吉林省中考数学试卷
- 格式:docx
- 大小:102.43 KB
- 文档页数:14
选择题在平面直角坐标系中,点A(3, -2)关于x轴对称的点的坐标是:A. (-3, 2)B. (-3, -2)C. (3, 2)(正确答案)D. (2, 3)已知等腰三角形的两边长分别为3和5,则这个等腰三角形的周长为:A. 8B. 11C. 13(正确答案)D. 11或13函数y = 2x + 1与y = 2x - 3的图象:A. 平行且关于x轴对称B. 平行且关于y轴对称C. 相交且交点在y轴上D. 平行且关于直线y = x对称(正确答案)若关于x的一元二次方程x2 - 4x + m = 0有两个相等的实数根,则m的值为:A. -4B. 4(正确答案)C. 2D. -2下列计算正确的是:A. 3a + 2b = 5abB. a2 · a3 = a6C. (a2)3 = a6(正确答案)D. a6 ÷ a3 = a1已知圆的半径为r,圆心到直线l的距离为d,若直线l与圆相切,则:A. d > rB. d < rC. d = r(正确答案)D. d与r的大小关系不确定在比例尺为1:1000的地图上,测得某矩形区域的图上面积为2cm2,则该矩形区域的实际面积为:A. 2m2B. 20m2C. 200m2(正确答案)D. 2000m2下列不等式组中,解集为x > 2的是:A. {x | x > 1, x > 3}B. {x | x > 1, x ≤ 2}C. {x | x ≥ 2, x < 3}D. {x | x > 1, x > 2}(正确答案)若a、b、c为三角形的三边长,且满足(a - 5)2 + |b - 12| + c2 - 26c + 169 = 0,则此三角形的形状为:A. 等腰三角形B. 等边三角形C. 直角三角形(正确答案)D. 等腰直角三角形。
吉林省长春市中考数学试卷一、选择题(每小题3分,共24分)1.(3分)(•长春)的绝对值等于()A.B.4C.D.﹣4考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣的绝对值等于,即|﹣|=.故选A.点评:本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(•长春)如图是由四个相同的小长方体组成的立体图形,这个立体图形的正视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有1个长方形,位于左边,第二层有2个长方形.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)(•长春)我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为()A.14×106B.1.4×107C.1.4×108D.0.14×108考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14 000 000有8位,所以可以确定n=8﹣1=7.解答:解:14 000 000=1.4×107.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(•长春)不等式2x<﹣4的解集在数轴上表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式分析:首先解不等式求得不等式的解集,根据数轴上点的表示法即可判断.解答:解:解不等式得:x<﹣2.故选D.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)(•长春)如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D 在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()A.30°B.45°C.60°D.75°考点:平行线的性质;直角三角形的性质.分析:首先根据垂直定义可得∠ADE=90°,再根据∠FDE=30°,可得∠ADF=60°,然后根据两直线平行同位角相等可得∠B的大小.解答:解:∵DE⊥AB,∴∠ADE=90°,∵∠FDE=30°,∴∠ADF=90°﹣30°=60°,∵BC∥DF,∴∠B=∠ADF=60°,故选:C.点评:此题主要考查了平行线的性质,关键是掌握两直线平行同位角相等.6.(3分)(•长春)如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC 弧上,则∠ADB的大小为()A.46°B.53°C.56°D.71°考点:圆周角定理.分析:根据三角形内角和定理求出∠ACB,根据圆周角定理得出∠C,求出即可.解答:解:∵∠ABC=71°,∠CAB=53°,∴∠ACB=180°﹣∠ABC﹣∠BAC=56°,∵弧AB对的圆周角是∠ADB和∠ACB,∴∠ADB=∠ACB=56°,故选C.点评:本题考查了圆周角定理和三角形内角和定理的应用,关键是求出∠ACB的度数和得出∠ACB=∠ADB.7.(3分)(•长春)如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A.B.C.2D.3考点:相似三角形的判定与性质.专题:探究型.分析:先根据题意判断出△ABD∽△BDC,再根据相似三角形的对应边成比例即可得出CD的长.解答:解:∵∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,∴△ABD∽△BDC,∴=,即=,解得CD=.故选B.点评:本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.8.(3分)(•长春)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x 轴向右平移后得到△O′A′B′,点A的对应点在直线y=x上一点,则点B与其对应点B′间的距离为()A.B.3C.4D.5考点:一次函数图象上点的坐标特征;坐标与图形变化-平移分析:根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.解答:解:如图,连接AA′、BB′.∵点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是3.又∵点A的对应点在直线y=x上一点,∴3=x,解得x=4.∴点A′的坐标是(4,3),∴AA′=4.∴根据平移的性质知BB′=AA′=4.故选C.点评:本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣﹣平移.根据平移的性质得到BB′=AA′是解题的关键.二、填空题(每小题3分,共18分)9.(3分)(•长春)计算:a2•5a=5a3.考点:单项式乘单项式专题:计算题.分析:利用单项式乘单项式法则计算即可得到结果.解答:解:原式=5a3.故答案为:5a3.点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.10.(3分)(•长春)吉林广播电视塔“五一”假期第一天接待游客m人,第二天接待游客n人,则这2天平均每天接待游客人(用含m、n的代数式表示).考点:列代数式分析:用两天接待的游客总人数除以天数,即可得解.解答:解:2天平均每天接待游客.故答案为:.点评:本题考查了列代数式,比较简单,熟练掌握平均数的求法是解题的关键.11.(3分)(•长春)如图,MN是⊙O的弦,正方形OABC的顶点B、C在MN上,且点B是CM的中点.若正方形OABC的边长为7,则MN的长为28.考点:垂径定理;正方形的性质.分析:根据正方形性质得出BC=7,∠OCB=90°,根据垂径定理得出CM=2BC,推出MN=4BC,代入求出即可.解答:解:∵四边形OABC是正方形,∴BC=7,∠OCB=90°,∴OC⊥MN,∴由垂径定理得:MN=2CM,∵点B是CM的中点,∴CM=2BC,∴MN=4BC=4×7=28,故答案为:28.点评:本题考查了垂径定理和正方形性质的应用,关键是推出MN=4BC.12.(3分)(•长春)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC 的大小为65度.考点:全等三角形的判定与性质.分析:根据作法可得AB=CD,BC=AD,然后利用“边边边”证明△ABC和△CDA全等,再根据全等三角形对应角相等解答.解答:解:∵以点A为圆心,以BC长为半径作弧;以顶点C为圆心,以AB长为半径作弧,两弧交于点D,∴AB=CD,BC=AD,在△ABC和△CDA中,,∴△ABC≌△CDA,∴∠ADC=∠B=65°.故答案为:65.点评:本题考查了全等三角形的判定与性质,根据作法得到全等三角形相等的边是解题的关键.13.(3分)(•长春)如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k 的值为.考点:正多边形和圆;反比例函数图象上点的坐标特征.分析:连接OB,过B作BM⊥OA于M,得出等边三角形AOB,求出OB,根据锐角三角函数求出BM和OM,即可得出B的坐标,代入即可求出答案.解答:解:连接OB,过B作BM⊥OA于M,∵六边形ABCDEF是正六边形,∴∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=6,∴BM=OB•sin∠BOA=6×sin60°=3,OM=OB•COS60°=3,即B的坐标是(3,3),∵B在反比例函数位于第一象限的图象上,∴k=3×3=9,故答案为:9.点评:本题考查了正多边形性质,锐角三角函数,反比例函数的性质,等边三角形的性质和判定的应用,关键是求出B的坐标.14.(3分)(•长春)如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长值为6.考点:二次函数图象上点的坐标特征.分析:先由y轴上点的横坐标为0求出A点坐标为(0,3),再将y=3代入y=,求出x的值,得出B、C两点的坐标,进而求出BC的长度.解答:解:∵抛物线y=ax2+3与y轴交于点A,∴A点坐标为(0,3).当y=3时,=3,解得x=±3,∴B点坐标为(﹣3,3),C点坐标为(3,3),∴BC=3﹣(﹣3)=6.故答案为6.点评:本题考查了二次函数图象上点的坐标特征,两函数交点坐标的求法,平行于x轴上的两点之间的距离,比较简单.三、解答题(本大题共10小题,共78分)15.(6分)(•长春)先化简,再求值:,其中x=.考点:分式的化简求值专题:计算题.分析:将的分子因式分解,然后约分;再将(x﹣2)2展开,合并同类项后再代入求值即可.解答:解:原式==4x+x2﹣4x+4=x2+4.当x=时,原式==11.点评:本题考查了分式的化简求值,熟悉因式分解及约分、通分是解题的关键.16.(6分)(•长春)甲、乙两人各有一个不透明的口袋,甲的口袋中装有1个白球和2个红球,乙的口袋中装有2个白球和1个红球,这些球除颜色外其他都相同.甲、乙两人分别从各自口袋中随机摸出1个球,用画树状图(或列表)的方法,求两人摸出的球颜色相同的概率.考点:列表法与树状图法专题:计算题.分析:列表得出所有等可能的情况数,找出两人摸出的求颜色相同的情况数,即可求出所求的概率.解答:解:列表如下:甲乙结果白红红白(白,白)(红,白)(红,白)白(白,白)(红,白)(红,白)红(白,红)(红,红)(红,红)所有等可能的情况有9种,其中颜色相同的情况有4种,则P(两人摸出的球颜色相同)=.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(6分)(•长春)某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.考点:分式方程的应用.分析:首先设第一组有x人,则第二组人数是1.5x人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数﹣第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方即可.解答:解:设第一组有x人.根据题意,得=,解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验.18.(7分)(•长春)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.考点:平行四边形的性质专题:证明题.分析:根据平行四边形的对边平行且相等可得AD=EF,AD∥EF,再根据两直线平行,同位角相等可得∠ACB=∠FEB,根据等边对等角求出∠ACB=∠B,从而得到∠FEB=∠B,然后根据等角对等边证明即可.解答:证明:∵四边形ADEF为平行四边形,∴AD=EF,AD∥EF,∴∠ACB=∠FEB,∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF,∴AD=BF.点评:本题考查了平行四边形对边平行且相等的性质,平行线的性质,等角对等边的性质,熟练掌握各性质是解题的关键.19.(7分)(•长春)如图,岸边的点A处距水面的高度AB为2.17米,桥墩顶部点C距水面的高度CD为23.17米.从点A处测得桥墩顶部点C的仰角为26°,求岸边的点A与桥墩顶部点C之间的距离.(结果精确到0.1米)(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)考点:解直角三角形的应用-仰角俯角问题分析:在Rt△CAE中,利用CD、DE的长和已知的角的度数,利用正弦函数可求得AC的长.解答:解:由题意知,DE=AB=2.17,∴CE=CD﹣DE=12.17﹣2.17=10.在Rt△CAE中,∠CAE=26°,sin∠CAE=,∴AC===≈22.7(米).答:岸边的点A与桥墩顶部点C之间的距离约为22.7米.点评:本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.20.(7分)(•长春)某校学生会为了解学生在学校食堂就餐剩饭情况,随机对上周在食堂就餐的n名学生进行了调查,先调查是否剩饭的情况,然后再对其中剩饭的每名学生的剩饭次数进行调查.根据调查结果绘制成如下统计图.(1)求这n名学生中剩饭学生的人数及n的值.(2)求这n名学生中剩饭2次以上的学生占这n名学生人数的百分比.(3)按上述统计结果,估计上周在学校食堂就餐的1 200名学生中剩饭2次以上的人数.考点:条形统计图;用样本估计总体;扇形统计图专题:计算题.分析:(1)由条形统计图中的数据相加即可求出n名学生中剩饭的学生人数,除以剩饭学生所占的百分比即可求出学生的总数,即为n的值;(2)根据条形统计图得到剩饭2次以上的人数,除以n的值,即可求出结果;(3)根据(2)中求出的百分比,乘以1200即可得到结果.解答:解:(1)根据题意得:这n名学生中剩饭学生的人数为58+41+6=105(人),n的值为105÷70%=150,则这n名学生中剩饭的学生有105人,n的值为150;(2)根据题意得:6÷150×100%=4%,则剩饭2次以上的学生占这n名学生人数的4%;(3)根据题意得:1200×4%=48(人).则估计上周在学校食堂就餐的1200名学生中剩饭2次以上的约有48人.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.(8分)(•长春)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.考点:一次函数的应用分析:(1)先求出乙队铺设路面的工作效率,计算出乙队完成需要的时间求出E的坐标,再由待定系数法就可以求出结论.(2)由(1)的结论求出甲队完成的时间,把时间代入乙的解析式就可以求出结论.解答:(1)设线段BC所在直线对应的函数关系式为y=k1x+b1.∵图象经过(3,0)、(5,50),∴∴线段BC所在直线对应的函数关系式为y=25x﹣75.设线段DE所在直线对应的函数关系式为y=k2x+b2.∵乙队按停工前的工作效率为:50÷(5﹣3)=25,∴乙队剩下的需要的时间为:(160﹣50)÷25=,∴E(,160),∴,解得:∴线段DE所在直线对应的函数关系式为y=25x﹣112.5.(2)由题意,得甲队每小时清理路面的长为 100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x﹣112.5,得y=25×8﹣112.5=87.5.答:当甲队清理完路面时,乙队铺设完的路面长为87.5米.点评:本题考查了待定系数法求一次函数的解析式的运用,工作总量=工作效率×工作时间的运用,解答时求出函数的解析式是关键.22.(9分)(•长春)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为152.考点:全等三角形的判定与性质;正方形的判定与性质.分析:探究:过点A作AF⊥CB,交CB的延长线于点F,先判定四边形AFCE为矩形,根据矩形的四个角都是直角可得∠FAE=90°,然后利用同角的余角相等求出∠FAB=∠EAD,再利用“角角边”证明△AFB和△AED全等,根据全等三角形对应边相等可得AE=AF,从而得到四边形AFCE是正方形,然后根据正方形的面积公式列计算即可得解;应用:过点A作AF⊥CD交CD的延长线于F,连接AC,根据同角的补角相等可得∠ABC=∠ADF,然后利用“角角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得AF=AE,再根据S四边形ABCD=S△ABC+S△ACD列式计算即可得解.解答:探究:如图①,过点A作AF⊥CB,交CB的延长线于点F,∵AE⊥CD,∠BCD=90°,∴四边形AFCE为矩形,∴∠FAE=90°,∴∠FAB+∠BAE=90°,∵∠EAD+∠BAE=90°,∴∠FAB=∠EAD,∵在△AFB和△AED中,,∴△AFB≌△AED(AAS),∴AF=AE,∴四边形AFCE为正方形,∴S四边形ABCD=S正方形AFCE=AE2=102=100;应用:如图,过点A作AF⊥CD交CD的延长线于F,连接AC,则∠ADF+∠ADC=180°,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADF,∵在△ABE和△ADF中,,∴△ABE≌△ADF(AAS),∴AF=AE=19,∴S四边形ABCD=S△ABC+S△ACD=BC•AE+CD•AF=×10×19+×6×19=95+57=152.故答案为:152.点评:本题考查了全等三角形的判定与性质,正方形的判定与性质,(1)作辅助线构造出全等三角形是解题的关键;(2)作辅助线构造出全等三角形并把四边形分成两个三角形是解题的关键.23.(10分)(•长春)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2 与x轴交于点A(﹣1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.(1)求这条抛物线所对应的函数关系式.(2)求点C在这条抛物线上时m的值.(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.①当点D在这条抛物线的对称轴上时,求点D的坐标.②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(,))考点:二次函数综合题分析:(1)将A(﹣1,0)、B(4,0)两点的坐标代入y=ax2+bx﹣2,运用待定系数法即可求出抛物线的解析式;(2)先根据等腰直角三角形的性质求出点C的坐标为(m,2),再将C的坐标代入y=x2﹣x﹣2,即可求出m的值;(3)①先由旋转的性质得出点D的坐标为(m,﹣2),再根据二次函数的性质求出抛物线y=x2﹣x﹣2的对称轴为直线x=,然后根据点D在直线x=上,即可求出点D的坐标;②以DN为直角边作等腰直角三角形DNE时,分别以D、N为直角顶点,在DN的两侧分别作出等腰直角三角形DNE,E点的位置分四种情况讨论.针对每一种情况,都可以先根据等腰直角三角形的性质求出点E的坐标,然后根据点E在直线x=上,列出关于m的方程,解方程即可求出m的值.解答:解:(1)∵抛物线经过点A(﹣1,0)、B(4,0),∴解得∴抛物线所对应的函数关系式为y=x2﹣x﹣2;(2)∵△CMN是等腰直角三角形CMN,∠CMN=90°,∴CM=MN=2,∴点C的坐标为(m,2),∵点C(m,2)在抛物线上,∴m2﹣m﹣2=2,解得m1=,m2=.∴点C在这条抛物线上时,m的值为或;(3)①∵将线段CN绕点N逆时针旋转90°后,得到对应线段DN,∴∠CND=90°,DN=CN=CM=MN,∴CD=CN=2CM=2MN,∴DM=CM=MN,∠DMN=90°,∴点D的坐标为(m,﹣2).又∵抛物线y=x2﹣x﹣2的对称轴为直线x=,点D在这条抛物线的对称轴上,∴点D的坐标为(,﹣2);②如图,以DN为直角边作等腰直角三角形DNE,E点的位置有四种情况:如果E点在E1的位置时,∵点D的坐标为(m,﹣2),MN=ME1=2,点N的坐标为(m+2,0),∴点E1的(m﹣2,0),∵点E1在抛物线y=x2﹣x﹣2的对称轴x=上,∴m﹣2=,解得m=;如果E点在E2的位置时,∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E2的(m+2,﹣4),∵点E2在抛物线y=x2﹣x﹣2的对称轴x=上,∴m+2=,解得m=﹣;如果E点在E3的位置时,∵点D的坐标为(m,﹣2),∴点E3的(m,2),∵点E3在抛物线y=x2﹣x﹣2的对称轴x=上,∴m=;如果E点在E4的位置时,∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E4的(m+4,﹣2),∵点E4在抛物线y=x2﹣x﹣2的对称轴x=上,∴m+4=,解得m=﹣;综上可知,当点E在这条抛物线的对称轴上时,所有符合条件的m的值为m=﹣或m=﹣或m=或m=.