r2;若点M在圆C外,则有(x0-a)2+(y0-b)2>r2;若点M在圆C内,则有(x0-a)2+(y0-b)2<r2.[变式训练2]点A(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是()A.-1<a<1 B.0<a<1C.a<-1或a>1 D.a=±1答案A解析∵点A(1,1)在圆(x-a)2+(y+a)2=4的内部,∴(1-a)2+(1+a)2<4,解得-1<a<1.例3求圆心在直线l:2x-y-3=0上,且过点A(5,2)和点B(3,-2)的圆的方程.[解]解法一:设圆的方程为(x-a)2+(y-b)2=r2,则⎩⎪⎨⎪⎧2a-b-3=0,(5-a)2+(2-b)2=r2,(3-a)2+(-2-b)2=r2,解得⎩⎪⎨⎪⎧a=2,b=1,r=10.∴圆的方程为(x-2)2+(y-1)2=10.解法二:∵圆过A(5,2),B(3,-2)两点,∴圆心一定在线段AB 的垂直平分线上, 线段AB 的垂直平分线方程为y =-12(x -4),由⎩⎨⎧2x -y -3=0,y =-12(x -4),解得⎩⎪⎨⎪⎧x =2,y =1.即圆心C 的坐标为(2,1). ∴r =|CA |=(5-2)2+(2-1)2=10.∴所求圆的方程为(x -2)2+(y -1)2=10.类题通法用待定系数法求圆的标准方程的一般步骤(1)设出圆的标准方程.(2)根据条件得关于a ,b ,r 的方程组,并解方程组得a ,b ,r 的值. (3)代入标准方程,得出结果.[变式训练3] 一圆过原点O 和点P (1,3),圆心在直线y =x +2上,求此圆的标准方程.解 解法一:圆心在直线y =x +2上, ∴设圆心坐标为(a ,a +2),半径为r , 则圆的方程为(x -a )2+(y -a -2)2=r 2. ∵点O (0,0)和P (1,3)在圆上, ∴⎩⎪⎨⎪⎧(0-a )2+(0-a -2)2=r 2,(1-a )2+(3-a -2)2=r 2,解得⎩⎪⎨⎪⎧a =-14,r 2=258.∴所求的圆的方程为⎝ ⎛⎭⎪⎫x +142+⎝ ⎛⎭⎪⎫y -742=258.解法二:由题意,圆的弦OP 所在直线的斜率为3,中点坐标为⎝ ⎛⎭⎪⎫12,32,∴弦OP 的垂直平分线方程为y -32=-13⎝ ⎛⎭⎪⎫x -12,即x +3y -5=0.∵圆心在直线y =x +2上,且圆心在弦OP 的垂直平分线上, ∴由⎩⎪⎨⎪⎧y =x +2,x +3y -5=0解得⎩⎪⎨⎪⎧x =-14,y =74,即圆心坐标为C ⎝ ⎛⎭⎪⎫-14,74.又∵圆的半径r =|OC |=⎝ ⎛⎭⎪⎫-142+⎝ ⎛⎭⎪⎫742=258,∴所求的圆的方程为⎝ ⎛⎭⎪⎫x +142+⎝ ⎛⎭⎪⎫y -742=258.易错点⊳忽略圆的标准方程中隐含条件——半径大于零[典例] 已知点A (1,2)在圆C :(x +a )2+(y -a )2=2a 2的外部,求实数a 的取值范围.[错解] ∵点A (1,2)在圆的外部,∴(1+a )2+(2-a )2>2a 2,即5-2a >0,∴a <52, ∴a 的取值范围是⎝ ⎛⎭⎪⎫-∞,52.[错因分析] 忽略的圆的标准方程中隐藏着r 2>0.[正解] ∵点A (1,2)在圆的外部,∴(1+a )2+(2-a )2>2a 2,即5-2a >0,∴a <52,又2a 2>0,∴a ≠0.∴a 的取值范围是(-∞,0)∪⎝ ⎛⎭⎪⎫0,52.课堂小结1.确定圆的方程主要方法是待定系数法,即列出关于a,b,r的方程组求a,b,r或直接求出圆心(a,b)和半径r.另依据题意适时运用圆的几何性质解题可以化繁为简,提高解题效率.2.讨论点与圆的位置关系可以从代数特征(点的坐标是否满足圆的方程)或几何特征(点到圆心的距离与半径的关系)去考虑,其中利用几何特征较为直观、快捷.1.圆(x-2)2+(y+3)2=2的圆心和半径分别是()A.(-2,3),1 B.(2,-3),3C.(-2,3), 2 D.(2,-3),2答案D解析根据圆的标准方程可知圆心为(2,-3),半径为 2.2.以原点为圆心,2为半径的圆的标准方程是()A.x2+y2=2 B.x2+y2=4C.(x-2)2+(y-2)2=8 D.x2+y2=2答案B解析以原点为圆心,2为半径的圆,其标准方程为x2+y2=4.3.圆的直径端点为A(2,0),B(2,-2),则此圆的标准方程为________.答案(x-2)2+(y+1)2=1解析圆心C(2,-1),半径r=12(2-2)2+(0+2)2=1,∴圆的标准方程为(x-2)2+(y+1)2=1.4.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为________.