高一数学上学期期中试题(无答案)7
- 格式:doc
- 大小:1.25 MB
- 文档页数:3
2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。
上海市行知中学2024学年第一学期高一期中考试数学试题(满分150分, 考试时间120分钟)一、填空题(本大题共12小题, 1-6每小题4分, 7-12每小题5分, 满分54分)1. 设集合 A ={1,a²}, 若2∈A,则= .2. 函数的定义域为 .3.若,设 P =x²+3,Q =2x , 则的大小关系为4. 用反证法证明命题:“若, 则”时, 应假设 .5.已知, 则的最小值为 .6. 指数函数在R 上是严格增函数,则实数的取值范围是 .7. 已知, 则用表示= .8. 已知关于的方程 x ²−2ax +a =0有两个实数根分别为,且 x 21+x 22=6x 1⋅x 2−3,则实数的值为 .9. 已知实数满足,则 (13)a ⋅(13)2b 的取值范围是 .10.若函数 y =ax +1x +1在[1,+∞)上是严格减函数,且在[1,+∞)上函数值不恒为负,则实数的取值范围是 .11.已知为实数,用|S|表示有限集合S 的元素个数,A ={x|(x +a )(x²+bx +c )= 0},B ={x|(ax +1)(cx²+bx +1)=0},则|A|-|B|所有可能的值是 .12. 若对任意的,总存在,使得(2y +m )[lg 2x )2+4]=log 2x 成立,则数的取值范围是 .a 21-=x y R x ∈Q P 、P Q0≤+y x 00≤≤y x 或0>x xx 4+xm y )1(-=m n m ==7log ,5log 33n m ,9log 35x 21x x 、a 0,0>>b a 1=+b a a c b a ,,[]8,2∈x []2,1∈y m二、选择题(本大题共4小题, 13、14 每题 4 分, 15、16 每题 5 分, 满分18分)13. 已知, 则下列不等式正确的是 ( )A. B.a²>b² C.lg a >lg bD.14.如图,图像①②③④所对应的函数不属于,y =log 2x,y =log 12x 中的一个是( )A. ①B. ②C. ③D. ④15.大西洋鲑鱼每年都要逆游而上游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速 v (单位:m/s)可以表示为 v =12log 3O 100, 其中O 表示鲑鱼的耗氧量的单位数.若一条鲑鱼游速为2m/s 时耗氧量的单位数为U ,游速为3m/s 时耗氧量的单位数为W ,则 W U =( )A. 3B. 6C. 9D. 1216. 已知满足a =log₅(2ᵇ+3ᵇ),c =log₃( 5ᵇ−2ᵇ ),则( )A. |a-c|≥|b-c|, |a-b|≥|b-c|B. |a-c|≥|b-c|, |a-b|≤|b-c|c. |a-c|≤|b-c|, |a-b|≥|b-c|D. |a-c|≤|b-c|, |a-b|≤|b-c|三、解答题(本大题共有5小题,满分78分,必须在答题纸的规定区域内写出必要的步骤)17.(本题满分14分,第一小题满分6分,第2小题满分8分)已知全集为R ,集合A ={x|2x 2−5x−6≤1}, 集合B={}.(1) 求集合A,B 及A∩B:(2) 若C={}, 且满足A∪C=A, 求实数的取值范围.b a R c b a >∈,,,bc ac >33b a >x y 2=c b a ,,1)6lg(|>+x x 1|||≤-m x x m18.(本题满分14分,第一小题满分6分,第2小题满分8分)已知幂函数 y =(m²−2m−2)xᵐ⁻¹(m ∈R ),且该函数在 ( 0 , +∞ )上是严格增函数.(1) 求此幂函数的表达式:(2) 求关于的不等式 y >ax 的解, 其中.19.(本题满分14分,第一小题满分6分,第2小题满分8分)某厂商计划投资生产甲、乙两种商品,经市场调研发现,如图所示,甲、乙商品的投资与利润(单位:万元) 分别满足函数关系y =k 1x a 1与 (1) 求k₁,a₁与 k₂,a₂的值:(2)该厂商现筹集到资金20万元,如何分配生产甲、乙商品的投资,可使总利润最大?并求出总利润的最大值.x R a ∈x y 22a x k y =p20.(本题满分18分, 第1小题6分, 第2小题6分,第3小题6分)已知, 函数 y =log 2(12x +a )(1) 当时,求该函数的定义域(2) 设 P (x₁,y₁),Q (x₁,y₂)是该函数图像上任意不同的两点,且满足点 P 在点Q 的左侧,求证:点P 在点Q 的上方.(3)设,若对任意的, y =log 2(12x+a )在区间[]上的最大值与最小值的和不大于. 求的取值范围.21.(本题满分18分, 第1小题4分, 第2小题6分, 第3小题8分)对于元素为正整数集合A ={a 1,a 2,⋯,a n }|n ∈Z,n ≥3),如果去掉集合A 中任意一个元素 (i =1,2,⋯,n )之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A 为“求真集合”:(1) 判断集合{1,2,3}是否为“求真集合”,并说明理由;(2) 求证:四个元素为正整数的集合A ={a₁,a₂,a₃,a₄}定不是“求真集合”:(3)求证:“元素为正整数集合A ={a 1,a 2,⋯,a n }(n ∈Z ,n ≥3)为求真集合”是“为奇数”的充分非必要条件.R a ∈1=a 0>a []0,1-∈t 1,+t t 6log 2a i a n。