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求抛物线的解析式,二次函数的性质,等腰直角三角形的性质,旋转的性质等知识,综合性较强,难度适中.其中(3)②要注意分析题意分情况讨论E点可能的位置,这是解题的关键.24.(12分)(•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A ﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.考点:四边形综合题.分析:(1)分情况讨论,当点P沿A﹣D运动时,当点P沿D﹣A运动时分别可以表示出AP的值;(2)分类讨论,当0<t<1时,当1<t<时,根据三角形的面积公式分别求出S 与t的函数关系式;(3)分情况讨论,当0<t<1时,当1<t<时,当<t<时,利用三角形的面积相等建立方程求出其解即可;(4)分情况讨论当P在A﹣D之间或D﹣A之间时,如图⑥,根据轴对称的性质可以知道四边形QCOC′为菱形,根据其性质建立方程求出其解,当P在D﹣A之间如图⑦,根据菱形的性质建立方程求出其解即可.解答:解:(1)当点P沿A﹣D运动时,AP=8(t﹣1)=8t﹣8.当点P沿D﹣A运动时,AP=50×2﹣8(t﹣1)=108﹣8t.(2分)(2)当点P与点A重合时,BP=AB,t=1.当点P与点D重合时,AP=AD,8t﹣8=50,t=.当0<t<1时,如图①.作过点Q作QE⊥AB于点E.S△ABQ==,∴QE===.∴S=﹣30t2+30t.当1<t≤时,如图②.S==,∴S=48t﹣48;(3)当点P与点R重合时,AP=BQ,8t﹣8=5t,t=.当0<t≤1时,如图③.∵S△BPM=S△BQM,∴PM=QM.∵AB∥QR,∴∠PBM=∠QRM,∠BPM=∠MQR,在△BPM和△RQM中,∴△BPM≌△RQM.∴BP=RQ,∵RQ=AB,∴BP=AB∴13t=13,解得:t=1当1<t≤时,如图④.∵BR平分阴影部分面积,∴P与点R重合.∴t=.当<t≤时,如图⑤.∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(4)如图⑥,当P在A﹣D之间或D﹣A之间时,C′D′在BC上方且C′D′∥BC 时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50﹣5t=50﹣8(t﹣1)+13,或50﹣5t=8(t﹣1)﹣50+13,解得:t=7或t=.当P在A﹣D之间或D﹣A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50﹣5t+13=8(t﹣1)﹣50,解得:t=.∴当t=7,t=,t=时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.点评:本题考查了平行四边形的性质的运用,菱形的性质的运用,全等三角形的判定及性质的运用,分类讨论的数学思想的运用,轴对称的性质的运用,三角形的面积公式的运用,解答时灵活运用动点问题的解答方法确定分界点是解答本题的关键和难点.。
2023年长春市初中学业水平考试数学一、选择题(本大题共8小题,每小题3分,共24分)1.【答案】B 【解析】解:由图可知,3a >,01b <<,01c <<,23d <<,比较四个数的绝对值排除a 和d ,根据绝对值的意义观察图形可知,c 离原点的距离大于b 离原点的距离,<b c ∴,∴这四个数中绝对值最小的是b .故选:B .2.【答案】D【解析】解:738000000 3.810=⨯,故选:D .3.【答案】B【解析】A 选项,3a 与2a 不能合并,故该选项不正确,不符合题意;B 选项,23a a a ⋅=,故该选项正确,符合题意;C 选项,()326a a =,故该选项不正确,不符合题意;D 选项,624a a a ÷=,故该选项不正确,不符合题意;故选:B .4.【答案】C【解析】解:依题意,多面体的底面是面③,则多面体的上面是面⑤,故选:C .5.【答案】A【解析】解:O 为AA '、BB '的中点,OA OA ∴'=,OB OB '=,AOB A OB ''∠=∠ (对顶角相等),∴在AOB 与A OB ''△中,OA OA AOB A OB OB OB =⎧⎪∠=∠⎨⎪=''⎩',()SAS AOB A OB ''∴△≌△,AB A B ''∴=,故选:A .6.【答案】D【解析】解: AC 表示的是地面,BC 表示是图书馆,AC BC ∴⊥,ABC ∴ 为直角三角形,32cos 25cos 25AC AB ∴==︒︒(米).故选:D .7.【答案】B【解析】解:根据作图可得,AD AE DF EF ==,故A ,C 正确;∴,A F 在DE 的垂直平分线上,∴AF D E ⊥,故D 选项正确,而DF EF =不一定成立,故B 选项错误,故选:B .8.【答案】C【解析】解:如图所示,过点A B ,分别作y x ,轴的垂线,垂足分别为E D ,,AE BD ,交于点C,依题意,B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k ∴()1,1C ,则1,1AC k BC k =-=-,又∵90ACB ∠=︒,AB =,∴()()(22211k k -+-=∴13k -=(负值已舍去)解得:4k =,故选:C .二、填空题(本大题共6小题,每小题3分,共8分)9.【答案】()()11a a +-.【解析】解:()()2111a a a -=+-.故答案为:()()11a a +-10.【答案】1m <【解析】解: 关于x 的方程220x x m -+=有两个不相等的实数根,2(2)41440m m ∴∆=--⨯⨯=->解得:1m <,故答案为:1m <.11.【答案】()7.510x -【解析】根据题意可得,他离健康跑终点的路程为()7.510x -.故答案为:()7.510x -.12.【答案】1:3【解析】解:12OA AA '= ::,:1:3OA OA '∴=,设ABC 周长为1l ,设A B C ''' 周长为2l ,ABC 和A B C ''' 是以点O 为位似中心的位似图形,1213l OA l OA ∴=='.12:1:3l l ∴=.ABC ∴ 和A B C ''' 的周长之比为1:3.故答案为:1:3.13.【答案】45【解析】解:∵正五边形的每一个内角为()5218101508-⨯︒=︒,将正五边形纸片ABCDE 折叠,使点B 与点E 重合,折痕为AM ,则111085422BAM BAE ∠=∠=⨯︒=︒,∵将纸片折叠,使边AB 落在线段AM 上,点B 的对应点为点B ',折痕为AF ,∴11542722FAB BAM '∠=∠=⨯︒=︒,108AB F B '∠=∠=︒,在AFB 'V 中,1801801082745AFB B FAB ''∠=︒-∠-∠=︒-︒-︒=︒,故答案为:45.14.【答案】19【解析】解:由题意可知:()40,4A -、()40,4B 、()0,20H ,设抛物线解析式为:220y ax =+,将()40,4A -代入解析式220y ax =+,解得:1100a =-,220100x y ∴=-+,消防车同时后退10米,即抛物线220100x y =-+向左(右)平移10米,平移后的抛物线解析式为:()21020100x y +=-+,令0x =,解得:19y =,故答案为:19.三、解答题(本大题共10小题,共78分)15.【答案】31a +1+【解析】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当33a =时,原式33113=⨯+=16.【答案】49【解析】解:画树状图如下:共有9种可能,获一等奖即两次颜色不相同的可能有4种,则某同学获一等奖的概率为:49,答:某同学获一等奖的概率为49.17.【答案】原计划平均每天制作200个摆件.【解析】解:设原计划平均每天制作x 个,根据题意得,3000300051.5x x=+解得:200x =经检验,200x =是原方程的解,且符合题意,答:原计划平均每天制作200个摆件.18.【答案】(1)见解析;(2)18【解析】(1)证明:由题意可知ACB DFE △≌△,AC DF =∴,30CAB FDE ∠=∠=︒,AC DF \∥,∴四边形AFDC 地平行四边形;(2)如图,在Rt ACB △中,90ACB ∠=︒,30CAB ∠=︒,6cm BC =,212cm AB BC ∴==,60ABC ∠=︒,四边形AFDC 是菱形,AD ∴平分CDF ∠,30CDA FDA ∴∠=∠=︒,ABC CDA BCD ∠=∠+∠ ,603030BCD ABC CDA ∴∠=∠-∠=︒-︒=︒,BCD CDA ∴∠=∠,6cm BC BD ∴==,18cm AD AB BD ∴=+=,故答案为:18.19.【答案】(1)见解析(2)110人(3)9【解析】(1)抽取了735%20÷=人,属于偏胖的人数为:202738---=,补全统计图如图所示,(2)8320011020+⨯=(人)(3)设小张体重需要减掉kg x ,依题意,227241.70x -<解得:8.67x >,答:他的体重至少需要减掉9kg ,故答案为:9.20.【答案】(1)见解析(2)见解析(3)见解析【解析】(1)解:如图所示,以3AB =为底,设AB 边上的高为h ,依题意得:19·22ABC S AB h == 解得:3h =即点C 在AB 上方且到AB 距离为3个单位的线段上的格点即可,答案不唯一;(2)由网格可知,AB ==以AB =为底,设AB 边上的高为h ,依题意得:1·52ABC S AB h ==解得:h =将AB 绕A 或B 旋转90︒,过线段的另一个端点作AB 的平行线,与网格格点的交点即为点C ,答案不唯一,(3)如图所示,作5BD AB ==,过点D 作CD AB ∥,交于格点C ,由网格可知,22215BD AB ==+=,10AD =,∴ABD △是直角三角形,且AB BD⊥∵CD AB∥∴15·22ABC S AB BD == .21.【答案】(1)12180y x =-(2)180【解析】(1)解:设乙距山脚的垂直高度y 与x 之间的函数关系式为y kx b =+,将()15,0,()40,300代入得,15040300k b k b +=⎧⎨+=⎩,解得:12180k b =⎧⎨=-⎩,∴12180y x =-()1540x ≤≤;(2)设甲距山脚的垂直高度y 与x 之间的函数关系式为11y k x b =+()2560x ≤≤将点()()25,16060,300,代入得,11112516060300k b k b +=⎧⎨+=⎩解得:11460k b =⎧⎨=⎩,∴460y x =+()2560x ≤≤;联立12180460y x y x =-⎧⎨=+⎩解得:30180x y =⎧⎨=⎩∴乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度为180米22.【答案】感知:45;探究:见解析;应用:223.【解析】感知:由圆周角定理可得1245APB AOB ∠=∠=︒,故答案为:45;探究:证明:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.ABC 是等边三角形.BA BC ∴=,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,60EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等边三角形,PB PE ∴=,PB PE PA AE PA PC ∴==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE , 四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.AB CB = ,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,90EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等腰直角三角形,222PB BE PE ∴+=,222PB PE ∴=,即PE =,PE PA AE PA PC =+=+ ,PA PC ∴+=,PB =,4PA PC PA ∴+==,3PC PA ∴=,33PB PC PA ∴==,故答案为:3.23.【答案】(1)13(2)32(3)见解析(4)93502t -<≤或176t =或7t =【解析】(1)解:如图所示,连接BQ ,∵四边形ABCD 是矩形∴90BAQ ABE ∠=∠=︒∵90PEQ ∠=︒,∴四边形ABEQ 是矩形,当点P 和点B 重合时,∴3QE AB ==,2BE =在Rt QBE △中,22223213BQ BE QE =+=+=13(2)如图所示,∵90PEQ ∠=︒,90PBE ECD ∠=∠=︒,∴1290,2390∠+∠=︒∠+∠=︒,∴13∠=∠∴PBE ECD∽∵2BE =,3CD AB ==,∴2tan 3PE BE PQE DE CD ∠===;(3)如图所示,过点P 作PH BC ⊥于点H ,∵90PEQ ∠=︒,90PHE ECQ ∠=∠=︒,∴1290,2390∠+∠=︒∠+∠=︒,则四边形ABHP 是矩形,∴PH AB =3=又∵523EC BC BE =-=-=∴PH EC =,∴PHE ECQ≌∴PE QE=∴POE △是等腰直角三角形;(4)①如图所示,当点P 在BE 上时,∵3,2QE QF AQ BE ====,在Rt AQF △中,2222325AF QF AQ =-=-=,则35BF =-,∵PE t =,则2BP t =-,PF PE t ==,在Rt PBF 中,222PF PB FB =+,∴(()222352t t =-+-解得:9352t -=当9352t -<时,点F 在矩形内部,符合题意,∴93502t -<≤符合题意,②当P 点在AB 上时,当,F A 重合时符合题意,此时如图,则2PB t BE t =-=-,PE =()325AP AB PB t t =-=--=-,在Rt PBE △中,222PE PB BE =+()()222522t t -=-+,解得:176t =,③当点P 在AD 上,当,F D 重合时,此时Q 与点C 重合,则PFQE 是正方形,此时2327t =++=综上所述,93502t -<≤或176t =或7t =.24.【答案】(1)222y x x =-++;顶点坐标为()1,3(2)()3,0A (3)1m =-或2m =-或512m +=或2112m -=(4)22m =-+23m =-或12m =-【解析】(1)解:将点(2,2)代入抛物线22y x bx =-++,得,2422b =-++解得:2b =∴抛物线解析式为222y x x =-++;∵222y x x =-++()213x =--+,∴顶点坐标为()1,3,(2)解:由222y x x =-++,当0y =时,2220x x -++=,解得:1213,13x x ==+,∵抛物线上的点B 在x 轴上时,横坐标为1m -.其中0m <.∴1m 1->∴113m -=+解得:3m =-,∵点A 的坐标为(,0)m ,∴()A ;(3)①如图所示,当111m <-<+,即0m <<时,抛物线在点P 和点B 之间的部分(包括P 、B 两点)的最高点为顶点,最低点为点P ,∵顶点坐标为()1,3,()1P 则纵坐标之差为303-=依题意,32m=-解得:1m =-;②当11m -≥+m ≤时,∵()()()21,1212B m m m ---+-+,即()21,3B m m --+,依题意,()2332m m --+=-,解得:2m =-或1m =(舍去),③当111m <-<,即0m <<则232m m -+=-,解得:512m =或152m -=(舍去),④当113m -≤3m ≥,则()2032m m --+=-,解得:2112m -=(舍去)或2112m =,综上所述,1m =-或2m =-或512m =或2112m =;(4)解:如图所示,∵B 在x 轴的上方,∴13113m -<-<+∴33m <<∵以点C 、E 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,线段BO 的中点为D ∴BCD CODS S = ∵AOBC AOC BOC S S S =+ ,BOC BCD CODS S S =+ ①当E 是AC 的中点,如图所示则2AOBC CEOD S S =,∴23,22m m E ⎛⎫-+ ⎪⎝⎭代入222y x x =-++,即22322222m m m -+⎛⎫=-+⨯+ ⎪⎝⎭,解得:2m =-(舍去)或2m =-②同理当F 为AO 的中点时,如图所示,ACF CFO S S = ,BCD COD S S = ,则点C 、F 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,∴12m =解得:2m =-,③如图所示,设BOC S S = ,则12DBC S S = ,∵以点C 、E 、O 、D 为顶点的四边形的面积是四边形AOBC 面积的一半,线段BO 的中点为D ∴12CDF FDB AOC S S S S +=+ 即1122CDF CDF AOC S S S S S +=-+ ∴12AOC CDF S S = ,∴CF AO =,∴()2,3F m m --+,∵,B F 关于1x =对称,∴112m m -+-=,解得:12m =-,综上所述,2m =-+或2m =-或12m =-.。
吉林省2024年初中学业水平考试数学试题数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1.若()3-⨯ 的运算结果为正数,则W 内的数字可以为()A.2B.1C.0D.1-【答案】D【解析】【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-⨯=-,()313-⨯=-,()300-⨯=,()()313-⨯-=,四个算式的运算结果中,只有3是正数,故选:D .2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为()A.102.0410⨯ B.92.0410⨯ C.820.410⨯ D.100.20410⨯【答案】B【解析】【分析】本题主要考查了科学记数法,科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:92040000000 2.0410⨯=故选B .3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.主视图、左视图与俯视图都相同【答案】A【解析】【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案.【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段,故选:A .4.下列方程中,有两个相等实数根的是()A.()221x -=- B.()220x -=C.()221x -= D.()222x -=【答案】B【解析】【分析】本题考查了一元二次方程的根,解一元二次方程,熟练掌握开平方法解方程是解题的关键.分别对每一个选项运用直接开平方法进行解方程即可判断.【详解】解:A 、()2210x -=-<,故该方程无实数解,故本选项不符合题意;B 、()220x -=,解得:122x x ==,故本选项符合题意;C 、()221x -=,21x -=±,解得123,1x x ==,故本选项不符合题意;D 、()222x -=,2x -=,解得1222x x ==,故本选项不符合题意.故选:B .5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为()A.()4,2--B.()4,2-C.()2,4D.()4,2【答案】C【解析】【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===︒,∠,由旋转的性质可得42OA OA A B AB '''====,,90OA B ''∠=︒,据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2,∴42OA OC ==,,∵四边形OABC 是矩形,∴290AB OC ABC ===︒,∠,∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',∴42OA OA A B AB '''====,,90OA B ''∠=︒,∴A B y ''⊥轴,∴点B '的坐标为()2,4,故选:C .6.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是()A.50︒B.100︒C.130︒D.150︒【答案】C【解析】【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒-︒=︒,故选:C .二、填空题:本题共4小题,每小题5分,共20分.7.当分式11x +的值为正数时,写出一个满足条件的x 的值为______.