答案x2+(y-1)2=1解析由题意知圆C的圆心为(0,1),半径为1,所以圆C的标准方程为x2+(y-1)2=1.时间:25分钟1.圆心为C(-1,2),且一条直径的两个端点落在两坐标轴上的圆的方程是()A.(x-1)2+(y+2)2=5B.(x-1)2+(y+2)2=20C.(x+1)2+(y-2)2=5D.(x+1)2+(y-2)2=20答案C解析因为直径的两个端点在两坐标轴上,所以该圆一定过原点,所以半径r=(-1-0)2+(2-0)2=5,又圆心为C(-1,2),故圆的方程为(x+1)2+(y-2)2=5,故选C.2.经过A(-1,1),B(2,2),C(3,-1)三点的圆的标准方程是()A.(x+1)2+y2=4 B.(x+1)2+y2=5C.(x-1)2+y2=4 D.(x-1)2+y2=5答案D解析由已知条件可得,线段AC的垂直平分线方程为y-0=2(x-1),即y=2x-2,线段AB的垂直平分线方程为y-32=-3⎝⎛⎭⎪⎫x-12,这两条直线的交点坐标为M(1,0),又由|MA|=5,可得过三点A,B,C的圆的标准方程为(x-1)2+y2=5.3.过点C(-1,1)和点D(1,3),且圆心在x轴上的圆的方程是()A.x2+(y-2)2=10 B.x2+(y+2)2=10C.(x+2)2+y2=10 D.(x-2)2+y2=10答案D解析 ∵圆心在x 轴上, ∴可设方程为(x -a )2+y 2=r 2.由条件知⎩⎪⎨⎪⎧ (-1-a )2+1=r 2,(1-a )2+9=r 2,解得⎩⎪⎨⎪⎧a =2,r 2=10.故方程为(x -2)2+y 2=10.4.设M 是圆(x -5)2+(y -3)2=9上的点,则M 到3x +4y -2=0的最小距离是( )A .9B .8C .5D .2 答案 D解析 圆心(5,3)到直线3x +4y -2=0的距离 d =|3×5+4×3-2|32+42=|15+12-2|5=5,∴所求的最小距离是5-3=2.5.若直线y =ax +b 经过第一、二、四象限,则圆(x +a )2+(y +b )2=1的圆心位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 D解析 由题意,知(-a ,-b )为圆(x +a )2+(y +b )2=1的圆心.由直线y =ax +b 经过第一、二、四象限,得到a <0,b >0,即-a >0,-b <0,故圆心位于第四象限.6.已知点P (a ,a +1)在圆x 2+y 2=25的内部,那么实数a 的取值范围是( ) A .(-4,3) B .(-5,4) C .(-5,5) D .(-6,4) 答案 A解析 由a 2+(a +1)2<25,可得2a 2+2a -24<0,解得-4<a <3.7.与圆(x -2)2+(y +3)2=16同圆心且过点P (-1,1)的圆的方程为________. 答案 (x -2)2+(y +3)2=25解析 因为已知圆的圆心为(2,-3),所以所求圆的圆心为(2,-3).又r =(2+1)2+(-3-1)2=5,所以所求圆的方程为(x -2)2+(y +3)2=25.8.圆(x +2)2+(y +1)2=4上存在相异的两点关于过点(0,1)的直线l 对称,则直线l 的方程为________.答案 x -y +1=0解析 易得直线l 必过圆心(-2,-1),故直线l 的方程是y -1=-1-1-2-0(x -0),即x -y +1=0.9.已知圆过点A (1,-2),B (-1,4).(1)求周长最小的圆的方程;(2)求圆心在直线2x -y -4=0上的圆的方程.解 (1)当线段AB 为圆的直径时,过点A ,B 的圆的半径最小,从而周长最小,即以线段AB 的中点(0,1)为圆心,r =12|AB |=10为半径.则所求圆的方程为x 2+(y -1)2=10.(2)设圆的方程为(x -a )2+(y -b )2=R 2.则⎩⎪⎨⎪⎧ (1-a )2+(-2-b )2=R 2,(-1-a )2+(4-b )2=R 2,2a -b -4=0⇒⎩⎪⎨⎪⎧ a =3,b =2,R 2=20.∴所求圆的方程为(x -3)2+(y -2)2=20.10.已知圆C 1:(x +3)2+(y -1)2=4,直线l :14x +8y -31=0,求圆C 1关于直线l 对称的圆C 2的方程.解 设圆C 2的圆心坐标为(m ,n ).因为直线l 的斜率k =-74,圆C 1:(x +3)2+(y -1)2=4的圆心坐标为(-3,1),半径r =2,所以,由对称性知⎩⎪⎨⎪⎧ n -1m +3=47,14·-3+m 2+8·1+n 2-31=0,解得⎩⎪⎨⎪⎧m =4,n =5.所以圆C 2的方程为(x -4)2+(y -5)2=4.。