卜人入州八九几市潮王学校二中二零二零—二零二壹高一上学期期中考试数学试题一、填空题:本大题一一共14小题,每一小题5分,一共计70分, 1、数集M={1552,--x x},那么实数x 的取值范围为__________..102α=,lg3β=,那么12100αβ-=.4.映射A B →的对应法那么f :21x x →+,那么B 中的元素3在A 中的与之对应的元素是.{}{}42,,222+==∈++-==x y x N R x x x y y M ,那么集合M N 为.6.以下四个图像中,表示是函数图像的序号是. [来源:学.科.网]7、用二分法求函数()43--=x x f x 的一个零点,其参考数据如下:根据此数据,可得方程043=--x x 的一个近似解〔准确到0.01〕为.8.设集合A ={5,)3(log 2+a },集合B ={a ,b }.假设A B ={2},那么A B =____. 9、幂函数αkx x f =)(的图象过点1,2⎛ ⎝,那么k α+=.2()3f x ax bx a b =+++是偶函数,且其定义域为[1,2]a a -,那么a=,b=.11.函数2log ,0,()3,0,x x x f x x >⎧=⎨≤⎩那么1[()]4f f =____.12.函数2y x =的值域为.13.集合A ={x ∈R |ax 2-3x +2=0},假设A 中至多有一个元素,那么实数a 的取值范围是.14.①函数y =是偶函数,但不是奇函数.②函数()f x 的定义域为[]2,4-,那么函数(34)f x -的定义域是[]8,10-.〔1〕〔2〕〔3〕〔4〕③函数()f x 的值域是[2,2]-,那么函数(1)f x +的值域为[3,1]-.(4)一条曲线2|3|y x =-和直线 ()y a a R =∈的公一共点个数是m ,那么m 的值不可能是1.其中正确序号是__________________.二、解答题:本大题一一共六小题,一共计90分。
江西省2024—2025学年上学期第一次模拟选科联考高一数学试卷共4页,19小题,满分150分。
考试用时120分钟。
注意事项:1.考查范围:必修第一册第一章至第三章第二节。
2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A.{2,3,4,5}B.{1,3,4}C.{3,4}D.{3}2.已知命题,,则为A., B.,C., D.,3.已知为定义在R 上的奇函数,当时,,则A. B.C. D.4.已知是幂函数,若,则a =A.B.2C.4D.65.若A. B. C. D.6.已知定义在R 上的函数满足,且,且,,则A. B.C. D.7.若关于x 的不等式的解集为,且,则实数m 的值为}{1,2,3,4,5U =2}{1,M =}2,{3,4N =()U M N = ð:1p x ∃>320x ->p ⌝1x ∀…320x ->1x ∀…320x -…1x ∀>320x -<1x ∀>320x -…()f x 0x >31()1f x x x =-+(1)f -=12-1232-3292()(4)m f x m x -=-()2f a =121a <-=5(1)a -+5(1)a +6(1)a -+6(1)a +()f x (5)(5)f x f x +=-12,(5,)x x ∀∈+∞12x x ≠121[(()()x x x f --2]()0f x >(5.5)(4.5)f f >(2.7)(3.2)f f <(7.3)(7.9)f f >(2.7)(5.2)f f >220()21x m x m m +-+-<12(,)x x 12112x x +=A.-4B.-1C.1D.48.已知函数若存在实数x ,使,则实数a 的取值围为A. B.C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列计算中正确的是A.C. D.10.使成立的一个充分条件可以是A.且 B.且C.且 D.且11.已知函数的定义域为R ,且的图象关于原点对称,的图象关于y 轴对称,则A. B.C.函数是增函数D.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则________.13.已知幂函数的图象过点,则________.14.对于任意实数x ,表示不小于x 的最小整数,例如(1.2)=2,,表示不大于x 的最大整数,例如[1.2]=1,.已知定义在R 上的函数,若集合,则集合A 中所有元素的和为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数在上单调递减,其中,且.(1)求的解析式;(2)求函数,的值域.16.