【答案】0(答案不唯一)【解析】【分析】本题主要考查了根据分式的值的情况求参数,根据题意可得10x +>,则1x >-,据此可得答案.【详解】解:∵分式11x +的值为正数,∴10x +>,∴1x >-,∴满足题意的x 的值可以为0,故答案为:0(答案不唯一).8.因式分解:a 2﹣3a=_______.【答案】a (a ﹣3)【解析】【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).9.不等式组2030x x ->⎧⎨-<⎩的解集为______.【答案】23x <<##32x >>【解析】【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:2030x x ->⎧⎨-<⎩①②解不等式①得:2x >,解不等式②得:3x <,∴原不等式组的解集为23x <<,故答案为:23x <<.10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是______.【答案】两点之间,线段最短【解析】【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.正六边形的每个内角等于______________°.【答案】120【解析】【详解】解:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:7201206︒=︒,故答案为:12012.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC的值为______.【答案】12【解析】【分析】本题主要考查了相似三角形的性质与判定,正方形的性质,先由正方形的性质得到45OAD ∠=︒,AD BC =,再证明EF AD ∥,进而可证明OEF OAD △∽△,由相似三角形的性质可得12EF OE AD OA ==,即12EF BC =.【详解】解:∵正方形ABCD 的对角线AC BD ,相交于点O ,∴45OAD ∠=︒,AD BC =,∵点E 是OA 的中点,∴12OE OA =,∵45FEO ∠=︒,∴EF AD ∥,∴OEF OAD △∽△,∴12EF OE AD OA ==,即12EF BC =,故答案为:12.13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为______.【答案】()22220.5x x +=+【解析】【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键.设AC 的长度为x 尺,则0.5AB AB x '==+,在Rt AB C '△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x '==+,∵AB B C '⊥,由勾股定理得:222AC B C AB ''+=,∴()22220.5x x +=+,故答案为:()22220.5x x +=+.14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为______2m (结果保留π).【答案】11π【解析】【分析】本题考查了扇形面积公式,熟练掌握扇形面积公式是解题的关键.利用阴影部分面积等于大扇形减去小扇形面积,结合扇形面积公式即可求解.【详解】解:由题意得:()224010111360Sππ-==阴影,故答案为:11π.三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中a =【答案】22a ,6【解析】【分析】本题考查了整式的化简求值,平方差公式,先利用平方差公式化简,再进行合并同类项,最后代入求值即可.【详解】解:原式2211a a =-++22a =,当a =原式22=⨯6=.16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.【答案】13【解析】【分析】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画出树状图,可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,再由概率公式求解即可.【详解】解:将“滑雪”“滑雪圈”“雪地摩托”三个项目分别记为事件A 、B 、C ,可画树状图为:由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,∴幸运游客小明与小亮恰好抽中同一个项目的概率3193P ==.17.如图,在ABCD Y 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE BC =.【答案】证明见解析【解析】【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAE OBC OCB E ==∠∠,∠∠,∵点O 是AB 的中点,∴OA OB =,∴()AAS AOE BOC △≌△,∴AE BC =.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.【答案】白色琴键52个,黑色琴键36个【解析】【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个,由题意得:()1688x x ++=,解得:36x =,∴白色琴键:361652+=(个),答:白色琴键52个,黑色琴键36个.四、解答题(每小题7分,共28分)19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.的切线.(2)在图②中,画出经过点E的O【答案】(1)见解析(2)见解析【解析】【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E、F,作直线EF,则直线EF即为所求;、,作直线GH,则直线GH即为所求.(2)如图所示,取格点G H【小问1详解】解:如图所示,取格点E、F,作直线EF,则直线EF即为所求;,的中点;易证明四边形ABCD是矩形,且E、F分别为AB CD【小问2详解】、,作直线GH,则直线GH即为所求;解:如图所示,取格点G H.易证明四边形OGTH是正方形,点E为正方形OGTH的中心,则OE GH20.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围).(2)当电阻R 为3Ω时,求此时的电流I .【答案】(1)36I R=(2)12A【解析】【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当3R =Ω时I 的值即可得到答案.【小问1详解】解:设这个反比例函数的解析式为()0U I U R =≠,把()94,代入()0U I U R =≠中得:()409U U =≠,解得36U =,∴这个反比例函数的解析式为36I R =;【小问2详解】解:在36I R =中,当3R =Ω时,3612A 3I ==,∴此时的电流I 为12A .21.中华人民共和国20192023-年全国居民人均可支配收入及其增长速度情况如图所示.根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少元?(1)20192023-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,2020年全②20192023国居民人均可支配收入最低.【答案】(1)8485元(2)35128元(3)①【解析】【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【小问1详解】-=元,解:39218307338485-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.答:20192023【小问2详解】-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,解:2019202339218元,-年全国居民人均可支配收入的中位数为35128元;∴20192023【小问3详解】-年全国居民人均可支配收入里逐年上升趋势,故①正确;解:由统计图可知20192023由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)【答案】218.3m【解析】【分析】本题考查了解直角三角形的应用,正确理解题意和添加辅助线是解题的关键.先解Rt GAD 得到873tan DGAG DG EAD ===∠,再解Rt GAC △,tan 8730.75654.75CG AG EAC =⋅∠=⨯=,即可求解CD .【详解】解:延长DC 交AE 于点G ,由题意得873m AB DG ==,90DGA ∠=︒在Rt GAD 中,45EAD ∠=︒,∴873tan DGAG DG EAD ===∠,在Rt GAC △中,37EAC ∠=︒,∴tan 8730.75654.75CG AG EAC =⋅∠=⨯=,∴873654.75218.3m CD DG CG =-=-≈,答:吉塔的高度CD 约为218.3m .五、解答题(每小题8分,共16分)23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】y,小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x,凳面的宽度为mm记录如下:x16.519.823.126.429.7以对称轴为基准向两边各取相同的长度/mmy115.5132148.5165181.5凳面的宽度/mm【分析数据】如图③,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少?【答案】(1)在同一条直线上,函数解析式为:533y x =+(2)36mm【解析】【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【小问1详解】,解:设函数解析式为:()0y kx b k =+≠,∵当16.5,115.5x y ==,23.1,148.5x y ==,∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩,解得:533k b =⎧⎨=⎩,∴函数解析式为:533y x =+,经检验其余点均在直线533y x =+上,∴函数解析式为533y x =+,这些点在同一条直线上;【小问2详解】解:把213y =代入533y x =+得:533213x +=,解得:36x =,∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABCS = ______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.【答案】(1)2,(2)4,(3)152,12EFGH ab S =四边形,证明见详解,(4)10【解析】【分析】(1)根据三角形的面积公式计算即可;(2)根据菱形的面积公式计算即可;(3)结合图形有,EFG EHG EFGH S S S =+ 四边形,即可得()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,问题随之得解;(4)先证明MNK △是直角三角形,由作图可知:MKN MPQ ∠=∠,即可证明KM PQ ⊥,再结合(3)的结论直接计算即可.【详解】(1)∵在ABC 中,AB BC =,BD AC ⊥,2CD =,∴2AD CD ==,∴4AC =,∴122ABC S AC BD =⨯⨯=V ,故答案为:2;(2)∵在菱形A B C D ''''中,4''=A C ,2B D ''=,∴142A B C D S B D A C ''''''''=⨯⨯=菱形,故答案为:4;(3)∵EG FH ⊥,∴12EFG S EG FO =⨯⨯ ,12EHG S EG HO =⨯⨯ ,∵EFG EHG EFGH S S S =+ 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形,∵5EG =,3FH =,∴11522EFGH S EG FH =⨯⨯=四边形,故答案为:152,猜想:12EFGH ab S =四边形,证明:∵EG FH ⊥,∴12EFG S EG FO =⨯⨯ ,12EHG S EG HO =⨯⨯ ,∵EFG EHG EFGH S S S =+ 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形,∵EG a =,FH b =,∴12EFGH ab S =四边形;(4)根据尺规作图可知:QPM MKN ∠=∠,∵在MNK △中,3MN =,4KN =,5MK =,∴222MK KN MN =+,∴MNK △是直角三角形,且90MNK ∠=︒,∴90NMK MKN ∠+∠=︒,∵QPM MKN ∠=∠,∴90NMK QPM ∠+∠=︒,∴MK PQ ⊥,∵4PQ KN ==,5MK =,∴根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形.【点睛】本题考查了等腰三角形的性质,菱形的性质,作一个角等于已知角的尺规作图,勾股定理的逆定理等知识,难度不大,掌握作一个角等于已知角的尺规作图方法,是解答本题的关键.六、解答题(每小题10分,共20分)25.如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P 从点A出发,以/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE V 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.【答案】(1)等腰三角形,AQ t=(2)32t =(3)()22233,0427393633,242231,242S t t S t t S t t ⎧=<≤⎪⎪⎪⎪=-+-<<⎨⎪⎪=-≤<⎪⎪⎩【解析】【分析】(1)过点Q 作QH AD ⊥于点H ,根据“平行线+角平分线”即可得到QA QP =,由QH AP ⊥,得到1322HA AP ==,解Rt AHQ △得到AQ t =;(2)由PQE V 为等边三角形得到QE QP =,而QA QP =,则QE QA =,故223AE AQ t ===,解得32t =;(3)当点P 在AD 上,点E 在AC 上,重合部分为PQE V ,过点P 作PG QE ⊥于点G ,1322PG AP ==,则21324S QE PG t =⋅=,此时302t <≤;当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,此时)tan 323CF CE E t =⋅∠=-,因此()2132322FCE S CE CF t =⋅=- ,故可得27393342PQE FCE S S S t t =-=-+-△△,此时322t <<;当点P 在DB 上,重合部分为PQC △,此时323PD t =-,()3331PC CD PD t t =+=-=-,解直角三角形得31tan 3PC QC PC t PQC ===-∠,故()213122S QC PC t =⋅=-,此时24t ≤<,再综上即可求解.【小问1详解】解:过点Q 作QH AD ⊥于点H ,由题意得:3AP t =∵90C ∠=︒,30B ∠=︒,∴60BAC ∠=︒,∵AD 平分BAC ∠,∴30PAQ BAD ∠=∠=︒,∵PQ AB ∥,∴30APQ BAD ∠=∠=︒,∴PAQ APQ =∠∠,∴QA QP =,∴APQ △为等腰三角形,∵QH AP ⊥,∴1322HA AP ==,∴在Rt AHQ △中,cos AH AQ t PAQ ==∠;【小问2详解】解:如图,∵PQE V 为等边三角形,∴QE QP =,由(1)得QA QP =,∴QE QA =,即223AE AQ t ===,∴32t =;【小问3详解】解:当点P 在AD 上,点E 在AC 上,重合部分为PQE V ,过点P 作PG QE ⊥于点G ,∵30PAQ ∠=︒,∴1322PG AP ==,∵PQE V 是等边三角形,∴QE PQ AQ t ===,∴21324S QE PG t =⋅=,由(2)知当点E 与点C 重合时,32t =,∴233042S t t ⎛⎫=<≤ ⎪⎝⎭;当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,如图,∵PQE V 是等边三角形,∴60E ∠=︒,而23CE AE AC t =-=-,∴)tan 23CF CE E t =⋅∠=-,∴())()211232323222FCE S CE CF t t t =⋅=--=- ,∴()22223424PQE FCE S S S t t t =-=--=-+- ,当点P 与点D 重合时,在Rt ADC 中,cos AC AD AP DAC ====∠,∴2t =,∴2733242S t ⎫=-+-<<⎪⎭;当点P 在DB 上,重合部分为PQC △,如图,∵30DAC ∠=︒90DCA ∠=︒,由上知DC =,∴AD =∴此时PD -,∴)1PC CD PD t =+=-=-,∵PQE V 是等边三角形,∴60PQE ∠=︒,∴31tan 3PC QC PC t PQC ===-∠,∴()21122S QC PC t =⋅=-,∵30B BAD ∠=∠=︒,∴DA DB ==,∴当点P 与点BAD DB =+=解得:4t =,∴()()21242S t t =-≤<,综上所述:()22233,042324231,242S t S t t S t t ⎧=<≤⎪⎪⎪⎪=-+-<<⎨⎪⎪=-≤<⎪⎪⎩.【点睛】本题考查了直角三角形的性质,解直角三角形的相关计算,等腰三角形的判定与性质,等边三角形的性质,平行线的性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.【答案】(1)1,1,2k a b ===-(2)Ⅰ:0x ≤或1x ≥;Ⅱ:2t <或11t ≥;Ⅲ:10m -≤≤或12m ≤≤【解析】【分析】本题考查了二次函数与一次函数的图像与性质,待定系数法求函数解析式,一元二次方程的解,正确理解题意,利用数形结合的思想是解决本题的额关键.(1)先确定输入x 值的范围,确定好之后将x ,y 的值代入所给的y 关于x 的函数解析式种解方程或方程组即可;(2)Ⅰ:可知一次函数解析式为:3y x =+,二次函数解析式为:223y x x =-+,当0x >时,223y x x =-+,对称为直线1x =,开口向上,故1x ≥时,y 随着x 的增大而增大;当0x ≤时,3y x =+,10k =>,故0x ≤时,y 随着x 的增大而增大;Ⅱ:问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,考虑两个临界状态,当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点,因此当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点;当4x =,11y =,故当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点,因此当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,即方程230ax bx t ++-=无解;Ⅲ:可求点P 、Q 关于直线12x =对称,当1x =,2y =最小值,当0x =时,3y =最大值,当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,3y =,=1x -时,2y =,故①当12m >,由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,则12m ≤≤;②当12m <,由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,则10m -≤≤,综上:10m -≤≤或12m ≤≤.【小问1详解】解:∵20x =-<,∴将2x =-,1y =代入3y kx =+,得:231k -+=,解得:1k =,∵20,30x x =>=>,∴将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩,解得:12a b =⎧⎨=-⎩;【小问2详解】解:Ⅰ,∵1,1,2k a b ===-,∴一次函数解析式为:3y x =+,二次函数解析式为:223y x x =-+当0x >时,223y x x =-+,对称为直线1x =,开口向上,∴1x ≥时,y 随着x 的增大而增大;当0x ≤时,3y x =+,10k =>,∴0x ≤时,y 随着x 的增大而增大,综上,x 的取值范围:0x ≤或1x ≥;Ⅱ,∵230ax bx t ++-=,∴23ax bx t ++=,在04x <<时无解,∴问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,∵对于223y x x =-+,当1x =时,2y =∴顶点为()1,2,如图:∴当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点,∴当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点;当4x =,168311y =-+=,∴当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点,∴当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,∴当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,即:当2t <或11t ≥时,关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解;Ⅲ:∵,1P Q x m x m ==-+,∴()1122m m +-+=,∴点P 、Q 关于直线12x =对称,当1x =,1232y =-+=最小值,当0x =时,3y =最大值,∵当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,3y =,=1x -时,2y =,∴①当12m >,如图:由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,∴12m ≤≤;②当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,∴10m -≤≤,综上:10m -≤≤或12m ≤≤.。
