23.3.2相似三角形的判定(第三课时)
- 格式:ppt
- 大小:1.48 MB
- 文档页数:17
相似三角形的判定定理课件一、相似三角形的定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形。
相似三角形对应边的比值叫做相似比。
在探讨相似三角形的判定定理之前,我们先来回顾一下三角形全等的判定方法,这对于理解相似三角形的判定会有一定的帮助。
二、三角形全等的判定方法1、“边边边”(SSS):三边对应相等的两个三角形全等。
2、“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
3、“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
4、“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
5、“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
三、相似三角形的判定定理 1:两角分别相等的两个三角形相似为什么两角分别相等就能判定两个三角形相似呢?我们可以通过三角形内角和定理来理解。
因为三角形的内角和是 180 度,如果两个三角形中有两个角分别相等,那么第三个角也必然相等。
此时,这两个三角形的对应角就都相等了。
例如,在三角形 ABC 和三角形 A'B'C'中,如果∠A =∠A',∠B =∠B',那么∠C = 180 ∠A ∠B,∠C' = 180 ∠A' ∠B',由于∠A =∠A',∠B =∠B',所以∠C =∠C'。
这样,三角形 ABC 和三角形A'B'C'的对应角都相等,根据相似三角形的定义,它们相似。
四、相似三角形的判定定理 2:两边成比例且夹角相等的两个三角形相似这个定理的理解可以通过三角函数来辅助。
我们知道,在一个三角形中,如果已知两边和它们的夹角,可以用余弦定理求出第三边。
如果两个三角形的两边成比例且夹角相等,那么通过余弦定理求出的第三边也成比例。
比如,在三角形 ABC 和三角形 A'B'C'中,如果 AB / A'B' = AC / A'C',且∠A =∠A',那么根据余弦定理,BC²= AB²+ AC²2AB·AC·cos∠A,B'C'²= A'B'²+ A'C'² 2A'B'·A'C'·cos∠A'。
23.3.2 相似三角形的判定第二课时教学目标:知识与技能: 会说出识别两个三角形相似的方法:有两边对应成比例,且夹角相等的两个三角形相似;三条边对应成比例的两个三角形相似。
能依据条件,灵活运用三种识别方法,正确判断两个三角形相似。
过程与方法:在推理过程中学会灵活使用数学方法情感态度价值观:培养学生严谨的证明数学习惯和对数学的兴趣教学重点:相似三角形判定方法2、3的推导过程,掌握判定方法2、3并能灵活 运用.教学难点:判定方法的推导及运用教学准备:白卡纸、作图工具、ppt 课件、电子白板课 型:新授课教学过程:一、复习:1.现在要判断两个三角形相似有哪几种方法?有两种方法,(1)是根据定义;(2)是有两个角对应相等的两个三角形相似。
2.如图△ABC 中,D 、E 是AB 、AC 上三等分点(即AD =13 AB ,AE =13 AC),那么△ADE 与△ABC 相似吗?你用的是哪一种方法?由于没有两个角对应相等,同学们可以动手量一量,量什么东西后可以判断它们能否相似?(可能有一部分同学用量角器量角,有一部分同学量线段,看看能否成比例)无论哪一种,都应肯定他们,是正确的,要求同学说出是应用哪一种方法判断出的。
二、新课讲解同学们通过量角或量线段计算之后,得出:△ADE ∽△ABC 。
从已知条件看,△ADE 与△ABC 有一对应角相等,即∠A =∠A(是公共角),而一个条件是AD =13AB ,AE =13AC ,即是AD AB =13,AE AC =13;因此AD AB =AE AC 。
△ADE 的两条边 AD 、AE 与△ABC 的两条边AB 、AC 会对应成比例,它们的夹角又相等,符合这样条件的两个三角形也会相似吗?我们再做一次实验。
观察图,如果有一点E在边AC上,那么点E应该在什么位置才能使△ADE与△ABC相似呢?图中两个三角形的一组对应边AD与AB的长度的比值为13,将点E由点A开始在AC上移动,可以发现当AE=13AC时,△ADE与△ABC相似。