(15分)已知集合,,且.23,2,(),2,x ax a x f x a x ⎧-++>⎪=…()0f x <(,1)-∞-(,2)(6,)-∞-+∞(,6)(1,)-∞--+∞(,1)(6,)-∞-+∞ 1144-=2=±23(8)4-=23184-=3a b c ->a c >2b c >-2a c >b c >-2a c >b c>-3a c >2b c>()f x (2)4y f x =+-(4)4y f x x =++(2)4f =(6)12f =-()f x (8)(4)824f x f x x -+-=-30,()()1,0,x f x g x x x x ==-<⎪⎩…((1))g f -=()m f x x =3(3,33[(2)]f =()x (0.2)0-=[]x 0.21[]-=-()(2)[3]f x x x =⋅4|(),23A y y f x x ⎧⎫==-<-⎨⎬⎩⎭…()af x b x=+(0,)+∞24a =(1)1f =()f x 2()2()[()]g x f x f x =+[1,4]x ∈(4,29]A m =+{|2233}B x m x m =-+……12B ∈(1)当时,求实数m 的取值范围;(2)设;,若p 是q 的必要不充分条件,求实数m 的取值范围.17.(15分)已知定义在R 上的奇函数与偶函数满足,若.(1)求的解析式;(2)求关于x 的不等式的解集.18.(17分)某糕点连锁店现有五家分店,出售A ,B 两款糕点,A 为特价糕点,为吸引顾客,按进价销售.已知用16000元购进A 糕点与用22000元购进B 糕点的重量相同,且B 糕点每斤的进价比A 糕点每斤的进价多6元.(1)求A ,B 两种糕点每斤的进价;(2)经市场调查发现,B 糕点每斤售价30元时,每月可售出3120斤,售价每提高1元,则每月少售出120斤,售价每降低1元,则每月多售出120斤,糕点店不会低于进价销售.则B 糕点每斤定价为多少元时,糕点店通过卖B 糕点获得的月利润最大?最大是多少?(3)因为使用进价销售的A 糕点物美价廉,所以深受顾客青睐,五个分店每月的总销量为10000斤.今年年初该连锁店用50万购进一批设备,用于生产A 糕点.已知每斤糕点的原材料价格为8元,若生产A 糕点n 个月()所用的原材料之外的各种费用总计为万元,若只考虑A 糕点,记该连锁店前n 个月的月平均利润为z 万元,求z 的最大值.19.(17分)对非空数集A 及实数k ,定义,,已知.(1)当时,若集合A 为单元素集,求A ;(2)当时,若集合,求ab 的所有取值构成的集合;(3)若A 中有3个元素,求实数k 的取值范围.16A ∉:p t A ∈:q t B ∈()f x ()g x ()()2||2f x g x x x +=++()()()h x f x g x =⋅()h x 2(3)(3)0h x tx h x t -+-<*n ∈N 211324n n +2{|,}A k x x a k a A ==-∈ {|,}A k x x k a a A ⊗==-∈A k A k =⊗ 1k =3k ={,}A a b =江西省2024—2025学年上学期第一次模拟选科联考高一数学参考答案及评分细则1.【答案】A【解析】,故选A.2.【答案】D【解析】根据存在量词命题的否定是全称量词命题,得,.故选D.3.【答案】B【解析】因为为定义在R 上的奇函数,所以.故选B.4.【答案】C【解析】因为是幂函数,所以,得,故时,.故选C.5.【答案】C【解析】当时,.故选C.6.【答案】D【解析】由题意得函数在上单调递减,在上单调递增.对选项A ,,A 错误;对选项B ,因为函数在上单调递减,所以,B 错误;对选项C ,因为函数在上单调递增,所以,C 错误;对选项D ,因为,函数在上单调递减,故,D 正确.故选D.7.【答案】B【解析】因为关于x 的不等式的解集为,所以关于x 的方程有两个不相等的实数根,所以,解得,且,,所以,解得.故选B.8.【答案】D【解析】当时,,即,因为,所以,故有解,{3,4,5}{2,3,4}{2,3,4,5}()U M N == ð:1p x ⌝∀>320x -…()f x 311(1)(1)1112f f ⎛⎫-=-=--= ⎪+⎝⎭92()(4)m f x m x-=-41m -=5m =12()f x x ==2=4a =1a <-10a +<3(1)a =--3(1)a =+=336(1)(1)(1)a a a --+=-+()f x (,5)-∞(5,)+∞(5.5)(50.5)f f =+=(50.5)(4.5)f f -=()f x (,5)-∞(2.7)(3.2)f f <()f x (5,)+∞(7.3)(7.9)f f >(5.2)(5f f =+0.2)(50.2)(4.8)f f =-=()f x (,5)-∞(2.7)(4.8)(5.2)f f f >=220()21x m x m m +-+-<12(,)x x 220()21x m x m m +-+-=12,x x 22[2(1)]41()440m m m m ∆=--⨯⋅-=-+>1m <122(1)x x m +=--212x x m m =-1221212112(1)2x x m x x x x m m+--+===-1m =-2x >230x ax a -++<23(1)x a x +<-2x >11x ->231x a x +>-即,因为,当且仅当,即时等号成立,故;当时,有解,即有解,也即,因为单调递增,故时,取最大值-1,故.综上,实数a的取值范围为.故选D.9.【答案】ACD (每选对1个得2分)【解析】对于A ,,A 正确;对于B,B 错误;对于C ,,C 正确;对于D ,,D 正确.故选ACD.10.【答案】AC (每选对1个得3分)【解析】充分性成立,即选项能推出,对于A ,,又,同向不等式相加得,A 成立;对于B ,令,,,满足且,但,B 不成立;对于C ,,又,同向不等式相加得,,C 成立;对于D ,令,,,满足且,但,D 不成立.