2023年吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)实数a、b、c、d在数轴上对应点的位置如图所示,这四个数中绝对值最小的是()A.a B.b C.c D.d2.(3分)长春龙嘉国际机场T3A航站楼设计创意为“鹤舞长春”.如图所示.航站楼的造型如仙鹤飞翔,蕴含了对吉春大地未来发展的美好愿景.本期工程是按照满足2030年旅客吞吐量38000000人次目标设计的,其中38000000这个数用科学记数法表示为()A.0.38×108B.38×106C.3.8×108D.3.8×107 3.(3分)下列运算正确的是()A.a3﹣a2=a B.a2•a=a3C.(a2)3=a5D.a6÷a2=a3 4.(3分)如图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是()A.面①B.面②C.面⑤D.面⑥5.(3分)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA'、BB'的中点,只要量出A'B'的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.两条直线被一组平行线所截,所得的对应线段成比例D.两点之间线段最短6.(3分)学校开放日即将来临,负责布置的林老师打算从学校图书馆的顶楼拉出一条彩旗绳AB到地面,如图所示.已知彩旗绳与地面形成25°角(即∠BAC=25°),彩旗绳固定在地面的位置与图书馆相距32米(即AC=32米),则彩旗绳AB的长度为()A.32sin25°米B.32cos25°米C.米D.米7.(3分)如图,用直尺和圆规作∠MAN的角平分线,根据作图痕迹,下列结论不一定正确的是()A.AD=AE B.AD=DF C.DF=EF D.AF⊥DE 8.(3分)如图,在平面直角坐标系中,点A、B在函数(k>0,x>0)的图象上,分别以A、B为圆心,1为半径作圆,当⊙A与y轴相切、⊙B与x轴相切时,连接AB,,则k的值为()A.3B.3C.4D.6二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)分解因式:m2﹣1=.10.(3分)若关于x的方程x2﹣2x+c=0有两个不相等的实数根,则实数c的取值范围是.11.(3分)2023长春马拉松于5月21日在南岭体育场鸣枪开跑,某同学参加了7.5公里健康跑项目,他从起点开始以平均每分钟x公里的速度跑了10分钟,此时他离健康跑终点的路程为公里.(用含x的代数式表示)12.(3分)如图,△ABC和△A'B'C'是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC与△A'B'C'的周长之比为.13.(3分)如图,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,展开后,再将纸片折叠,使边AB落在线段AM上,点B的对应点为点B',折痕为AF,则∠AFB'的大小为度.14.(3分)2023年5月28日,C919商业首航完成——中国民航商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”,是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的抛物线的一部分.如图②,当两辆消防车喷水口A、B的水平距离为80米时,两条水柱在抛物线的顶点H处相遇.此时相遇点H距地面20米,喷水口A、B距地面均为4米.若两辆消防车同时后退10米,两条水柱的形状及喷水口A′、B′到地面的距离均保持不变,则此时两条水柱相遇点H'距地面米.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(a+1)2+a(1﹣a),其中.16.(6分)班级联欢会上有一个抽奖活动,每位同学均参加一次抽奖,活动规则如下:将三个完全相同的不透明纸杯倒置放在桌面上,每个杯子内放入一个彩蛋,彩蛋颜色分别为红色、红色、绿色.参加活动的同学先从中随机选中一个杯子,记录杯内彩蛋颜色后放回,重新打乱杯子的摆放位置,再从中随机选中一个杯子,记录杯内彩蛋颜色.若两次中的彩蛋颜色不同则获一等奖,颜色相同则获二等奖.用画树状图(或列表)的方法,求某同学获一等奖的概率.17.(6分)随着中国网民规模突破10亿,博物馆美育不断向线上拓展.敦煌研究院顺势推出数字敦煌文化大使“伽瑶”,受到广大敦煌文化爱好者的好评.某工厂计划制作3000个“伽瑶”玩偶摆件,为了尽快完成任务,实际平均每天完成的数量是原计划的1.5倍,结果提前5天完成任务,问原计划平均每天制作多少个摆件?18.(7分)将两个完全相同的含有30°角的直角三角板在同一平面内按如图所示位置摆放,点A、E,B、D依次在同一条直线上,连接AF、CD.(1)求证:四边形AFDC是平行四边形;(2)已知BC=6cm,当四边形AFDC是菱形时,AD的长为cm.19.(7分)近年来,肥胖已经成为影响人们身体健康的重要因素,国际上常用身体质量指数(BodyMassIndex,缩写BMI)来衡量人体程度以及是否康其计算公式是BMI=,例如:某人身高1.60m,体重60kg,则他的,中国成人的BMI数值标准为:BMI<18.5为偏瘦;18.5≤BMI<24为正常;24≤BMI<28为偏胖:BMI≥28为肥胖.某公司为了解员工的健康情况,随机抽取了一部分员工的体检数据,通过计算得到他们的BMI值并绘制了两幅不完整的统计图.根据以上信息回答下列问题:(1)补全条形统计图;(2)请估计该公司200名员工中属于偏胖和肥胖的总人数;(3)基于上述统计结果,公司建议每个人制定健身计划.员工小张身高1.70m,BMI值为27,他想通过健身减重使自己的BMI值达到正常,则他的体重至少需要减掉kg.(结果精确到1kg)20.(7分)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A、B均在格点上,只用无刻度的尺,分别在给定的网格中按下列要求作△ABC,点C在格点上.(1)在图①中,△ABC的面积为;(2)在图②中,△ABC的面积为5;(3)在图③中,△ABC是面积为的钝角三角形.21.(8分)甲、乙两人相约登山,他们同时从入口处出发,甲步行登山到山顶,乙先步行15分钟到缆车站,再乘坐缆车直达山顶.甲、乙距山脚的垂直高度y(米)与甲登山的时间x(分钟)之间的函数图象如图所示:(1)当15≤x≤40时,求乙距山脚的垂直高度y与x之间的函数关系式;(2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.22.(9分)【感知】如图①,点A、B、P均在⊙O上,∠AOB=90°,则锐角∠APB的大小为度.【探究】小明遇到这样一个问题:如图②,⊙O是等边三角形ABC的外接圆,点P在AC上(点P不与点A、C重合),连接PA、PB、PC.求证:PB=PA+PC.小明发现,延长PA至点E,使AE=PC,连接BE,通过证明△PBC≌△EBA.可推得△PBE是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA至点E,使AE=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAE=180°,∴∠BCP=∠BAE,∵△ABC是等边三角形,∴BA=BC,∴△PBC≌△EBA(SAS).请你补全余下的证明过程.【应用】如图③,⊙O是△ABC的外接圆,∠ABC=90°,AB=BC,点P在⊙O上,且点P与点B在AC的两侧,连接PA、PB、PC,若,则的值为.23.(10分)如图①,在矩形ABCD中,AB=3,AD=5,点E在边BC上,且BE=2,动点P从点E出发,沿折线EB﹣BA﹣AD以每秒1个单位长度的速度运动.作∠PEQ=90°,EQ交边AD或边DC于点Q,连接PQ.当点Q与点C重合时,点P停止运动.设点P 的运动时间为t秒.(t>0)(1)当点P和点B重合时,线段PQ的长为;(2)当点Q和点D重合时,求tan∠PQE;(3)当点P在边AD上运动时,△PQE的形状始终是等腰直角三角形,如图②,请说明理由;(4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和矩形ABCD重叠部分图形为轴对称四边形时,直接写出t的取值范围.24.(12分)在平面直角坐标系中,点O为坐标原点,抛物线y=﹣x2+bx+2(b是常数)经过点(2,2).点A的坐标为(m,0),点B在该抛物线上,横坐标为1﹣m.其中m<0.(1)求该抛物线对应的函数表达式及顶点坐标;(2)当点B在x轴上时,求点A的坐标;(3)该抛物线与x轴的左交点为P,当抛物线在点P和点B之间的部分(包括P,B两点)的最高点与最低点的纵坐标之差为2﹣m时,求m的值;(4)当点B在x轴上方时,过点B作BC⊥y轴于点C,连接AC、BO.若四边形AOBC 的边和抛物线有两个交点(不包括四边形AOBC的顶点),设这两个交点分别为点E、点F,线段BO的中点为D.当以点C、E、O、D(或以点C、F、O、D)为顶点的四边形的面积是四边形AOBC面积的一半时,直接写出所有满足条件的m的值.2023年吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.【分析】根据数轴上表示某个数的点与原点的距离的大小确定结论.【解答】解:由图可知:实数b在数轴上的对应点到原点O的距离,所以在这四个数中,绝对值最小的数是b.故选:B.【点评】本题考查了绝对值的定义、实数大小比较问题,熟练掌握绝对值最小的数就是到原点距离最小的数.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:38000000=3.8×107.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别判断得出答案.【解答】解:A.a3﹣a2,无法合并,故此选项不合题意;B.a2•a=a3,故此选项符合题意;C.(a2)3=a6,故此选项不合题意;D.a6÷a2=a4,故此选项不合题意.故选:B.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.4.【分析】由多面体的表面展开图,即可得到答案.【解答】解:多面体的底面是面③,则多面体的上面是⑤.故选:C.【点评】本题考查几何体的表面展开图,关键是由长方体的表面展开图找到相对面.5.【分析】根据点O为AA'、BB'的中点得出OA=OA',OB=OB',根据对顶角相等得到∠AOB=∠A'OB',从而证得△AOB和△A'OB'全等,于是有AB=A'B',问题得证.【解答】解:∵点O为AA'、BB'的中点,∴OA=OA',OB=OB',由对顶角相等得∠AOB=∠A'OB',在△AOB和△A'OB'中,,∴△AOB≌△A'OB'(SAS),∴AB=A'B',即只要量出A'B'的长度,就可以知道该零件内径AB的长度,故选:A.【点评】本题考查了三角形全等的判定与性质,正确运用三角形全等的判定定理是解题的关键.6.【分析】根据直角三角形的边角关系进行解答即可.【解答】解:如图,由题意得,AC=32m,∠A=25°,在Rt△ABC中,∵cos A=,∴AB==(m),故选:D.【点评】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提.7.【分析】利用基本作图得到AF平分∠MAN,则根据角平分线的画法可对选项进行一一判断.【解答】解:角平分线的作法如下:①以点A为圆心,AD长为半径作弧,分别交AM、AN于点D、E;②分别以点D、E为圆心,DF长为半径作弧,两弧在∠MAN内相交于点F;③作射线AF,AF即为∠MAN的平分线.根据角平分线的作法可知,AD=AE,DF=EF,根据等腰三角形的三线合一可知AF⊥DE,故选:B.【点评】本题考查了用直尺和圆规作角平分线的方法,掌握画法是解题的关键.8.【分析】依据题意,可得A(1,k),B(k,1),再由AB=3,从而2(k﹣1)2=18,进而得解.【解答】解:由题意,得A(1,k),B(k,1).∵AB=3,∴有两点距离公式可得:2(k﹣1)2=18.∴(k﹣1)2=9.∴k=﹣2或4.又k>0,∴k=4.故选:C.【点评】本题考查了反比例函数的图象与性质的应用,解题时需要熟练掌握并理解.二、填空题(本大题共6小题,每小题3分,共18分)9.【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:m2﹣1=(m+1)(m﹣1).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.10.【分析】根据一元二次方程有两个不相等的实数根,Δ=b2﹣4ac>0求解即可.【解答】解:∵关于x的方程x2﹣2x+c=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4c>0,解得:c<1.故答案为:c<1.【点评】本题主要考查一元二次方程根的判别式,熟知一元二次方程的根与Δ=b2﹣4ac 的关系是解题关键.熟知一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.11.【分析】根据题意可知:总路程﹣已跑的路程=离终点的路程,然后列出相应的代数式即可.【解答】解:由题意可得,他从起点开始以平均每分钟x公里的速度跑了10分钟,此时他离健康跑终点的路程为(7.5﹣10x)公里,故答案为:(7.5﹣10x).【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式即可.12.【分析】根据题意求出OA:OA′=1:3,根据相似三角形的性质求出AC:A′C′,根据相似三角形的性质计算即可.【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,△ABC∽△A′B′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC与△A′B′C′的周长比为1:3,故答案为:1:3.【点评】本题考查的是位似变换的概念和性质,掌握位似图形的对应边互相平行是解题的关键.13.【分析】由多边形的内角和及轴对称的性质和三角形内角和可得出结论.【解答】解:∵五边形的内角和为(5﹣2)×180°=540°,∴∠B=∠BAE=108°,由图形的折叠可知,∠BAM=∠EAM=∠BAE=54°,∠BAF=∠FAB'=∠BAM=27°,∠AFB'=∠AFB=180°﹣∠B﹣∠BAF=180°﹣108°﹣27°=45°.故答案为:45.【点评】本题考查了多边形的内角和,三角形的内角和定理,图形的折叠的性质,掌握这些知识点是解题的关键.14.【分析】根据题意求出原来抛物线的解析式,从而求得平移后的抛物线解析式,再令x =0求平移后的抛物线与y轴的交点即可.【解答】解:由题意可知:A(﹣40,4)、B(40,4).H(0,20),设抛物线解析式为:y=ax2+20,将A(﹣40,4)代入解析式y=ax2+20,解得:a=﹣,∴y=﹣+20,消防车同时后退10米,即抛物线y=﹣+20向左平移后的抛物线解析式为:y=﹣+20,令x=0,解得:y=19,故答案为:19.【点评】本题考查了待定系数法求抛物线解析式、函数图象的平移及坐标轴的交点,解题的关键是求得移动前后抛物线的解析式.三、解答题(本大题共10小题,共78分)15.【分析】分别运用完全平方公式和乘法分配律将两个括号展开,再进行合并同类项计算即可.【解答】解:原式=a2+2a+1+a﹣a2=(a2﹣a2)+(2a+a)+1=3a+1.当a=时,3a+1=3×+1=+1.【点评】整式的混合运算是初中数学最基本的知识点,考查学生最基本的运算能力,一定要熟练掌握,确保计算结果正确无误.16.【分析】画树状图,共有9种等可能的结果,其中两次中的彩蛋颜色不同的结果有4种,再由概率公式求解即可.【解答】解:画树状图如下:共有9种等可能的结果,其中两次中的彩蛋颜色不同的结果有4种,∴某同学获一等奖的概率为.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.【分析】设原计划平均每天制作x个摆件,根据“结果提前5天完成任务”列分式方程,求解即可.【解答】解:设原计划平均每天制作x个摆件,根据题意,得,解得x=200,经检验,x=200是原方程的根,且符合题意,答:原计划平均每天制作200个摆件.【点评】本题考查了分式方程的应用,理解题意并能根据题意建立方程是解题的关键.18.【分析】(1)根据全等三角形的性质得到AC=DF,∠CAB=∠FDE,根据平行线的判定定理得到AC∥DF,根据平行四边形的判定定理即可得到四边形AFDC是平行四边形;(2)连接CF交AD于O,根据直角三角形的性质得到AC=BC=6(cm),根据菱形的性质得到CF⊥AD,AD=2AO,根据直角三角形的性质即可得到结论.【解答】(1)证明:∵△ACB≌△DFE,∴AC=DF,∠CAB=∠FDE,∴AC∥DF,∴四边形AFDC是平行四边形;(2)解:连接CF交AD于O,∵∠ACB=90°,∠CAB=30°,BC=6cm,∴AC=BC=6(cm),∵四边形AFDC是菱形,∴CF⊥AD,AD=2AO,∴∠AOC=90°,∴AO=AC==9(cm),∴AD=2AO=18cm,故答案为:18.【点评】本题考查了菱形的性质,平行四边形的判定,含30°角的直角三角形的性质,全等三角形的性质,熟练掌握菱形的性质是解题的关键.19.【分析】(1)利用正常人数7除以35%即可得总人数,减去其它人数和即可得答案;(2)用200×偏胖和肥胖和的百分比即可得答案;(3)利用身体质量指数公式算出小张实际体重,再用小张身高算出正常体重的最大值,最后用小张实际体重减去小张正常体重的最大值即可得答.【解答】解:(1)7÷35%=20(人),偏胖人数:20﹣2﹣7﹣3=8(人),条形图如下:(2)200×=110(人),答:公司200名员工中属于偏胖和肥胖的总人数110人;(3)小张实际体重:27×(1.70)2=78.03(kg),小张正常体重的最大值:24×(1.70)2=69.36(kg),∴他的体重至少需要减掉:78.03﹣69.36≈9(kg),故答案为:9.【点评】本题考查条形统计图,扇形图,能结合俩图找到正常体重的人数和百分比是解题关键.20.【分析】(1)先根据三角形的面积求出AB边上的高,再作图;(2)根据网格线的特点及三角形的面积公式作图;(3)根据网格线的特点及三角形的面积公式作图.【解答】解:如图:(1)如图①:△ABC即为所求;(2)如图②:△ABC即为所求;(3)如图③:△ABC即为所求.【点评】本题考查了作图的应用与设计,掌握网格线的特点及三角形的面积公式是解题的关键.21.【分析】(1)设乙距山脚的垂直高度y与x之间的函数关系式为y=kx+b,再利用待定系数法来求解即可;(2)求出甲的函数解析式和乙的解析式,甲的函数解析式和乙的解析式组成方程组解答即可.【解答】解:(1)设乙距山脚的垂直高度y与x之间的函数关系式为y=kx+b,∵直线过(15,0)和(40,300),∴,解得,∴乙距山脚的垂直高度y与x之间的函数关系式为y=12x﹣180;(2)设甲的函数解析式为:y=mx+n,将(25,160)和(60,300)代入得:,解得,∴y=4x+60;∵乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度,∴,解得,∴乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度为180米.【点评】本题考查了一次函数的应用,待定系数法求一次函数的解析式的运用,图象的交点坐标的求法是解题关键.22.