故选AC.11.【答案】ABD (每选对1个得2分)【解析】A 选项,的定义域为R ,因为的图象关于原点对称,所以为奇函数,所以,故,令,得,A 正确;B 选项,由的图象关于y 轴对称,得为偶函数,所以,即,令,得,得,B 正确;C 选项,因为,C 错误;D 选项,因为,所以,因为,令,得,即,故,,D 正确.故选ABD.12.【答案】-8【解析】,.13.【答案】64【解析】由,所以.14.【答案】67【解析】当时,;当时,,,2min31x ax ⎛⎫+>⎪-⎝⎭223(11)341226111x x x x x x +-++==-+++=--- (4)11x x -=-3x =6a >2x …0a +<a <max (a <y =2x =y =1a <-(,1)(6,)-∞-+∞ 1144-=2=23(8)4-==232311848-===3a b c ->22b c b c <-⇒->a c >3a b c ->3a =7b =1c =-2a c >b c >-433a b c -=-<-=b c b c <-⇒->2a c >3a b c ->5a =8b =1c =-3a c >2b c >33a b c -=-=()f x (2)4y f x =+-(2)4y f x =+-(2)4(2)40f x f x --++-=(2)(2)8f x f x -++=0x =(2)4f =(4)4y f x x =++(4)4y f x x =++(4)4(4)4f x x f x x --=++(4)(4)8f x f x x -=++2x =4(2)(6)16f f ==+(6)12f =-(2)(6)f f >(2)(2)8f x f x -++=()8(4)f x f x =--(4)(4)8f x f x x -=++4x t -=()(8)328f t f t t =-+-()(8)328f x f x x =-+-8(4)(8)328f x f x x --=-+-(8)(4)824f x f x x -+-=-(1)112f -=--=-3((1))(2)(2)8g f g -=-=-=-333m =3m =-3()f x x =333(3(36[(2)](22264f ⨯====2x =-()(4)[6](4)(6)24f x =-⋅-=-⨯-=523x -<<-10423x -<<-(2)3x =-,,;当时,,,,,;当时,,,,,.综上,,集合A 中所有元素的和为67.15.解:(1)由得,(2分)因为函数在上单调递减,所以,故.(5分)由得,所以.(7分)(2),(10分)当时,,,,所以函数,的值域为.(13分)【评分细则】值域写成集合或区间形式均给分.16.解:(1)因为,所以,得,(2分)又因为,所以,即,(5分)故当时,m 的取值范围是.(7分)(2)因为,所以,,若p 是q 的必要不充分条件,则B 是A 的真子集,(10分)故(12分)解得.故实数m 的取值范围是.(15分)【评分细则】结果写成集合或区间或不等式形式均给分.17.解:(1)因为,即,又,得,,(4分)635x -<<-[3]6x =-()(2)[3](3)(6)18f x x x =⋅=-⨯-=5332x -- (10)233x --……(2)3x =-9532x --……[3]5x =-()(2)[3](3)(5)15f x x x =⋅=-⨯-=3423x -<<-8323x -<<-(2)2x =-9342x -<<-[3]5x =-()(2)[3](2)(5)10f x x x =⋅=-⨯-={24,18,15,10}A =24a =2a =±()af x b x=+(0,)+∞0a >2a =(1)21f b =+=1b =-2()1f x x=-222424()2()[()]211g x f x f x x x x ⎛⎫=+=-+-=- ⎪⎝⎭[1,4]x ∈2[1,16]x ∈241,44x ⎡⎤∈⎢⎥⎣⎦2131,34x ⎡⎤-∈-⎢⎥⎣⎦2()2()[()]g x f x f x =+[1,4]x ∈3,34⎡⎤-⎢⎥⎣⎦12B ∈221233m m -+……37m ……16A ∉2916m +<72m <16A ∉73,2⎡⎫⎪⎢⎣⎭37m ……A O ≠B O ≠224,3329,m m m ->⎧⎨++⎩…36m <…(3,6]()()2||2f x g x x x -+-=-+-+()()2||2f x g x x x -+=-++()()2||2f x g x x x +=++()2f x x =()||2g x x =+所以.(5分)(2)因为,所以为奇函数,(7分)又当时,单调递增,故函数在R 上单调递增.(9分)则不等式,可化为,即,即,(11分)①若,即时,;②若,即时,不等式无解;③若,即时,,综上,当时,解集为,当时,解集为,当时,解集为.(15分)【评分细则】1.第一问求出和的解析式分别给2分;2.第一问结果写成分段函数形式不扣分;3.第二间结果不写成集合或区间形式扣1分,未总结,但结果正确均给满分,三种情况每少一种情况扣1分.18.解:(1)设A 糕点每斤的进价为a 元,B 糕点每斤的进价为元,所以,解得,所以A 糕点每斤的进价为16元,B 糕点每斤的进价为22元.(4分)(2)设B 糕点每斤涨价元,蛋糕店通过B 糕点获得的月利润为y 元.由题意,(6分)当时,y 有最大值.(8分)所以B 糕点每斤定价为39元时,月利润最大,最大为34680元.(9分)(3)设前n 个月的总利润为w ,因为A 糕点每斤售价为16元,每月可售出10000斤,故每月可收入16万元,其中原材料为8万元,则,(12分)月平均利润万元,(15分)()()()2(||2)h x f x g x x x =⋅=+()2()(||2)2(||2)()h x x x x x h x -=--+=-+=-()h x 0x …2()24h x x x =+()h x 2(3)(3)0h x tx h x t -+-<2(3)(3)(3)h x tx h x t h t x -<--=-23(3)0x t x t +--<(3)(1)0x t x -+<13t <-3t <-13tx <<-13t=-3t =-13t >-3t >-13t x -<<3t <-|13t x x ⎧⎫<<-⎨⎬⎩⎭3t =-∅3t >-|13t x x ⎧⎫-<<⎨⎬⎩⎭()f x ()g x (6)a +16000220006a a =+16a =(8)x x -…22(3022)(3120120)120216024960120(9)34680y x x x x x =+--=-++=--+9x =22*111311685050()324324w n n n n n n n ⎛⎫=--+-=-+-∈ ⎪⎝⎭N 503131215.2532444w n z n n ==--+-+==…当且仅当,即时等号成立,(16分)所以z 的最大值为5.25.(17分)【评分细则】1.第二问未配方,只要结果正确,就给分;2.第三问未说明等号成立条件扣1分.19.解:(1)时,设,由,得,所以,即,得或1,故或.(4分)(2)时,,由,得,得或即或(5分)当时,是方程的两根,故,(6分)当时,两式相减得,由集合中元素的互异性得,所以,故,即,同理,故是方程的两根,所以,(7分)故ab 的所有取值构成的集合为.(8分)(3)设,由,得,①若故是方程的三个不等的实数根,而此方程最多有两个实数根,不可能有三个实数根,故不成立;(11分)②若,当时,,令,得,(12分)对,,两式相减得,因为,所以,代入,得,同理,5032n n=40n =1k ={}A a =11A A =⊗ 2{1}{1}a a -=-211a a -=-220a a +-=2a =-{2}A =-1}{A =3k ={,}A a b =33A A =⊗ 22{3,3}{3,3}a b a b --=--2233,33a a b b ⎧-=-⎨-=-⎩2233,33,a b b a ⎧-=-⎨-=-⎩2260,60a a b b ⎧+-=⎨+-=⎩226,6,a b b a ⎧=-⎨=-⎩2260,60a ab b ⎧+-=⎨+-=⎩,a b 260x x +-=6ab =-226,6a b b a⎧=-⎨=-⎩22a b a b -=-a b ≠1a b +=266(1)5a b a a =-=--=+250a a --=250b b --=,a b 250x x --=5ab =-{6,5}--{,,}A a b c =A k A k =⊗ 222{,,}{,,}a k b k c k k a k b k c ---=---222,,,a k k a b k k b c k k c ⎧-=-⎪-=-⎨⎪-=-⎩,,a b c 220x x k +-=222,,,a k kb b k k ac k k c ⎧-=-⎪-=-⎨⎪-=-⎩2c k k c -=-220c c k +-=180k ∆=+ (1)8k -…2a k k b -=-2b k k a -=-22a b a b -=-a b ≠1a b +=2a k k b -=-2120a a k -+-=2120b b k -+-=故为方程的两个不相等的实根,令,得,(13分)当时,与均有两个不相等的实根,且这两个方程的根不完全相同,故符合题意;(14分)③若则,根据集合中元素的互异性,两两不相等,不妨设,(ⅰ)当时,,又,所以,这与矛盾,故不成立;(ⅱ)当时,,又,所以,这与矛盾,故不成立;(ⅲ)当时,,又,所以,这与矛盾,故不成立;(ⅳ)当时,,又,所以,这与矛盾,故不成立.(16分)综上,实数k 的取值范围是.(17分)【评分细则】1.第一问只得出一种情况,扣2分;结果不写成集合形式,扣1分;2.第二问求出ab 的一个值,给2分,最后结果不写成集合形式,扣1分;3.第三问结果写成不等式、集合或区间形式,结果正确即给满分.,a b 2120x x k -+-=14(12)0k '∆=-->38k >38k >2120x x k -+-=220x x k +-=222,,,a k k b b k k c c k k a ⎧-=-⎪-=-⎨⎪-=-⎩2222a b b c c a k +=+=+=,,a b c a b c >>0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=3,8⎛⎫+∞ ⎪⎝⎭。