【分析】【感知】根据圆周角定理即可得出答案;【探究】先构造出△PBC≌△EBA(SAS),得出PB=EB,进而得出△PBE是等边三角形,即可得出结论;【应用】先构造出△PBC≌△EBA(SAS),进而判断出∠PBG=90°,进而得出△PBG 是等腰直角三角形,即可得出结论;【解答】【感知】解:∵∠AOB=90°,∴∠APB=∠AOB=45°(在同圆中,同弧所对的圆周角是圆心角的一半),故答案为:45;【探究】证明:延长PA至点E,使AE=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAE=180°,∴∠BCP=∠BAE,∵△ABC是等边三角形,∴BA=BC,∴△PBC≌△EBA(SAS),∴PB=EB,∵△ABC是等边三角形,∴∠ACB=60°,∴∠APB=60°,∴△PBE为等边三角形,∴PB=PE=AE+AP=PC+AP;【应用】解:如图③,延长PA至点G,使AG=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAG=180°,∴∠BCP=∠BAG,∵BA=BC,∴△PBC≌△GBA(SAS),∴PB=GB,∠PBC=∠GBA,∵∠ABC=90°,∴∠PBG=∠GBA+∠ABP=∠PBC+∠ABP=∠ABC=90°,∴PG=BP,∵PG=PA+AG=PA+PC,∴PC=PG﹣PA=×2PA﹣PA=3PA,∴==,故答案为:【点评】此题是圆的综合题,主要考查了圆周角定理,圆内接四边形的性质,全等三角形的判定和性质,作出辅助线构造出全等三角形是解本题的关键.23.【分析】(1)证明四边形ABEQ是矩形,进而在Rt△QBE中,勾股定理即可求解.(2)证明△PBE∽△ECD,得出.(3)过点P作PH⊥BC于点H,证明△PHE≌△ECQ得出PE=QE,即可得出结论.(4)分三种情况讨论,①如图所示,当点P在BE上时,②当P点在AB上时,当F,A重合时符合题意,此时如图,③当点P在AD上,当F,D重合时,此时Q与点C重合,则PFQE是正方形,即可求解.【解答】解:如图所示,连接BQ,∵四边形ABCD是矩形,∴∠BAQ=∠ABE=90°,∵∠PEQ=90°,∴四边形ABEQ是矩形,当点P和点B重合时,∴QE=AB=3,BE=2,在Rt△QBE中,,故答案为:.(2)如图所示,∵∠PEQ=90°,∠PBE=∠ECD=90°,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∴△PBE∽△ECD,∴,∵BE=2,CD=AB=3,∴.(3)如图所示,过点P作PH⊥BC于点H,∵∠PEQ=90°,∠PHE=∠ECQ=90°,∴∠1+∠2=90°,∠2+∠3=90°,则四边形ABHP是矩形,∴PH=AB=3,又∵EC=BC﹣BE=5﹣2=3,∴PH=EC,∴△PHE≌ECQ(AAS),∴PE=QE,∴△PQE是等腰直角三角形;(4)①如图所示,当点P在BE上时,∵QE=QF=3,AQ=BE=2,在Rt△AQF中,,则,∵PE=t,∴BP=2﹣t,PF=PE=t,在Rt△PBF中,PF2=PB2+FB2,∴,解得:,当时,点F在矩形内部,∴0<t≤符合题意.②当P点在AB上时,当F,A重合时符合题意,此时如图,π则PB=t﹣BE=t﹣2,PE=AP=AB﹣PB=3﹣(t﹣2)=5﹣t,在Rt△PBE中,PE2=PB2+BE2,∴(5﹣t)2=(t﹣2)2+22,解得t=.③当点P在AD上,当F,D重合时,此时点Q与点C重合,则PFQE是正方形,此时t=2+3+2=7.综上所述,0<t≤或t=或t=7.【点评】本题考查了矩形的性质,正方形的性质与判定,勾股定理,求正切,轴对称的性质,分类讨论,分别画出图形,数形结合是解题的关键.24.【分析】(1)将点(2,2)代入抛物线解析式,利用待定系数法即可求解;(2)当y=0时,﹣x2+2x+2=0,求得抛物线与x轴的交点坐标,根据抛物线上的点B 在x轴上时,横坐标为1﹣m,其中m<0,得出,即可求解;(3)证明点B一定在对称轴右侧,分情况讨论:①如图所示,当,即﹣时,②当,即时分别画出图形,根据最高点与最低点的纵坐标之差为2﹣m,建立方程,解方程即可求解;(4)根据B在x轴的上方,得出﹣<m<0,根据题意分三种情况讨论:①当E是AC的中点时,②当F为AO的中点时,③,根据题意分别得出方程,解方程即可求解.【解答】解:(1)将点(2,2)代入抛物线y=﹣x2+bx+2中,得2=﹣4+2b+2,解得:b=2,∴抛物线解析式为y=﹣x2+2x+2=﹣(x﹣1)2+3,∴顶点坐标为(1,3).(2)由y=﹣x2+2x+2,当y=0时,﹣x2+2x+2=0,解得:,,∵抛物线上的点B在x轴上时,横坐标为1﹣m.其中m<0.∴1﹣m>1,∴,解得:,∵点A的坐标为(m,0),∴.(3)令﹣x2+2x+2=0,得x1=1﹣,x2=1+,∴P(1﹣,0),∵m<0,∴1﹣m>1,∴点B一定在对称轴右侧,∴B(1﹣m,﹣m2+3).①如图所示,当,即﹣时,根据题意,3=2﹣m,解得m=﹣1;②当,即时,依题意,3﹣(﹣m2+3)=2﹣m,解得:m=﹣2或m=1(舍去).综上所述,m=﹣1或m=﹣2.(4)如图所示,∵B在x轴的上方,∴且m<0,∴﹣<m<0,∵以点C、E、O、D为顶点的四边形的面积是四边形AOBC面积的一半,线段BO的中点为D,=S△COD,∴S△BCD=S△AOC+S△BOC,S△BOC=S△BCD+S△COD,∵S四边形AOBC①当E是AC的中点,如图,则S四边形AOBC∴,代入y=﹣x2+2x+2,即,解得(舍去)或;②同理当F为AO的中点时,如图所示,S△ACF=S△CFO,S△BCD=S△COD,则点C、F、O、D为顶点的四边形的面积是四边形AOBC 面积的一半,∴,解得;③如图所示,=S,设S△BOC则,∵以点C、E、O、D为顶点的四边形的面积是四边形AOBC面积的一半,线段BO的中点为D,∴,即,∴,∴CF=AO,∴F(﹣m,﹣m2+3),∵B,F关于x=1对称,∴,解得:.综上所述,或或.【点评】本题考查了二次函数综合运用,二次函数的性质,面积问题,根据题意画出图形,分类讨论,熟练掌握二次函数的性质是解题的关键。
吉林省2023年初中学业水平考试数学试题数学试卷共7页,包括六道大题,共26道小题.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1. 月球表面的白天平均温度零上126C °,记作+126C °,夜间平均温度零下150C °,应记作( )A. +150C° B. 150C -° C. +276C ° D. 276C-°【答案】B【解析】【分析】根据正负数表示相反意义的量,平均温度零上表示正,平均温度零下表示负即可求解.【详解】解:平均温度零上126C °,记作+126C °,夜间平均温度零下150C °,应记作150C -°,故选:B .【点睛】本题主要考查正负数与实际问题的综合,掌握正负数表示相反意义的量是解题的关键.2. 图①是2023年6月11日吉林市全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台的主视图是( )A.B. C. D.【答案】A【解析】【分析】主视图是从几何体正面观察到的视图.【详解】解:领奖台从正面看,是由三个长方形组成的.三个长方形,右边最低,中间最高,故选A .【点睛】本题考查主视图,掌握三视图的特征是解题关键.3. 下列各式计算结果为a 5的是( )A. 32a a +B. 32a a ×C. ()32aD. 102a a ¸【答案】B【解析】【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项逐项计算即可求解.【详解】解:A. 3a 与2a 不是同类项,不能合并,故该选项不符合题意;B. 32a a ×5a =,故该选项符合题意;C. ()32a 6a =,故该选项不符合题意;D. 122a a ¸10a =,故该选项不符合题意;故选:B .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,掌握同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项是解题的关键.4. 一元二次方程2520x x -+=根的判别式的值是( )A. 33B. 23C. 17D. 【答案】C【解析】【分析】直接利用一元二次方程根的判别式24b ac =-△求出答案.【详解】解:∵1a =,=5b -,2c =,∴()224541172b ac =-=-´´-=V .故选:C .【点睛】此题主要考查了一元二次方程的根的判别式,正确记忆公式是解题关键.5. 如图,在ABC V 中,点D 在边AB 上,过点D 作DE BC ∥,交AC 于点E .若23AD BD ==,,则AE AC的值是( )A. 25 B. 12 C. 35 D. 23【答案】A【解析】【分析】利用平行线分线段成比例定理的推论得出AE AD AC AB=,即可求解.【详解】解:∵ABC V 中,DE BC ∥,∴AE AD AC AB =,∵23AD BD ==,∴22235AE AD AC AD BD ===++,故选:A .【点睛】本题考查平行线分线段成比例定理的推论,解题关键是牢记“平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例”.6. 如图,AB ,AC 是O e 弦,OB ,OC 是O e 的半径,点P 为OB 上任意一点(点P 不与点B 重合),连接CP .若70BAC Ð=°,则BPC Ð的度数可能是( )A. 70°B. 105°C. 125°D. 155°【答案】D【解析】【分析】根据圆周角定理得出2140BOC BAC Ð=Ð=°,进而根据三角形的外角的性质即可求解.【详解】解:∵ BCBC =,70BAC Ð=°,∴2140BOC BAC Ð=Ð=°,∵140BPC BOC PCO Ð=Ð+г°,的∴BPC Ð的度数可能是155°故选:D .【点睛】本题考查了圆周角定理,三角形的外角的性质,熟练掌握圆周角定理是解题的关键.二、填空题(每小题3分,共24分)7. ..【解析】【分析】根据负数的绝对值是它的相反数,可得答案..8. 不等式480x ->的解集为__________.【答案】2x >【解析】【分析】根据移项、化系数为1,的步骤解一元一次不等式即可求解.【详解】解:480x ->48x >解得:2x >,故答案为:2x >.【点睛】本题考查了求一元一次不等式的解集,熟练掌握不等式的性质是解题的关键.9. 计算:(3)a b +=_________.【答案】3ab a+【解析】【分析】根据单项式乘多项式的运算法则求解.【详解】解:(3)3a b ab a +=+.故答案为:3ab a +.【点睛】本题主要考查了单项式乘多项式的运算法则,掌握单项式乘多项式的运算法则是解答关键.10. 如图,钢架桥的设计中采用了三角形的结构,其数学道理是__________.【答案】三角形具有稳定性【解析】【分析】根据三角形结构具有稳定性作答即可.【详解】解:其数学道理是三角形结构具有稳定性.故答案为:三角形具有稳定性.【点睛】本题考查了三角形具有稳定性,解题的关键是熟练的掌握三角形形状对结构的影响.11. 如图,在ABC V 中,AB AC =,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两孤交于点D ,作直线AD 交BC 于点E .若=110BAC а,则BAE Ð的大小为__________度.【答案】55【解析】【分析】首先根据题意得到AD 是BAC Ð的角平分线,进而得到1552BAE CAE BAC Ð=Ð=Ð=°.【详解】∵由作图可得,AD 是BAC Ð的角平分线∴1552BAE CAE BAC Ð=Ð=Ð=°.故答案为:55.【点睛】此题考查了作角平分线,角平分线的定义,解题的关键是熟练掌握以上知识点.12. 《九章算术》中记载了一道数学问题,其译文为:有人合伙买羊,每人出5钱,还缺45钱;每人出7钱,还缺3钱.问合伙人数是多少?为解决此问题,设合伙人数为x 人,可列方程为__________.【答案】54573x x +=+【解析】【分析】根据题中钱的总数列一元一次方程即可.【详解】解:设合伙人数为x 人,根据题意列方程54573x x +=+;故答案为:54573x x +=+.【点睛】本题主要考查了一元一次方程的应用,准确分析列方程是解题的关键.13. 如图①,A ,B 表示某游乐场摩天轮上的两个轿厢.图②是其示意图,点O 是圆心,半径r 为15m ,点A ,B 是圆上的两点,圆心角120AOB Ð=°,则 AB 的长为_________m .(结果保留π)【答案】10π【解析】【分析】利用弧长公式π180n r l =直接计算即可.【详解】∵半径15m OA =,圆心角120AOB Ð=°,∴AB l n 120π1510π180´´==,故答案为:10π.【点睛】本题考查了弧长计算,熟练掌握弧长公式π180n r l =,并规范计算是解题的关键.14. 如图,在Rt ABC △中,90C BC AC Ð=°<,.点D ,E 分别在边AB ,BC 上,连接DE ,将BDE V 沿DE 折叠,点B 的对应点为点B ¢.若点B ¢刚好落在边AC 上,303CB E CE ¢Ð=°=,,则BC 的长为__________.【答案】9【解析】【分析】根据折叠的性质以及含30度角的直角三角形的性质得出26B E BE CE ¢===,即可求解.【详解】解:∵将BDE V 沿DE 折叠,点B 的对应点为点B ¢.点B ¢刚好落在边AC 上,在Rt ABC △中,90C BC AC Ð=°<,,303CB E CE ¢Ð=°=,,∴26B E BE CE ¢===,∴369BC CE BE =+=+=,故答案为:9.【点睛】本题考查了折叠的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.三、解答题(每小题5分,共20分)15. 下面是一道例题及其解答过程的一部分,其中M 是单项式.请写出单项式M ,并将该例题的解答过程补充完整.例 先化简,再求值:211a a aM -++,其中100a =.解:原式()()2111a a a a a =-++……【答案】M a =,11a -,99100,过程见解析【解析】【分析】先根据通分的步骤得到M ,再对原式进行化简,最后代入100a =计算即可.【详解】解:由题意,第一步进行的是通分,∴()()2111M a a a a a M a a ×==+++,∴M a =,原式()()2111a a a a a =-++()211a a a -=+()()()111a a a a +-=+1a a-=11a=-,当100a =时,原式1991100100=-=.【点睛】本题考查了分式的化简求值,正确对分式进行化简是解题的关键.16. 2023年6月4日,“神舟”十五号载人飞船返回舱成功着陆.某校为弘扬爱国主义精神,举办以航天员事迹为主题的演讲比赛,主题人物由抽卡片决定,现有三张不透明的卡片,卡片正面分别写着费俊龙、邓清明、张陆三位航天员的姓名,依次记作A ,B ,C ,卡片除正面姓名不同外,其余均相同.三张卡片正面向下洗匀后,甲选手从中随机抽取一张卡片,记录航天员姓名后正面向下放回,洗匀后乙选手再从中随机抽取一张卡片.请用画树状图或列表的方法,求甲、乙两位选手演讲的主题人物是同一位航天员的概率.【答案】13【解析】【分析】分别使用树状图法或列表法将甲乙两位选手抽取卡片的结果表示出来,第一次共有3种不同的抽取情况,第二次同样也各有3种不同的抽取情况,所有等可能出现的结果有9种,找出两次卡片相同的抽取结果,即可算出概率.【详解】解:解法一:画树状图,根据题意,画树状图结果如下:由树状图可以看出,所有等可能出现的结果一共有9种,而两张卡片中相同的结果有3种,所以甲、乙两位选手演讲的主题人物是同一位航天员的概率3193P ==.解法二:用列表法,根据题意,列表结果如下:AB C AAA BA CA B AB BB CB C AC BC CC 由表格可以看出,所有等可能出现的结果一共有9种,而两张卡片中相同的结果有3种,所以甲、乙两位选手演讲的主题人物是同一位航天员的概率3193P ==.【点睛】本题考查了列表法或树状图法求概率,用图表的形式将第一次、第二次抽取所可能发生的情况一一列出,避免遗漏.17. 如图,点C 在线段BD 上,在ABC V 和DEC V 中,A D AB DE B E Ð=Ð=Ð=Ð,,.求证:AC DC =.【答案】证明见解析【解析】【分析】直接利用ASA 证明ABC DEC ≌△△,再根据全等三角形的性质即可证明.【详解】解:在ABC V 和DEC V 中,A D AB DEB E Ð=Ðìï=íïÐ=Ðî∴()ASA ABC DEC ≌V V ∴AC DC =.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.18. 2022年12月28日查干湖冬捕活动后,某商家销售A ,B 两种查干湖野生鱼,如果购买1箱A 种鱼和2箱B 种鱼需花费1300元:如果购买2箱A 种鱼和3箱B 种鱼需花费2300元.分别求每箱A 种鱼和每箱B 种鱼的价格.【答案】每箱A 种鱼的价格是700元,每箱B 种鱼的价格是300元.【解析】【分析】设每箱A 种鱼的价格是x 元,每箱B 种鱼的价格是y 元,根据题意建立方程组,解方程组即可得.【详解】解:设每箱A 种鱼的价格是x 元,每箱B 种鱼的价格是y 元,由题意得:21300232300x y x y +=ìí+=î,解得700300x y =ìí=î,答:每箱A 种鱼的价格是700元,每箱B 种鱼的价格是300元.【点睛】本题考查了二元一次方程组的应用用,正确建立方程组是解题关键.四、解答题(每小题7分,共28分)19. 图①、图②、图③均是55´的正方形网格,每个小正方形的顶点称为格点,线段AB 的端点均在格点上.在图①、图②、图③中以AB 为边各画一个等腰三角形,使其依次为锐角三角形、直角三角形、钝角三角形,且所画三角形的顶点均在格点上.【答案】见解析【解析】【分析】根据勾股定理可得AB =【详解】解:如图所示,如图①,AC AB ===,则ABC V 是等腰三角形,且ABC V 是锐角三角形,如图②,AD AB ===,BD ==,则222AD AB BD +=,则ABD △是等腰直角三角形,如图③,AE AB ===ABE V 是等腰三角形,且ABE V 是钝角三角形,【点睛】本题考查了勾股定理与网格问题,等腰三角形的定义,熟练掌握勾股定理是解题的关键.20. 笑笑同学通过学习数学和物理知识,知道了电磁波的波长l (单位:m )会随着电磁波的频率f (单位:MHz )的变化而变化.已知波长l 与频率f 是反比例函数关系,下面是它们的部分对应值:频率f (MHz )101550波长l (m )30206(1)求波长l 关于频率f 的函数解析式.(2)当75MHz f =时,求此电磁波的波长l .【答案】(1)300f l =; (2)4m【解析】【分析】(1)设解析式为k fl =()0k ¹,用待定系数法求解即可;(2)把75MHz f =值代入(1)所求得的解析式中,即可求得此电磁波的波长l .【小问1详解】解:设波长l 关于频率f 的函数解析式为k f l =()0k ¹,把点()10,30代入上式中得:3010k =,解得:300k =,300fl \=;【小问2详解】解:当75MHz f =时,300475l ==,答:当75MHz f =时,此电磁波的波长l 为4m .【点睛】本题是反比例函数的应用问题,考查了求反比例函数的解析式及求反比例函数的函数值等知识,利用待定系数法求得反比例函数解析式是解题的关键.21. 某校数学活动小组要测量校园内一棵古树的高度,王朵同学带领小组成员进行此项实践活动,记录如下:填写人:王朵综合实践活动报告 时间:2023年4月20日活动任务:测量古树高度活动过程【步骤一】设计测量方案小组成员讨论后,画出如图①的测量草图,确定需测的几何量.【步骤二】准备测量工具自制测角仪,把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪,利用它可以测量仰角或俯角,如图②所示准备皮尺.【步骤三】实地测量并记录数据如图③,王朵同学站在离古树一定距离的地方,将这个仪器用手托起,拿到眼前,使视线沿着仪器的直径刚好到达古树的最高点.如图④,利用测角仪,测量后计算得出仰角a .测出眼睛到地面的距离AB .测出所站地方到古树底部的距离BD .a =________.1.54m AB =.10m BD =.【步骤四】计算古树高度CD .(结果精确到0.1m )(参考数据:sin 400.643cos 400.766tan 400.839°=°=°=,,)请结合图①、图④和相关数据写出a 的度数并完成【步骤四】.【答案】40°,9.9mCD =【解析】【分析】根据测角仪显示的度数和直角三角形两锐角互余即可求得a 的度数,证明四边形ABDE 是矩形得到DE AB =,再解直角三角形求得CE 的度数,即可求解.【详解】解:测角仪显示的度数为50°,∴905040a =°-°=°,∵AB BD ^,ED BD ^,CE AE ^,∴90ABD EDB AED Ð=Ð=Ð=°,∴四边形ABDE 是矩形,10m AE BD ==, 1.54mED AB ==在Rt CAE △中,tan 8.39m CE AE a ==,∴8.39 1.549.939.9m CD CE ED =+=+=».【点睛】本题考查了解直角三角形的实际应用和矩形的判定与性质,熟练掌握解直角三角形的运算是解题的关键.22. 为了解20182022-年吉林省粮食总产量及其增长速度的情况,王翔同学查阅相关资料,整理数据并绘制了如下统计图:20182022-年吉林省粮食总产量及其增长速度(以上数据源于《2022年吉林省国民经济和社会发展统计公报》)注:-=100%´本年粮食总产量去年粮食总产量增长速度去年粮食总产量.根据此统计图,回答下列问题:(1)2021年全省粮食总产量比2019年全省粮食总产量多__________万吨.(2)20182022-年全省粮食总产量的中位数是__________万吨.(3)王翔同学根据增长速度计算方法得出2017年吉林省粮食总产量约为4154.0万吨.结合所得数据及图中信息对下列说法进行判断,正确的画“√”,错误的画“×”①20182022-年全省粮食总产量增长速度最快的年份为2019年,因此这5年中,2019年全省粮食总产量最高.( )②如果将20182022-年全省粮食总产量的中位数记为a 万吨,20172022-年全省粮食总产量的中位数记为b 万吨,那么a b <.( )【答案】(1)161.3(2)3877.9(3)①×;②√【解析】【分析】(1)根据条形统计图,可知2021年全省粮食总产量4039.2;2019年全省粮食总产量为3877.9,作差即可求解.(2)根据中位数定义,即可求解.(3)①根据统计图可知2019年全省粮食总产量不是最高;②根据中位数定义可得3877.94039.23877.92b +=>,即可求解.【小问1详解】解:根据统计图可知,2021年全省粮食总产量为4039.2;2019年全省粮食总产量为3877.9,∴2021年全省粮食总产量比2019年全省粮食总产量多4039.23877.9161.3-=(万吨);故答案为:161.3.【小问2详解】将20182022-年全省粮食总产量从小到大排列为:3632.7,3803.2,3877.9,4039.2,4080.8;∴20182022-年全省粮食总产量的中位数是3877.9万吨故答案为:3877.9.【小问3详解】①20182022-年全省粮食总产量增长速度最快的年份为2019年,但是在这5年中,2019年全省粮食总产量不是最高.故答案为:×.②依题意,3877.9a =,3877.94039.23877.92b +=>∴b a >,故答案为:√.【点睛】本题考查了条形统计图与折线统计图,中位数的计算,从统计图中获取信息是解题的关键.五、解答题(每小题8分,共16分)23. 甲、乙两个工程组同时挖掘沈白高铁某段隧道,两组每天挖掘长度均保持不变,合作一段时间后,乙组因维修设备而停工,甲组单独完成了剩下的任务,甲、乙两组挖掘的长度之和()m y 与甲组挖掘时间x (天)之间的关系如图所示.为的的(1)甲组比乙组多挖掘了__________天.(2)求乙组停工后y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当甲组挖掘的总长度与乙组挖掘的总长度相等时,直接写出乙组已停工的天数.【答案】(1)30(2)()312060y x x =+30<£(3)10天【解析】【分析】(1)由图可知,前30天甲乙两组合作,30天以后甲组单独做,据此计算即可;(2)设乙组停工后y 关于x 的函数解析式为y kx b =+,用待定系数法求解,再结合图象即可得到自变量x 的取值范围;(3)先计算甲乙两组每天各挖掘多少千米,再计算乙组挖掘的总长度,设乙组已停工的天数为a ,根据甲组挖掘的总长度与乙组挖掘的总长度相等列方程计算即可.【小问1详解】解:由图可知,前30天甲乙两组合作,30天以后甲组单独做,∴甲组挖掘了60天,乙组挖掘了30天,603030-=(天)∴甲组比乙组多挖掘了30天,故答案为:30;【小问2详解】解:设乙组停工后y 关于x 的函数解析式为y kx b =+,将()30,210和()60,300两个点代入,可得2103030060k b k b =+ìí=+î,解得3120k b =ìí=î,∴()312060y x x =+30<£【小问3详解】解:甲组每天挖30021036030-=-(米)甲乙合作每天挖210730=(米)∴乙组每天挖734-=(米),乙组挖掘的总长度为304120´=(米)设乙组己停工的天数为a ,则()330120a +=,解得10a =,答:乙组已停工的天数为10天.【点睛】本题考查了一次函数的应用,待定系数法求函数的解析式,理解题意观察图象得到有用信息是解题的关键.24. 【操作发现】如图①,剪两张对边平行的纸条,随意交叉叠放在一起,使重合的部分构成一个四边形EFMN .转动其中一张纸条,发现四边形EFMN 总是平行四边形其中判定的依据是__________.【探究提升】取两张短边长度相等的平行四边形纸条ABCD 和EFGH (AB BC <,FG BC £),其中AB EF =,B FEH Ð=Ð,将它们按图②放置,EF 落在边BC 上,FG EH ,与边AD 分别交于点M ,N .求证:EFMN Y 是菱形.【结论应用】保持图②中的平行四边形纸条ABCD 不动,将平行四边形纸条EFGH 沿BC 或CB 平移,且EF 始终在边BC 上.当MD MG =时,延长CD HG ,交于点P ,得到图③.若四边形ECPH 的周长为40,4sin 5EFG Ð=(EFG Ð为锐角),则四边形ECPH 的面积为_________.【答案】(操作发现),两组对边分别平行的四边形是平行四边形;(探究提升),见解析;(结论应用),8【解析】【分析】(操作发现),根据两组对边分别平行的四边形是平行四边形解答即可;(探究提升),证明四边形ABEN 是平行四边形,利用邻边相等的平行四边形是菱形即可证明结论成立;(结论应用),证明四边形ECPH 是菱形,求得其边长为10,作GQ BC ^于Q ,利用正弦函数的定义求解即可.【详解】解:(操作发现),∵两张对边平行的纸条,随意交叉叠放在一起,∴MN EF ∥,NE MF ∥,∴四边形EFMN 是平行四边形(两组对边分别平行的四边形是平行四边形),故答案为:两组对边分别平行的四边形是平行四边形;(探究提升),∵MN EF ∥,NE MF ∥,∴四边形EFMN 是平行四边形,∵B FEH Ð=Ð,∴NE AB ∥,又AN BE ∥,∴四边形ABEN 是平行四边形,∴EF AB NE ==,∴平行四边形EFMN 是菱形;(结论应用),∵平行四边形纸条EFGH 沿BC 或CB 平移,∴MD GP ∥,PD MG ∥,∴四边形MNHG 、CDMF 、PGMD 是平行四边形,∵MD MG =,∴四边形PGMD 是菱形,∵四边形EFMN 是菱形,∴四边形ECPH 是菱形,∵四边形ECPH 的周长为40,∴10FH GF ==,作GQ BC ^于Q ,∵4sin 5EFG Ð=,∴45GQ GF =,∴8GQ =,∴四边形ECPH 的面积为10880´=.故答案为:80.【点睛】本题考查了菱形的判定和性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.六、解答题(每小题10分,共20分)25. 如图,在正方形ABCD 中,4cm AB =,点O 是对角线AC 的中点,动点P ,Q 分别从点A ,B 同时出发,点P 以1cm/s 的速度沿边AB 向终点B 匀速运动,点Q 以2cm/s 的速度沿折线BC CD -向终点D 匀速运动.连接PO 并延长交边CD 于点M ,连接QO 并延长交折线DA AB -于点N ,连接PQ ,QM ,MN ,NP ,得到四边形PQMN .设点P 的运动时间为x (s )(04x <<),四边形PQMN 的面积为y (2cm )(1)BP 的长为__________cm ,CM 的长为_________cm .(用含x 的代数式表示)(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时,直接写出x 的值.【答案】(1)()4x -;x(2)()()2412160241624x x x y x x ì-+<£ï=í-+<£ïî(3)43x =或83x =【解析】【分析】(1)根据正方形中心对称的性质得出,OM OP OQ ON ==,可得四边形PQMN 是平行四边形,证明ANP CQM V V ≌即可;(2)分02x <£,24x <£两种情况分别画出图形,根据正方形的面积,以及平行四边形的性质即可求解;(3)根据(2)的图形,分类讨论即可求解.【小问1详解】解:依题意,1AP x x =´=()cm ,则()4PB AB AP x cm =-=-,∵四边形ABCD 是正方形,∴,90AD BC DAB DCB Ð=Ð=°∥,∵点O 是正方形对角线AC 的中点,∴,OM OP OQ ON ==,则四边形PQMN 是平行四边形,∴MQ PN =,MQ NP ∥,∴PNQ MQN Ð=Ð,又AD BC ∥,∴ANQ CQN Ð=Ð,∴ANP MQC Ð=Ð,在,ANP CQM V V 中,ANP MQC NAP QCM NP MQ Ð=ÐìïÐ=Ðíï=î,∴ANP CQM V V ≌,∴()cm MC AP x ==故答案为:()4x -;x .【小问2详解】解:当02x <£时,点Q 在BC 上,由(1)可得ANP CQM V V ≌,同理可得PBQ MDN V V ≌,∵4,2,PB x QB x MC x =-==,42QC x =-,则222MCQ BPQ y AB S S =--V V ()()164242x x x x =--´--241216x x =-+;当24x <£时,如图所示,则AP x =,224AN CQ x CB x ==-=-,()244PN AP AN x x x =-=--=-+,∴()44416y x x =-+´=-+;综上所述,()()2412160241624x x x y x x ì-+<£ï=í-+<£ïî;【小问3详解】依题意,①如图,当四边形PQMN 是矩形时,此时90PQM Ð=°,∴90PQB CQM Ð+Ð=°,∵90BPQ PQB Ð+Ð=°,∴BPQ CQM Ð=Ð,又B BCD Ð=Ð,∴~BPQ CQM V V ,∴BP BQ CQ CM=,即4242x x x x-=-,解得:43x =,当四边形PQMN 是菱形时,则PQ MQ =,∴()()()22224242x x x x -+=+-,解得:0x =(舍去);②如图所示,当PB CQ =时,四边形PQMN 是轴对称图形,424x x -=-,解得83x =,当四边形PQMN 是菱形时,则4PN PQ ==,即44x -+=,解得:0x =(舍去),综上所述,当四边形PQMN 是轴对称图形时,43x =或83x =.【点睛】本题考查了正方形的性质,动点问题,全等三角形的性质与判定,矩形的性质,平行四边形的性质与判定,菱形的性质,轴对称图形,熟练掌握以上知识是解题的关键.26. 如图,在平面直角坐标系中,抛物线22y xx c =-++经过点(0,1)A .点P ,Q 在此抛物线上,其横坐标分别为,2(0)m m m >,连接AP ,AQ .(1)求此抛物线的解析式.(2)当点Q 与此抛物线的顶点重合时,求m 的值.(3)当PAQ Ð的边与x 轴平行时,求点P 与点Q 的纵坐标的差.(4)设此抛物线在点A 与点P 之间部分(包括点A 和点P )的最高点与最低点的纵坐标的差为1h ,在点A 与点Q 之间部分(包括点A 和点Q )的最高点与最低点的纵坐标的差为2h .当21h h m -=时,直接写出m 的值.【答案】(1)221y x x =-++(2)12m = (3)点P 与点Q 的纵坐标的差为1或8(4)13m =或54m =【解析】【分析】(1)待定系数法求解析式即可求解;(2)化为顶点式,求得顶点坐标,进而根据点Q 的横坐标为2m ,即可求解;(3)分AQ x ∥轴时,AP x ∥轴时分别根据抛物线的对称性求得Q 的横坐标与P 的横坐标,进而代入抛物线解析式,求得纵坐标,即可求解;(4)分四种情况讨论,①如图所示,当,P Q 都在对称轴1x =的左侧时,当,P Q 在对称轴两侧时,当点P 在1x =的右侧时,当P 的纵坐标小于1时,分别求得12,h h ,根据21h h m -=建立方程,解方程即可求解.【小问1详解】解:∵抛物线22y xx c =-++经过点(0,1)A .∴1c =∴抛物线解析式为221y x x =-++;【小问2详解】解:∵221y x x =-++()212x =--+,顶点坐标为()1,2,∵点Q 与此抛物线顶点重合,点Q 的横坐标为2m∴21m =,解得:12m =;【小问3详解】①AQ x ∥轴时,点,A Q 关于对称轴1x =对称,22Q x m ==,∴1m =,则212112-+´+=,222211-+´+=,∴()1,2P ,Q ()2,1∴点P 与点Q 的纵坐标的差为211-=;②当AP x ∥轴时,则A P ,关于直线1x =对称,∴2P x m ==,24Q x m ==则242417-+´+=-∴()2,1P ,()4,7Q -;∴点P 与点Q 的纵坐标的差为()178--=;综上所述,点P 与点Q 的纵坐标的差为1或8;【小问4详解】①如图所示,当P Q ,都在对称轴1x =的左侧时,的则021m <<∴102m <<∵()2,21P m m m -++,()()()22,2221Q m m m -++即()22,441Q m m m -++∴()21211P A h y y m m =-=-++-22m m =-+;222441144Q A h y y m m m m=-=-++-=-+∵21h h m-=∴22442m m m m m-++-=解得:13m =或0m =(舍去);②当,P Q 在对称轴两侧或其中一点在对称轴上时,则211m m ³£,,即112m ££,则2122,211h m m h =-+=-=,∴212m m m +-=,解得:m =;③当点P 在1x =的右侧且在直线0y =上方时,即12m <<,1211h =-=,()2222441441h m m m m =--++=-+∴24411m m m-+-=解得:54m =或0m =(舍去);④当P 在直线1y =上或下方时,即2m ³,,()22122121h m m m m =--++=-+,()2222441441h m m m m =--++=-+,()2244121m m m m m\-+--+=解得:1m =(舍去)或0m =(舍去)综上所述,13m =或54m =.【点睛】本题考查了二次函数的性质,待定系数法求解析式,顶点式,熟练掌握二次函数的性质是解题的关键.。
吉林省中考数学试题含答案2024年吉林省中考数学试题及答案一、选择题1、在下列四个数中,数值最大的是()。
A. π B. 2π C. 3π D. 4π2、若方程 x² + mx + 2 = 0 的两个实数根分别为 x1 和 x2 ,且 x1³ + x2³ = 7,则 m 的值为()。
A. -1 B. 1 C. -2 D. 23、等边三角形 ABC 的边长为 4,点 D 在边 AB 上,且∠ADC = 120°,则 AD 的长为()。
A. 2 B. 3 C. 4 D. 54、若点 P 在直线 y = x 上,且到原点的距离为√5,则 P 点的坐标为()。
A. (2,2) B. (-2,-2) C. (2,2)或(-2,-2) D. (1,1)或(-1,-1)二、填空题5、已知实数 a,b,c 满足 a² + b² = c²,且 a > b > c,则 |a|+|b|-|c| 的值为________。
51、在 Rt△ABC 中,∠C = 90°,斜边 AB = 5,一条直角边的长为2,则另一条直角边的长为________。
511、若 x + y = 5,则 (x² + y²) / 5 的值为________。
三、解答题8、已知二次函数 y = ax² + bx + c 的图象经过点 A(0,3),且对称轴为 x = -2,点 B 在抛物线上。
若 AB = 4√5,求点 B 的坐标。
81、在四边形 ABCD 中,∠A = 90°,∠B = 60°,AD = AB = 4,CD = 3。
求四边形 ABCD 的面积。
811、求根号下 (4 - sin²80°) 的值。
四、附加题11、在平面直角坐标系中,O 为原点,A(-3,0),B(0,4),C(3,0),D 为第一象限内一点,且∠DAO + ∠DCO = α,求 tanα的值。
2022年长春市初中学业水平考试数学一、选择题(本大题共8小题,每小题3分,共24分)1. 图是由5个相同的小正方体组合而成的立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念,从正面看到的图形就是主视图,再根据小正方体的个数和排列进行作答即可.【详解】正面看,其主视图为:故选:A.【点睛】此题主要考查了简单组合体的三视图,俯视图是从上面看所得到的图形,主视图是从正面看所得到的图形,左视图时从左面看所得到的图形,熟练掌握知识点是解题的关键.2. 长春轨道客车股份有限公司制造的新型奥运版复兴号智能动车组,车头采用鹰隼形的设计,能让性能大幅提升,一列该动车组一年运行下来可节省约1800000度电,将数据1800000用科学记数法表示为()A. 51810⨯B. 61.810⨯C. 71.810⨯D. 70.1810⨯【答案】B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.详解】解:1800000=1.8×106,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 不等式23x +>的解集是( )A. 1x <B. 5x <C. 1x >D. 5x >【答案】C【解析】【分析】直接移项解一元一次不等式即可.【详解】23x +>, 32x >-,1x >,故选:C .【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤是解题的关键.4. 实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A. 0a >B. a b <C. 10b -<D. 0ab >【答案】B【解析】【分析】观察数轴得:2123a b -<<-<<<,再逐项判断即可求解.【详解】解:观察数轴得:2123a b -<<-<<<,故A 错误,不符合题意;B 正确,符合题意;∴10b ->,故C 错误,不符合题意;∴0ab <,故D 错误,不符合题意;【故选:B【点睛】本题主要考查了实数与数轴,实数的大小比较,利用数形结合思想解答是解题的关键.5. 如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A ,变幅索的底端记为点B ,AD 垂直地面,垂足为点D ,BC AD ⊥,垂足为点C .设ABC α∠=,下列关系式正确的是( )A. sin AB BC α=B. sin BC AB α=C. sin AB AC α=D. sin AC ABα= 【答案】D【解析】【分析】根据正弦三角函数的定义判断即可.【详解】∵BC ⊥AC ,∴△ABC 是直角三角形,∵∠ABC =α, ∴sin AC ABα=, 故选:D .【点睛】本题考查了正弦三角函数的定义.在直角三角形中任意锐角∠A 的对边与斜边之比叫做∠A 的正弦,记作sin ∠A .掌握正弦三角函数的定义是解答本题的关键. 6. 如图,四边形ABCD 是O 的内接四边形.若121BCD ∠=︒,则BOD ∠的度数为( )A. 138°B. 121°C. 118°D. 112°【答案】C【解析】 【分析】由圆内接四边形的性质得59A ∠=︒,再由圆周定理可得2118BOD A ∠=∠=︒.【详解】解:∵四边形ABCD 内接于圆O ,∴180A C ∠+∠=︒∵121BCD ∠=︒∴59A ∠=︒∴2118BOD A ∠=∠=︒故选:C【点睛】本题主要考查了圆内接四边形的性质和圆周角定理,熟练掌握相关性质和定理是解答本题的关键7. 如图,在ABC 中,根据尺规作图痕迹,下列说法不一定正确的是( )A. AF BF =B. 12AE AC =C. 90DBF DFB ∠+∠=︒D. BAF EBC ∠=∠【答案】B【解析】 【分析】根据尺规作图痕迹,可得DF 垂直平分AB ,BE 是ABC ∠的角平分线,根据垂直平分线的性质和角平分线的定义,直角三角形两锐角互余,等边对等角的性质进行判断即可.【详解】根据尺规作图痕迹,可得DF 垂直平分AB ,BE 是ABC ∠的角平分线, ,90,AF BF BDF ABF CBE ∴=∠=︒∠=∠,,90ABF BAF DBF DFB ∴∠=∠∠+∠=︒,BAF EBC ∴∠=∠,综上,正确的是A 、C 、D 选项,故选:B .【点睛】本题考查了垂直平分线和角平分线的作图,垂直平分线的性质,角平分线的定义,直角三角形两锐角互余,等边对等角的性质,熟练掌握知识点是解题的关键. 8. 如图,在平面直角坐标系中,点P 在反比例函数k y x=(0k >,0x >)的图象上,其纵坐标为2,过点P 作PQ //y 轴,交x 轴于点Q ,将线段QP 绕点Q 顺时针旋转60°得到线段QM .若点M 也在该反比例函数的图象上,则k 的值为( )C. D. 4【答案】C【解析】【分析】作MN ⊥x 轴交于点N ,分别表示出ON 、MN ,利用k 值的几何意义列式即可求出结果.【详解】解:作MN ⊥x 轴交于点N ,如图所示,∵P 点纵坐标为:2,∴P 点坐标表示为:(2k ,2),PQ =2, 由旋转可知:QM =PQ =2,∠PQM =60°,∴∠MQN =30°,∴MN =112QM =,QN , ∴ON MN k = ,即:2k k =,解得:k =故选:C .【点睛】本题主要考查的是k 的几何意义,表示出对应线段是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9. 分解因式:23m m +=_______.【答案】(3)m m +【解析】【分析】原式提取公因式m 即可得到结果.【详解】解:23(3)m m m m +=+故答案为:(3)m m +.【点睛】本题主要考查了提公因式分解因式,正确找出公因式是解答本题的关键. 10. 若关于x 的方程20x x c ++=有两个相等的实数根,则实数c 的值为_______. 【答案】14##0.25 【解析】【分析】根据方程20x x c ++=有两个相等的实数根,可得0∆=,计算即可.【详解】 关于x 的方程20x x c ++=有两个相等的实数根,21410c ∴∆=-⨯=, 解得14c =, 故答案为:14. 【点睛】本题考查了一元二次方程根的判别式,即一元二次方程有两个不相等的实数根时,0∆>;有两个相等的实数根时,0∆=;没有实数根时,∆<0;熟练掌握知识点是解题的关键.11. 