2024~2025学年度上期高中2024级期中考试数学考试时间120分钟,满分150分一,选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}22A x x =∈-≤≤Z ,{}03B x x =∈≤≤Z ,则A B = ()A.{}1,2 B.{}0,1,2 C.{}1,0,1,2- D.{}2,1,0,1,2,3--2.若命题p :x ∀∈R ,2230x x -+>,则p ⌝为()A.x ∀∈R ,2230x x -+< B.x ∀∈R ,2230x x -+≤C.x ∃∈R ,2230x x -+< D.x ∃∈R ,2230x x -+≤3.下列四个命题中的真命题有()①若a b >,c d >,则a c b d +>+②若a b >,c d >,则ac bd>③若a b >,则22ac bc >④若a b >,则()()2211a cbc +>+A.②③B.②④C.①④D.③④4.函数()2441xf x x =-+的图象大致为()A.B. C.D.5.函数()f x =的定义域为()1,2,则ab =()A.2B.-2C.-1D.16.已知()f x 为定义在R 上的奇函数,当0x ≤时,()221f x x x a =++-,则()1a f +=()A.-2B.-1C.1D.17.高一某班共有45名学生,该班参加数学强基班的学生有25人,参加物理强基班的学生有18人,既参加数学强基班又参加物理强基班的学生有8人,则既没有参加数学强基班又没有参加物理强基班的学生有()A.10人B.11人C.12人D.13人8.集合{}1,3,5,7M =的所有子集中的元素之和为()A.126B.128C.130D.132二,选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。
2023-2024学年常州中学高一数学上学期期中考试卷2023-11(试卷总分为150分,考试时间为120分钟.)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若{}{}{}1,2,3,4,1,2,2,3U M N ===,则()U M N ð是()A .{}4B .{}2,4C .{}1,3,4D .{}1,2,32.下列函数中,值域为()0,∞+的偶函数是()A.y =B .y x=C .1y x=D .21y x =3.设x ∈R ,则“23x ->”是“2560x x -->”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.已知奇函数()f x 在R 上单调递增,若()31f =,则满足()120f x -≤-≤的x 取值范围是()A .[]1,0-B .[]1,2-C .[]1,2D .[]1,35.设R A ⊆,且A ≠∅,从A 到R 的两个函数分别为()()21,35f x x g x x =+=+,若对于A 中的任意一个x ,都有()()f xg x =,则集合A 的个数是()A .1B .2C .3D .无穷多6.已知函数()225,1,1x ax x f x ax x ⎧-+≤⎪=⎨>⎪⎩是R 上的堿函数,则实数a 的取值范围是()A .0a >B .01a <≤C .12a ≤<D .12a ≤≤7.若0ab >>,则下列不等式一定成立的是()A .11b b a a +>+B .11a b a b +>+C .a b a b b a +>+D .22a b a a b b +>+8.已知函数()()221R f x x ax a =-+∈,若非空集合(){}()(){}0,1A x f x B x f f x=≤=≤∣∣,满足A B =,则实数a 的取值范围是()A.11⎡⎤--⎣⎦B.1⎡⎤-⎣⎦C.⎡⎣D.1,1⎡⎣二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.关于x 的方程2210mx x ++=有两个实数解的一个充分条件是()A .1m ≤-B .10m -<<C .01m ≤<D .m 1≥10.若正实数a ,b 满足1a b +=则下列说法正确的是()A .ab 有最大值14B.11a b +有最小值4D .22a b+有最大值1211.已知集合{}1,1A =-,非空集合{}3210B x x ax bx =++-=∣,下列条件能够使得B A ⊆的是()A .1,1a b ==-B .1,1a b =-=C .3,3a b ==-D .3,3a b =-=12.已知函数()2211x xf x x x +=++,则下列结论正确的是()A .()f x 在()1,+∞上单调递增B .()f x 值域为][(),22,∞∞--⋃+C .当0x >时,恒有()f x x>成立D .若12120,0,x x x x >>≠,且()()12f x f x =,则122x x +>三、填空题:本题共4小题,每小题5分,共20分.13.由命题“存在x ∈R ,使220x x m ++≤”是假命题,求得m 的取值范围是(,)a +∞,则实数a 的值是.14.已知函数()21,,2x c f x xx x c x ⎧-≤⎪=⎨⎪-<≤⎩,若()f x 的值域为[]22-,,则实数c 的值是.15.某网店统计了连续三天售出商品的种类情况:第一天售出17种商品,第二天售出13种商品,第三天售出14种商品;前两天都售出的商品有3种,后两天都售出的商品有5种,则该网店这三天售出的商品最少有种.16.已知一块直角梯形状铁皮ABCD ,其中//AD ,90,1,3BC A AB BC AD ∠=︒===,现欲截取一块以CD 为一底的梯形铁皮CDEF ,点,E F 分别在,AD AB 上,记梯形CDEF 的面积为1S ,剩余部分的面积为2S ,则21S S 的最小值是.