《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x 间房,可求得x的值为________.【答案】8【解析】【分析】设店中共有x 间房,根据“今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住”可列一元一次方程,求解即可.【详解】设店中共有x 间房,由题意得,779(1)x x +=-,解得8x =,所以,店中共有8间房,故答案为:8.【点睛】本题考查了一元一次方程的应用,准确理解题意,找到等量关系是解题的关键. 12. 将等腰直角三角板与量角器按如图所示的方式摆放,使三角板的直角顶点与量角器的中心O 重合,且两条直角边分别与量角器边缘所在的弧交于A 、B 两点.若5OA =厘米,则 AB 的长度为________厘米.(结果保留π)【答案】52π##2.5π 【解析】【分析】直接根据弧长公式进行计算即可.【详解】90,5cm AOB OA ∠=︒= , 9055cm 1802AB ππ⨯⨯∴==, 故答案为:52π. 【点睛】本题考查了弧长公式,即180n r l π=,熟练掌握知识点是解题的关键. 13. 跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC 和等边三角形DEF 组合而成,它们重叠部分的图形为正六边形.若27AB =厘米,则这个正六边形的周长为_________厘米.【答案】54【解析】【分析】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,再证明△FMN、△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形即可求解.【详解】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,如图,∵六边形MNGHPO是正六边形,∴∠GNM=∠NMO=120°,∴∠FNM=∠FNM=60°,∴△FMN是等边三角形,同理可证明△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形,∴MO=BM,NG=AN,OP=PD,GH=HE,∴NG+MN+MO=AN+MN+BM=AB,GH+PH+OP=HE+PH+PD=DE,∵等边△ABC≌等边△DEF,∴AB=DE,∵AB=27cm,∴DE=27cm,∴正六边形MNGHPO的周长为:NG+MN+MO+GH+PH+OP=AB+DE=54cm,故答案为:54.【点睛】本题考查了正六边的性质、全等三角形的性质以及等边三角形的判定与性质等知识,掌握正六边的性质是解答本题的关键.14. 已知二次函数223y x x =--+,当12a x ……时,函数值y 的最小值为1,则a 的值为_______.【答案】1--1-【解析】【分析】先把函数解析式化为顶点式可得当1x <-时,y 随x 的增大而增大,当1x >-时,y 随x 的增大而减小,然后分两种情况讨论:若1a ≥-;若1a <-,即可求解.【详解】解:()222314y x x x =--+=-++,∴当1x <-时,y 随x 的增大而增大,当1x >-时,y 随x 的增大而减小,若1a ≥-,当12a x ……时,y 随x 的增大而减小, 此时当12x =时,函数值y 最小,最小值为74,不合题意, 若1a <-,当x a =时,函数值y 最小,最小值为1,∴2231a a --+=,解得:1a =--或1-+;综上所述,a 的值为1--故答案为:1-【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.三、解答题(本大题共10小题,共78分)15. 先化简,再求值:()()()221a a a a +-++,其中4a =.【答案】4a +【解析】【分析】根据平方差公式与单项式乘以单项式进行计算,然后将4a =代入求值即可求解.【详解】解:原式=224a a a -++ 4a =+当4a =-时,原式44=-=【点睛】本题考查了整式的混合运算,实数的运算,代数式求值,正确的计算是解题的关键.16. 抛掷一枚质地均匀的普通硬币,仅有两种可能的结果:“出现正面”或“出现反面”.正面朝上记2分,反面朝上记1分.小明抛掷这枚硬币两次,用画树状图(或列表)的方法,求两次分数之和不大于3的概率. 【答案】34【解析】【分析】采用列表法列举即可求解.【详解】根据题意列表如下:由表可知,总的可能结果有4种,两次之和不大于3的情况有3种,故所求概率为:3÷4=34, 即两次分数之和不大于3的概率为34. 【点睛】本题考查了用列表法或者树状图法列举求解概率的知识,掌握用列表法或者树状图法列举求解概率是解答本题的关键.17. 为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?【答案】乙班每小时挖400千克的土豆【解析】【分析】设乙班每小时挖x 千克的土豆,则甲班每小时挖(100+x )千克的土豆,根据题意列出分式方程即可求解.【详解】设乙班每小时挖x 千克的土豆,则甲班每小时挖(100+x )千克的土豆, 根据题意有:150********x x=+, 解得:x =400,经检验,x =400是原方程的根,故乙班每小时挖400千克的土豆.【点睛】本题考查了分式方程的应用,明确题意列出分式方程是解答本题的关键. 18. 如图①、图②、图③均是55⨯的正方形网格,每个小正方形的边长均为1,其顶点称为格点,ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中ABC 的形状是________;(2)在图①中确定一点D ,连结DB 、DC ,使DBC △与ABC 全等:(3)在图②中ABC 的边BC 上确定一点E ,连结AE ,使ABE CBA △∽△:(4)在图③中ABC 的边AB 上确定一点P ,在边BC 上确定一点Q ,连结PQ ,使PBQ ABC △∽△,且相似比为1:2.【答案】(1)直角三角形(2)见解析(答案不唯一)(3)见解析(4)翙解析【解析】 【分析】(1)运用勾股定理分别计算出AB ,AC ,BC 的长,再运用勾股定理逆定理进行判断即可得到结论;(2)作出点A 关于BC 的对称点D ,连接BD ,CD 即可得出DBC △与ABC 全等: (3)过点A 作AE ⊥BC 于点E ,则可知ABE CBA △∽△:(4)作出以AB 为斜边的等腰直角三角形,作出斜边上的高,交AB 于点P ,交BC 于点Q ,则点P ,Q 即为所求.【小问1详解】∵222222224220,215,525AB AC BC =+==+===∴222AB AC BC +=,∴ABC 是直角三角形,故答案为:直角三角形;【小问2详解】如图,点D 即为所求作,使DBC △与ABC 全等:【小问3详解】如图所示,点E 即为所作,且使ABE CBA △∽△:【小问4详解】如图,点P ,Q 即为所求,使得PBQ ABC △∽△,且相似比为1:2.【点睛】本题主要考查了勾股定理,勾股定理逆定理,等腰直角三角形的性质,全等三角形的判定,相似三角形的判定,熟练掌握相关定理是解答本题的关键.19. 如图,在Rt ABC 中,90ABC ∠=︒,AB BC <.点D 是AC 的中点,过点D 作DE AC ⊥交BC 于点E .延长ED 至点F ,使得DF DE =,连接AE 、AF 、CF .(1)求证:四边形AECF 是菱形;(2)若14BE EC =,则tan BCF ∠的值为_______.【答案】(1)见解析(2【解析】 【分析】(1)根据对角线互相垂直平分的四边形是菱形即可得证;(2)设BE a =,则4EC a =,根据菱形的性质可得4AE EC a ==,AE FC ∥,勾股定理求得AB ,根据BCF BEA ∠=∠,tan BCF ∠=tan AB BEA BE∠=,即可求解. 【小问1详解】证明: AD DC =,DE DF =,∴四边形AECF 是平行四边形,∵DE AC ⊥, ∴四边形AECF 是菱形;【小问2详解】解: 14BE EC =, 设BE a =,则4EC a =,四边形AECF 是菱形;4AE EC a ∴==,AE FC ∥,∴BCF BEA ∠=∠,在Rt ABE △中,AB ===,∴tan BCF ∠=tan AB BEA BE ∠===,【点睛】本题考查了菱形的判定与性质,勾股定理,求正切,掌握以上知识是解题的关键.20. 党的十八大以来,我国把科技自立自强作为国家发展的战略支撑,科技事业发生了历史性、整体性、格局性变化,成功跨入创新型国家的行列,专利项目多项指数显著攀升.如图是长春市2016年到2020年专利授权情况的统计图.根据以上信息回答下列问题:(1)长春市从2016年到2020年,专利授权量最多的是________年:(2)长春市从2016年到2020年,专利授权量年增长率的中位数是_______;(3)与2019年相比,2020年长春市专利授权量增加了_______件,专利授权量年增长率提高了_______个百分点;(注:1%为1个百分点)(4)根据统计图提供的信息,有下列说法,正确的画“√”,错误的画“×”.①因为2019年的专利授权量年增长率最低,所以2019年的专利授权量的增长量就最小.( )②与2018年相比,2019年的专利授权量年增长率虽然下降,但专利授权量仍然上升.这是因为专利授权量年增长率100%-=⨯当年专利授权量上一年专利授权量上一年专利授权量,所以只要专利授权量年增长率大于零,当年专利授权量就一定增加.( )③通过统计数据,可以看出长春市区域科技创新力呈上升趋势,为国家科技自立自强贡献吉林力量.( )【答案】(1)2020(2)18.1% (3)5479,30.2(4)①×,②√,③√【解析】【分析】(1)观察统计图可得专利授权量最多的是2020年,即可求解;(2)先把专利授权量年增长率从小到大排列,即可求解;(3)分别用2020年长春市专利授权量减去2019年长春市专利授权量,2020年专利授权量年增长率减去2019年专利授权量年增长率,即可求解;(4)①根据题意可得2017年的的专利授权量的增长量低于2019年的,可得①错误;②根据专利授权量年增长率100%-=⨯当年专利授权量上一年专利授权量上一年专利授权量,可得②正确;③观察统计图可得从2016年到2020年,每年的专利授权量都有所增加,可得③正确,即可求解.【小问1详解】解:根据题意得:从2016年到2020年,专利授权量最多的是2020年;故答案为:2020【小问2详解】解:把专利授权量年增长率从小到大排列为:15.8%,16.0%,18.1%,25.4%,46.0%, 位于正中间的是18.1%,∴专利授权量年增长率的中位数是18.1%;故答案为:18.1%【小问3详解】解:与2019年相比,2020年长春市专利授权量增加了17373-11894=5479件; 专利授权量年增长率提高了46.0%-15.8%=30.2%,专利授权量年增长率提高了302个百分点; 故答案为:5479,30.2【小问4详解】解:①因为2017年的专利授权量的增长量为8190-7062=1128件;2019年的专利授权量的增长量11894-10268=1626件,所以2019年的专利授权量的增长量高于2017年的专利授权量的增长量,故①错误; 故答案为:× ②因为专利授权量年增长率100%-=⨯当年专利授权量上一年专利授权量上一年专利授权量, 所以只要专利授权量年增长率大于零,当年专利授权量就一定增加,故②正确; 故答案为:√根据题意得:从2016年到2020年,每年的专利授权量都有所增加,所以长春市区域科技创新力呈上升趋势,故③正确;故答案为:√【点睛】本题主要考查了折线统计图和条形统计图,理解统计图中数据之间的关系是正确解答的关键.21. 己知A 、B 两地之间有一条长440千米的高速公路.甲、乙两车分别从A 、B 两地同时出发,沿此公路相向而行,甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B 地;乙车匀速行驶至A 地,两车到达各自的目的地后停止.两车距A 地的路程y (千米)与各自的行驶时间x (时)之间的函数关系如图所示..(1)m =_______,n =_______;(2)求两车相遇后,甲车距A 地的路程y 与x 之间的函数关系式;(3)当乙车到达A 地时,求甲车距A 地的路程.【答案】(1)2.6(2)甲车距A 地的路程y 与x 之间的函数关系式6080y x =+(3)300千米【解析】【分析】(1)先根据甲乙两车相遇时甲车行驶的路程除以速度可求出m 的值,再用m 的值加4即可得n 的值;(2)由(1)得(2,200)和(6,440),再运用待定系数法求解即可;(3)先求出乙车的行驶速度,从而可求出行驶时间,代入函数关系式可得结论.【小问1详解】根据题意得,2001002m =÷=(时) 4246n m =+=+=(时)故答案为:2.6;【小问2详解】由(1)得(2,200)和(6,440),设相遇后,甲车距A 地的路程y 与x 之间的函数关系式为y kx b =+则有:22006440k b k b +=⎧⎨+=⎩, 解得,6080k b =⎧⎨=⎩ 甲车距A 地的路程y 与x 之间的函数关系式6080y x =+【小问3详解】甲乙两车相遇时,乙车行驶的路程为440-200=240千米,∴乙车的速度为:240÷2=120(千米/时)∴乙车行完全程用时为:440÷120=113(时) ∵1123> ∴当113x =时,1160803003y =⨯+=千米, 即:当乙车到达A 地时,甲车距A 地的路程为300千米【点睛】本题主要考查了一次函数的应用,读懂图象是解答本题的关键.22. 【探索发现】在一次折纸活动中,小亮同学选用了常见的A 4纸,如图①,矩形ABCD 为它的示意图.他查找了A 4纸的相关资料,根据资料显示得出图①中AD =.他先将A 4纸沿过点A 的直线折叠,使点B 落在AD 上,点B 的对应点为点E ,折痕为AF ;再沿过点F 的直线折叠,使点C 落在EF 上,点C 的对应点为点H ,折痕为FG ;然后连结AG ,沿AG 所在的直线再次折叠,发现点D 与点F 重合,进而猜想ADG AFG △≌△.【问题解决】(1)小亮对上面ADG AFG △≌△的猜想进行了证明,下面是部分证明过程: 证明:四边形ABCD 是矩形,∴90BAD B C D ∠=∠=∠=∠=︒. 由折叠可知,1452BAF BAD ∠=∠=︒,BFA EFA ∠=∠. ∴45EFA BFA ∠=∠=︒.∴AF AD ==.请你补全余下的证明过程.【结论应用】(2)DAG ∠的度数为________度,FG AF 的值为_________; (3)在图①的条件下,点P 在线段AF 上,且12AP AB =,点Q 在线段AG 上,连结FQ 、PQ ,如图②,设AB a =,则FQ PQ +的最小值为_________.(用含a 的代数式表示)【答案】(1)见解析(2)22.5°1. (3【解析】【分析】(1)根据折叠的性质可得AD =AF ,90AFG D ∠=∠=︒,由HL 可证明结论; (2)根据折叠的性质可得122.5;2DAG DAF ∠=∠=︒ 证明GCF ∆是等腰直角三角形,可求出GF 的长,从而可得结论 ;(3)根据题意可知点F 与点D 关于AG 对称,连接PD ,则PD 为PQ +FQ 最小值,过点P 作PR ⊥AD ,求出PR =AR,求出DR ,根据勾腰定理可得结论. 【小问1详解】证明:四边形ABCD 矩形,∴90BAD B C D ∠=∠=∠=∠=︒. 由折叠可知,1452BAF BAD ∠=∠=︒,BFA EFA ∠=∠. ∴45EFA BFA ∠=∠=︒.∴AF AD ==.由折叠得,45CFG GFH ∠=∠=︒,∴454590AFG AFE GFE ∠=∠+∠=︒+︒=︒∴90AFG D ∠=∠=︒又AD =AF ,AG =AG∴ADG AFG △≌△【小问2详解】由折叠得,∠,BAF EAF =∠又∠90BAF EAF ︒+∠= ∴∠119045,22EAF BAE ︒︒=∠=⨯= 由ADG AFG △≌△得,∠114522.5,22DAG FAG FAD ︒︒=∠=∠=⨯= ∠90,AFG ADG ︒=∠=的是又∠45AFB ︒=∴∠45,GFC ︒=∴∠45,FGC ︒=∴.GC FC =设,AB x =则,,BF x AF AD BC ====∴1)FC BC BF x x =-=-=-∴(2GF x ==∴ 1.GF AF ==- 【小问3详解】如图,连接,FD∵DG FG =∴AG 是FD 的垂直平分线,即点F 与点D 关于AG 轴对称,连接PD 交AG 于点Q ,则PQ +FQ 的最小值为PD 的长;过点P 作PR AD ⊥交AD 于点R ,∵∠45DAF BAF ︒=∠=∴∠45.APR ︒=∴AR PR = 又22222()24a a AR PR AP +===∴,AR PR ==∴DR AD AR a =-== 在Rt DPR ∆中,222DP AR PR =+∴DP===∴PQ FQ+【点睛】本题主要考查了折叠的性质,全等三角形的判定与性质,最短路径问题,矩形的性质以及勾股定理等知识,正确作出辅助线构造直角三角形是解答本题的关键.23. 如图,在ABCD中,4AB=,AD BD==M为边AB的中点,动点P 从点A出发,沿折线AD DB-个单位长度的速度向终点B运动,连结PM.作点A关于直线PM的对称点A',连结A P'、A M'.设点P的运动时间为t秒.(1)点D到边AB的距离为__________;(2)用含t的代数式表示线段DP的长;(3)连结A D',当线段A D'最短时,求DPA'△的面积;(4)当M、A'、C三点共线时,直接写出t的值.【答案】(1)3 (2)当0≤t≤1时,DP=;当1<t≤2时,PD=;(3)35(4)23或2011【解析】【分析】(1)连接DM,根据等腰三角形的性质可得DM⊥AB,再由勾股定理,即可求解;(2)分两种情况讨论:当0≤t≤1时,点P在AD边上;当1<t≤2时,点P在BD边上,即可求解;(3)过点P作PE⊥DM于点E,根据题意可得点A运动轨迹为以点M为圆心,AM长为半径的圆,可得到当点D、A′、M三点共线时,线段A D'最短,此时点P在AD上,再证明△PDE∽△ADM,可得33,22DE t PE t=-=-,从而得到23A E DE A D t''=-=-,在Rt A PE'中,由勾股定理可得25t=,即可求解;的(4)分两种情况讨论:当点A'位于M、C之间时,此时点P在AD上;当点A'(A'')位于C M的延长线上时,此时点P在BD上,即可求解.【小问1详解】解:如图,连接DM,==M为边AB的中点,∵AB=4,AD BD∴AM=BM=2,DM⊥AB,∴3DM==,即点D到边AB的距离为3;故答案为:3【小问2详解】解:根据题意得:当0≤t≤1时,点P在AD边上,DP=;当1<t≤2时,点P在BD边上,PD=-;综上所述,当0≤t≤1时,DP=;当1<t≤2时,PD=;【小问3详解】解:如图,过点P作PE⊥DM于点E,∵作点A关于直线PM的对称点A',∴A′M=AM=2,∴点A的运动轨迹为以点M为圆心,AM长为半径的圆,'最短,此时点P在AD上,∴当点D、A′、M三点共线时,线段A DA D'=,∴1根据题意得:A P AP '==,DP =,由(1)得:DM ⊥AB ,∵PE ⊥DM ,∴PE ∥AB ,∴△PDE ∽△ADM , ∴PD DE PE AD DM AM==,32DE PE ==, 解得:33,22DE t PE t =-=-,∴23A E DE A D t ''=-=-,在Rt A PE ' 中,222A P PE A E ''=+,∴)()()2222223t t =-+-,解得:25t =, ∴65PE =, ∴116312255DPA S A D PE ''=⋅=⨯⨯= ; 【小问4详解】解:如图,当点M 、A '、C 三点共线时,且点A '位于M 、C 之间时,此时点P 在AD 上,连接A A ′, A ′B ,过点P 作PF ⊥AB 于点F ,过点A ′作A ′G ⊥AB 于点G ,则A A ′⊥PM , ∵AB 为直径,∴∠A =90°,即A A ′⊥A ′B ,∴PM ∥A ′B ,∴∠PMF =∠AB A ′,过点C 作CN ⊥AB 交AB 延长线于点N ,在ABCD 中,AB ∥DC ,∵DM ⊥AB ,∴DM ∥CN ,∴四边形CDMN 为平行四边形,∴CN =DM =3,MN =CD =4,∴CM =5, ∴3sin 5CN CMN CM ∠==, ∵A ' M =2, ∴36255A G '=⨯=, ∴85MG =, ∴25BG BM MG =-=, ∴tan 3A G A BA BG''∠==, ∴tan tan 3PMF A BA '∠=∠=, ∴3PF FM=,即PF =3FM ,∵3tan 2DM PF DAM AM AF ∠===,cos AM AF DAM AD AP ∠=== ∴32PF AF =, ∴332FM AF =,即AF =2FM , ∵AM =2, ∴43AF =,=,解得:23t =; 如图,当点A '(A '')位于C M 的延长线上时,此时点P 在BD 上,PB =,过点A ''作A G AB '''⊥于点G ′,则AMA CMN ''∠=∠,取AA ''的中点H ,则点M 、P 、H 三点共线,过点H 作HK ⊥AB 于点K ,过点P 作PT ⊥AB 于点T ,同理:62,55A G AG ''''==, ∵HK ⊥AB ,A G AB '''⊥,∴HK ∥A ′′G ′,∴AHK AA G ''' ,∵点H 是AA ''的中点, ∴12HK AK AH A G AG AA ==='''''', ∴31,55HK AK ==, ∴95MK =, ∴1tan tan 3HK PMT HMK MK ∠=∠==, ∴13PT MT =,即MT =3PT ,∵3tan 2DM PT PBT BM BT ∠===,cos BT BM PBT PB BD ∠===, ∴23BT PT =, ∴92MT BT =, ∵MT +BT =BM =2, ∴411BT =,=,解得:2011t =;综上所述,t 的值为23或2011. 