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知二次函数()()21,f x ax bx a b =++∈R 的最小值为4a -.(1)若()51f -=,求a 的值;(2)设关于x 的方程()0f x =的两个根分别为12,x x ,求12x x -的值.18.已知全集U =R ,集合()(){}210,203x A x B x x a x a x -⎧⎫=≤=---≤⎨⎬-⎩⎭∣∣.(1)当12a =时,求()U A B ð;(2)若x B ∈是x A ∈的必要不充分条件,求实数a 的取值范围.19.已知函数()f x 是定义在R 上的奇函数,当0x >时,()332f x x x =-+.(1)求函数()f x 的解析式;(2)①用定义证明函数()f x 在()0,1上是单调递减函数;②判断函数()f x 在[)1,+∞上的单调性,请直接写出结果;(3)根据你对该函数的理解,在坐标系中直接作出函数()()R f x x ∈的图象.20.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”,经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系;()()253,0250,251x x W x xx x ⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)30x 元.已知这种水果的市场售价为20元/千克,且销售畅通供不应求,记该水果单株利润为()f x (单位:元)(1)求()f x 的解析式;(2)当施用肥料为多少千克时,该水果单株利润最大?最大利润是多少?21.已知函数()()f xg x =(1)求函数()f x 的定义域和值域:(2)若a 为非零实数,设函数()()()h x f x ag x =+的最大值为()m a .①求()m a ;②确定满足()1m a m a ⎛⎫= ⎪⎝⎭的实数a ,直接写出所有a 的值组成的集合.22.已知函数()()3R af x x a x =-+∈.(1)求关于x 的不等式()()2221f x f x -->的解集,(2)若对任意的正实数a ,存在01,12x ⎡⎤∈⎢⎥⎣⎦,使得()0f x m ≥,求实数m 的取值范围.1.A【分析】根据给定条件求出M N ⋃,再求()U M N ð即可得解.【详解】因{}1,2M =,{}2,3N =,则{1,2,3}M N = ,而{}1,2,3,4U =,所以(){4}U M N ⋃=ð.故选:A.2.D【分析】利用函数奇偶性的判断与值域的求法,逐一分析判断各选项即可.【详解】对于A ,因为y =的定义域为[)0+∞,,所以此函数不是偶函数,故A 错误;对于B ,因为y x =≥,即y x=的值域为[)0+∞,,故B 错误;对于C ,当=1x -时,11y x ==-,显然值域不为()0,∞+,故C 错误;对于D ,因为()21y f x x ==的定义域为()(),00,∞-+∞U ,且21y x =>,又()()()2211f x f x x x -===-,所以21y x =是值域为()0,∞+的偶函数,故D 正确.故选:D.3.B【分析】先化简“23x ->”和“2560x x -->”,再利用充分必要条件的定义分析判断即可得解.【详解】因为23x ->等价于1x <-或5x >,2560x x -->等价于1x <-或6x >,而{1x x <-或}5x >{1x x <-或}6x >,所以23x ->⇐2560x x -->,故“23x ->”是“2560x x -->”的必要而不充分条件.故选:B.4.B 【分析】利用()f x 的奇偶性可得()31f -=-,()00f =,再结合()f x 的单调性得到320x -≤-≤,从而得解.【详解】因为函数()f x 为R 上的奇函数,()31f =,则()()331f f -=-=-,()00f =,所以()120f x -≤-≤可化()()()320f f x f -≤-≤,又函数()f x 在R 上单调递增,所以320x -≤-≤,解得12x -≤≤.故选:B .5.C【分析】令2135x x +=+.解得1x =-或4x =,进而可列举出满足条件的集合A ,从而得解.【详解】因为()()21,35f x xg x x =+=+,令2135x x +=+,解得1x =-或4x =,故由题意可知{}1,4A ⊆-,且A ≠∅,则当{1}A =-,{4}A =,{}1,4A =-时,满足条件.故选:C.6.D【分析】根据分段函数的单调性可得出关于实数a 的不等式组,由此可解得实数的取值范围.【详解】易知二次函数225y x ax =-+的对称轴为x a =,因为函数25,1(),1x ax x f x ax x ⎧-+≤⎪=⎨>⎪⎩是R 上的减函数,所以1125a a a a ≥⎧⎪>⎨⎪-+≥⎩,解得12a ≤≤.故选:D.7.C【分析】利用作差比较法及不等式的性质逐项判断即可求解.