【点睛】本题主要考查了四边形的综合题,熟练掌握平行四边形的性质,圆的基本性质,相似三角形的判定和性质,解直角三角形,根据题意得到点A '的运动轨迹是解题的关键,是中考的压轴题.24. 在平面直角坐标系中,抛物线2y x bx =-(b 是常数)经过点()2,0.点A 在抛物线上,且点A 的横坐标为m (0m ≠).以点A 为中心,构造正方形PQMN ,2PQ m =,且PQ x ⊥轴.(1)求该抛物线对应的函数表达式:(2)若点B 是抛物线上一点,且在抛物线对称轴左侧.过点B 作x 轴的平行线交抛物线于另一点C ,连接BC .当4BC =时,求点B 的坐标;(3)若0m >,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大时,或者y 随x 的增大而减小时,求m 的取值范围;(4)当抛物线与正方形PQMN 的边只有2个交点,且交点的纵坐标之差为34时,直接写出m 的值.【答案】(1)22y x x =-(2)()1,3B -(3)102m <≤或3m ≥ (4)38m =-或12m =或32m =. 【解析】【分析】(1)将点()2,0代入2y x bx =-,待定系数法求解析式即可求解;(2)设()2,2B m m m -,根据对称性可得()22,2C m m m --,根据BC 4=,即可求解;(3)根据题意分两种情况讨论,分别求得当正方形PQMN 点Q 在x 轴上时,此时M 与O 点重合,当PQ 经过抛物线的对称轴1x =时,进而观察图象即可求解;(4)根据题意分三种情况讨论,根据正方形的性质以及点的坐标位置,即可求解.【小问1详解】解:∵抛物线2y x bx =-(b 是常数)经过点()2,0∴420b -=解得2b =22y x x ∴=-【小问2详解】如图,由22y x x =-()211x =--则对称轴为直线1x =,设()2,2B m m m -,则()22,2C m m m -- 24BC m m =--=解得1m =-()1,3B ∴-【小问3详解】点A 在抛物线上,且点A 的横坐标为m (0m ≠).以点A 为中心,构造正方形PQMN ,2PQ m =,且PQ x ⊥轴2MN PQ m ∴==,且,M N 在y 轴上,如图,①当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大时,如图,当正方形PQMN 点Q 在x 轴上时,此时M 与O 点重合,PN PQ =OP ∴的解析式为y x =∴(),A m m ,将(),A m m 代入22y x x =-即22m m m --0=解得120,3m m ==0m >()3,3A ∴观察图形可知,当3m ≥时,抛物线在正方形内部的点的纵坐标y 随x 的增大而增大; ②当抛物线在正方形内部的点的纵坐标y 随x 的增大而减小时,当PQ 经过抛物线的对称轴1x =时,2,0MQ PQ m m ==>21m ∴= 解得12m =, 观察图形可知,当102m <≤时,抛物线在正方形内部的点的纵坐标y 随x 的增大而增大; 综上所述,m 的取值范围为102m <≤或3m ≥ 【小问4详解】①如图,设正方形与抛物线的交点分别为,E F ,当34E F y y -=时,则34MN = A 是正方形PQMN 的中心,()2,2A m m m - ∴1328A x MN ==即38 m=-②如图,当A点在抛物线左侧,y轴右侧时,()2,2A m m m-2MN m∴=22122E A A y y MN y m m m m m m ∴=+=+=-+=- 交点的纵坐标之差为34, F ∴的纵坐标为234m m -- F 的横坐标为2MQ PQ m ==232,4F m m m ⎛⎫∴-- ⎪⎝⎭ F 在抛物线22y x x =-上, ()2232224m m m m ∴--=-⨯ 解得12m = ③当A 在抛物线对称轴的右侧时,正方形与抛物线的交点分别为O ,S ,设直线AM 交x 轴于点T ,如图,则34N S y y == 34OM OT ∴==即330,,,044M N ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭设直线MN 解析式为y kx b =+ 则30434k b b ⎧+=⎪⎪⎨⎪=⎪⎩解得134k b =-⎧⎪⎨=⎪⎩∴直线MN 解析式为34y x =-+联立22y x x =- 解得1231,22x x ==-(舍去) 即A 的横坐标为32,即32m =, 综上所述,38m =-或12m =或32m =. 【点睛】本题考查了二次函数的综合问题,二次函数的对称性,正方形的性质,掌握二次函数图象的性质是解题的关键。
绝密★启用前2023年吉林省长春市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 实数a、b、c、d在数轴上对应点的位置如图所示,这四个数中绝对值最小的是( )A. aB. bC. cD. d2.长春龙嘉国际机场T3A航站楼设计创意为“鹤舞长春”.如图所示.航站楼的造型如仙鹤飞翔,蕴含了对吉春大地未来发展的美好愿景.本期工程是按照满足2030年旅客吞吐量38000000人次目标设计的,其中38000000这个数用科学记数法表示为( )A. 0.38×108B. 38×106C. 3.8×108D. 3.8×1073. 下列运算正确的是( )A. a3−a2=aB. a2⋅a=a3C. (a2)3=a5D. a6÷a2=a34.如图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是( )A. 面①B. 面②C. 面⑤D. 面⑥5.如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA′、BB′的中点,只要量出A′B′的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是( )A. 两边及其夹角分别相等的两个三角形全等B. 两角及其夹边分别相等的两个三角形全等C. 两条直线被一组平行线所截,所得的对应线段成比例D. 两点之间线段最短6.学校开放日即将来临,负责布置的林老师打算从学校图书馆的顶楼拉出一条彩旗绳AB到地面,如图所示.已知彩旗绳与地面形成25°角(即∠BAC=25°),彩旗绳固定在地面的位置与图书馆相距32米(即AC=32米),则彩旗绳AB的长度为( )A. 32sin25°米B. 32cos25°米C. 32sin25∘米 D. 32cos25∘米7.如图,用直尺和圆规作∠MAN的角平分线,根据作图痕迹,下列结论不一定正确的是( )A. AD=AEB. AD=DFC. DF=EFD. AF⊥DE8. 如图,在平面直角坐标系中,点A、B在函数y=kx(k>0,x>0)的图象上,分别以A、B为圆心,1为半径作圆,当⊙A与y轴相切、⊙B与x轴相切时,连接AB,AB=3√ 2,则k的值为( )A. 3B. 3√ 2C. 4D. 6第II卷(非选择题)二、填空题(本大题共6小题,共18.0分)9. 分解因式:m2−1=______.10. 若关于x的方程x2−2x+c=0有两个不相等的实数根,则实数c的取值范围是______ .11. 2023长春马拉松于5月21日在南岭体育场鸣枪开跑,某同学参加了7.5公里健康跑项目,他从起点开始以平均每分钟x公里的速度跑了10分钟,此时他离健康跑终点的路程为______ 公里.(用含x的代数式表示)12.如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC与△A′B′C′的周长之比为______ .13. 如图,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,展开后,再将纸片折叠,使边AB落在线段AM上,点B的对应点为点B′,折痕为AF,则∠AFB′的大小为______ 度.14. 2023年5月28日,C919商业首航完成——中国民就商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”,是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的抛物线的一部分.如图②,当两辆消防车喷水口A、B的水平距离为80米时,两条水柱在抛物线的顶点H处相遇.此时相遇点H距地面20米,喷水口A、B距地面均为4米.若两辆消防车同时后退10米,两条水柱的形状及喷水口A′、B′到地面的距离均保持不变,则此时两条水柱相遇点H′距地面______ 米.三、解答题(本大题共10小题,共78.0分。
绝密★启用前2023年吉林省中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共6小题,共12.0分。
在每小题列出的选项中,选出符合题目的一项)1. 月球表面的白天平均温度零上126℃记作+126℃夜间平均温度零下150℃应记作( )A. +150℃B. −150℃C. +276℃D. −276℃2. 图①是2023年6月11日吉林市全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台的主视图是( )A. B.C. D.3. 下列各式运算结果为a5的是( )A. a2+a3B. a2a3C. (a2)3D. a10÷a24. 一元二次方程x2−5x+2=0根的判别式的值是( )A. 33B. 23C. 17D. √ 175.如图,在△ABC中,点D在边AB上,过点D作DE//BC,交AC点E.若AD=2,BD=3,则AE的值是( )ACA. 25B. 12C. 35D. 236.如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是( )A. 70°B. 105°C. 125°D. 155°二、填空题(本大题共8小题,共24.0分)7. |−√ 5|=______ .8. 不等式4x−8>0的解集为______ .9. 计算:a(b+3)=______ .10.如图,钢架桥的设计中采用了三角形的结构,其数学道理是______ .11. 如图,在△ABC中,AB=AC.分别以点B和点C为圆心,大于1BC的长为半径作弧,两弧2交于点D,作直线AD交BC于点E.若∠BAC=110°,则∠BAE的大小为______ 度.12. 《九章算术》中记载了一道数学问题,其译文为:有人合伙买羊,每人出5钱,还缺45钱;每人出7钱,还缺3钱,问合伙人数是多少?为解决此问题,设合伙人数为x人,可列方程为______ .13. 如图①,A,B表示某游乐场摩天轮上的两个轿厢.图②是其示意图,点O是圆心,半径r为15m,点A,B是圆上的两点,圆心角∠AOB=120°,则AB−的长为______ m.(结果保留π)14.如图,在Rt△ABC中,∠C=90°,BC<AC.点D,E分别在边AB,BC上,连接DE,将△BDE沿DE折叠,点B的对应点为点B′,若点B′刚好落在边AC上,∠CB′E=30°,CE=3,则BC的长为______ .三、解答题(本大题共12小题,共84.0分。
2019年吉林省中考数学试卷一、选择题(每小题2分,共12分)1.(2019?吉林)在四个数0,﹣2,﹣1,2中,最小的数是()A. 0 B.﹣2 C.﹣1 D. 22.(2019?吉林)如图,有5个完全相同的小正方体组合成一个立方体图形,它的俯视图是()A.B.C.D.3.(2019?吉林)下列计算正确的是()A. 3a﹣a=2 B.a2+2a2=3a2C.a2?a3=a6D.(a+b)2=a2+b2 4.(2019?吉林)如图,在△ABC中,∠A=80°,∠B=40°.D、E分别是AB,AC上的点,且DE∥BC,则∠AED 的度数是()A. 40°B. 60°C. 80°D. 120°5.(2019?吉林)如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.﹣6 B.﹣3 C. 3 D. 66.(2019?吉林)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计划生产450台机器所需时间相同.设原计划每天生产x台机器,则可列方程为()A.B.C.D.二、填空题(每小题3分,共24分)7.(2019?吉林)计算:=_________.8.(2019?吉林)不等式2x﹣1>x的解集为_________.9.(2019?吉林)若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1=_________.10.(2019?吉林)若甲,乙两个芭蕾舞团参加演出的女演员人数相同,平均身高相同,身高的方差分别为=1.5,=2.5,则_________芭蕾舞团参加演出的女演员身高更整齐(填:“甲”或“乙”).11.(2019?吉林)如图,A,B,C是⊙O上的三点,∠CAO=25°,∠BCO=35°,则∠AOB=_________度.12.(2019?吉林)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB 于点D,则BD=_________.13.(2019?吉林)如图,AB是⊙O的直径,BC为⊙O的切线,∠ACB=40°,点P在边BC上,则∠PAB的度数可能为_________(写出一个符合条件的度数即可)14.(2019?吉林)如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是_________.三、解答题(每小题5分,共20分)15.(2019?吉林)先化简,再求值:(a+b)(a﹣b)+2a2,其中a=1,b=.16.(2019?吉林)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28cm,演员踩在高跷上时,头顶距离地面的高度为224cm.设演员的身高为xcm,高跷的长度为ycm,求x,y的值.17.(2019?吉林)如图,有一游戏棋盘和一个质地均匀的正四面体骰子(各面依次标有1,2,3,4四个数字).游戏规则是游戏者每掷一次骰子,棋子按着地一面所示的数字前进相应的格数.例如:若棋子位于A处,游戏者所掷骰子着地一面所示数字为3,则棋子由A处前进3个方格到达B处.请用画树形图法(或列表法)求掷骰子两次后,棋子恰好由A处前进6个方格到达C处的概率.18.(2019?吉林)在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是_________、_________(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.四、解答题(每小题7分,共28分)19.(2019?吉林)在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.(1)若A点的坐标为(1,2),请你在给出的坐标系中画出△ABC.设AB与y轴的交点为D,则=_________;(2)若点A的坐标为(a,b)(ab≠0),则△ABC的形状为_________.20.(2019?吉林)如图,沿AC方向开山修一条公路,为了加快施工速度,要在小山的另一边寻找点E同时施工.从AC上的一点B取∠ABD=127°,沿BD的方向前进,取∠BDE=37°,测得BD=520m,并且AC,BD和DE 在同一平面内.(1)施工点E离D多远正好能使成A,C,E一条直线(结果保留整数);(2)在(1)的条件下,若BC=80m,求公路段CE的长(结果保留整数).(参考数据:sin37°=0.60,cos37°=0.80,tan37°=0.75)21.(2019?吉林)为宣传节约用水,小明随机调查了某小区部分家庭5月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭5月份用水量的众数、平均数;(3)若该小区有400户居民,请你估计这个小区5月份的用水量.22.(2019?吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.五、解答题(每小题8分,共16分)23.(2019?吉林)如图,在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠,点O恰好落在上点D处,折痕交OA于点C,求整个阴影部分的周长和面积.24.(2019?吉林)如图1,A,B,C为三个超市,在A通往C的道路(粗实线部分)上有一D点,D与B有道路(细实线部分)相通.A与D,D与C,D与B之间的路程分别为25km,10km,5km.现计划在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货.该货车每天从H出发,单独为A送货1次,为B送货1次,为C送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H,设H到A的路程为xkm,这辆货车每天行驶的路程为ykm.(1)用含的代数式填空:当0≤x≤25时,货车从H到A往返1次的路程为2xkm,货车从H到B往返1次的路程为_________km,货车从H到C往返2次的路程为_________km,这辆货车每天行驶的路程y=_________.当25<x≤35时,这辆货车每天行驶的路程y=_________;(2)请在图2中画出y与x(0≤x≤35)的函数图象;(3)配货中心H建在哪段,这辆货车每天行驶的路程最短?六、解答题(每小题10分,共20分)25.(2019?吉林)如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P从点A出发,沿AB方向以1cm/s 的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q 两点同时停止运动,以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形和梯形重合部分的面积为Scm2.(1)当t=_________s时,点P与点Q重合;(2)当t=_________s时,点D在QF上;(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.26.(2019?吉林)问题情境如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为y E,y F.特例探究填空:当m=1,n=2时,y E=_________,y F=_________;当m=3,n=5时,y E=_________,y F=_________.归纳证明对任意m,n(n>m>0),猜想y E与y F的大小关系,并证明你的猜想.拓展应用(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出y E与y F的大小关系;(2)连接EF,AE.当S四边形OFEA=3S△OFE时,直接写出m与n的关系及四边形OFEA的形状.2019年吉林省中考数学试卷参考答案与试题解析一、选择题(每小题2分,共12分)3.(2019?吉林)下列计算正确的是()A.3a﹣a=2 B.a2+2a2=3a2C.a2?a3=a6D.(a+b)2=a2+b2考点:完全平方公式;合并同类项;同底数幂的乘法。
分析:利用合并同类项的法则、同底数幂的乘法的性质以及完全平方公式的知识求解,即可求得答案,注意排除法在解选择题中的应用.解答:解:A、3a﹣a=2a,故本选项错误;B、a2+2a2=3a2,故本选项正确;C、a2?a3=a5,故本选项错误;D、(a+b)2=a2+2ab+b2,故本选项错误.故选B.点评:此题考查了合并同类项、同底数幂的乘法以及完全平方公式的知识.此题比较简单,注意掌握指数的变化是解此题的关键.4.(2019?吉林)如图,在△ABC中,∠A=80°,∠B=40°.D、E分别是AB,AC上的点,且DE∥BC,则∠AED 的度数是()A.40°B.60°C.80°D.120°考点:三角形内角和定理;平行线的性质。
分析:根据两直线平行(DE∥BC),同位角相等(∠ADE=∠B)可以求得△ADE的内角∠ADE=40°;然后在△ADE 中利用三角形内角和定理即可求得∠AED的度数.解答:解:∵DE∥BC(已知),∠B=40°(已知),∴∠ADE=∠B=40°(两直线平行,同位角相等);又∵∠A=80°,∴在△ADE中,∠AED=180°﹣∠A﹣∠ADE=60°(三角形内角和定理);故选B.点评:本题考查了三角形内角和定理、平行线的性质.解题时,要挖掘出隐含在题干中的已知条件:三角形的内角和是180°.5.(2019?吉林)如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.﹣6 B.﹣3 C. 3 D. 6考点:反比例函数综合题。
分析:根据菱形的性质,A与C关于OB对称,即可求得A的坐标,然后利用待定系数法即可求得k的值.解答:解:∵A与C关于C点对称,∴A的坐标是(3,2).把(3,2)代入y=得:2=,解得:k=6.故选D.点评:本题考查了待定系数法求函数解析式,以及菱形的性质,正确求得A的坐标是关键.6.(2019?吉林)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计划生产A.B.C.D.考点:由实际问题抽象出分式方程。