【详解】对于A ,()111b b b a a a a a +--=++,因为0a b >>,所以0,10b a a -<+>,所以()1b aa a -<+,即101b b a a +-<+,于是有11b b a a +<+故A 错误;对于B ,因为()()222211111a b ab a b a b b ab a a b a b a b ab ab --+++--⎛⎫+-+=-== ⎪⎝⎭,因为0a b >>,所以0,0a b ab ->>,但ab 与1的大小不确定,故不一定成立,故B 错误;对于C ,因为2222a b ab a ab b a b a ab b a b b a b a ab +++--⎛⎫+-+= ⎪⎝⎭()()a b ab a b ab -++=,因为0a b >>,所以0,0,0a b ab ab a b ->>++>,所以()()0a b ab a b ab -++>,即0a b a b b a ⎛⎫+-+> ⎪⎝⎭,于是有a b a b b a +>+,故C 正确;对于D ,因为()()()()()()222222a b b a a b b a b a a b a a b b b a b b a b +-+-++-==+++,因为0a b >>,所以0,0,20b a b a a b -<+>+>,所以()()()02b a b a b a b -+<+,即202a b a a b b +-<+,于是有22a b aa b b +<+,故D 错误.故选:C.8.A【分析】不妨设()1f x ≤的解集为[,]m n ,从而得(){}n B x m f x ≤=≤∣,进而得到0n =且min ()0m f x ≤≤,又m ,()n m n ≤为方程()1f x =的两个根,可得2m a =,由此得到关于a 的不等式组,解之即可得解..【详解】因为()221f x x ax =-+,不妨设()1f x ≤的解集为[,]m n ,则由()()1f f x ≤得()m f x n≤≤,所以()(){}(){}1n B f x f f x x m x =≤=≤≤∣∣,又(){}0A x f x =≤∣,A B =≠∅,所以0n =且min ()0m f x ≤<,因为()1f x ≤的解集为[,]m n ,所以,m n 是()1f x =,即2211x ax -+=的两个根,故2m n a +=,即2m a =,此时由0m n <=,得20a <,则a<0,因为()221f x x ax =-+,显然2440a ∆=+>,且()f x开口向上,对称轴为x a =,所以()()222min 211f a a a a f x =-+=-+=,则2210a a ≤-+≤,又a<0,解得11a ≤≤-,即11a ⎡⎤∈--⎣⎦.故选:A.【点睛】关键点睛:本题解决的关键在于假设()1f x ≤的解集为[,]m n ,进而得到0n =且min ()0m f x ≤<,从而得解.9.AB【分析】利用二次方程的性质,结合充分条件的性质即可得解.【详解】因为2210mx x ++=有两个实数解,当0m =时,210x +=,显然不满足题意;当0m ≠时,440m ∆=->,得1m <;综上,1m <且0m ≠,即2210mx x ++=有两个实数解等价于1m <且0m ≠,即0m <或01m <<,要使得选项中m 的范围是题设条件的充分条件,则选项中m 的范围对应的集合是{0m m <或}01m <<的子集,经检验,AB 满足要求,CD 不满足要求.故选:AB.10.ABC【分析】由已知结合基本不等式一一判断计算可得.【详解】解:因为正实数a ,b 满足1a b +=,由基本不等式可得21()24a b ab += ,当且仅当a b =时取等号,故A 正确;因为2112a b a b =++=+++=,当且仅当a b =时取等号,,故B 正确;1114a b a b ab ab ++== ,当且仅当a b =时取等号,即11a b +有最小值4,故C 正确;222()212a b a b ab ab +=+-=-,由A 可知14ab ≤,所以2212a b +≥即22a b+有最小值12,当且仅当a b =时取等号,故D 错误;故选:ABC .11.ABD【分析】利用因式分解求三次方程的根化简集合B ,再利用集合关系即可判断.【详解】对于A ,方程3210x x x +--=,因式分解得()()2110x x -+=,解得1x =-或1x =,所以{}1,1B =-,满足B A ⊆,故A 正确;对于B ,方程3210x x x -+-=,因式分解得()()2110x x -+=,解得1x =,所以{}1B =,满足B A ⊆,故B 正确;对于C ,方程323310x xx +-=-,因式分解得()()21410x x x -++=,解得1x =或2x =-,所以{1,22B =--,不满足B A ⊆,故C 错误;对于D ,方程323310x x x -+-=,因式分解得()310x -=,解得1x =,所以{}1B =,满足B A ⊆,故D 正确;故选:ABD.12.ACD【分析】先判断()f x 的奇偶性,再在,()0x ∈+∞上,令211x t x x x +==+研究其单调性和值域,再判断()f x 的区间单调性和值域判断AB ;利用解析式推出1()()f f x x =,根据已知得到211x x =,再应用基本不等式判断C ;特殊值法,将2x =代入判断D.【详解】对于AB ,因为()2211x xf x x x +=++,则由解析式知()f x 的定义域为{|0}x x ≠,又2222()11()()()11x x x x f x f x x x x x ⎛⎫-+-+-=+=-+=- ⎪--++⎝⎭,所以()f x 为奇函数,当,()0x ∈+∞时,由对勾函数性质知:1t x x =+在(0,1)上单调递减,在(1,)+∞上单调递增,且值域为[2,)t ∈+∞,而1y t t =+在[2,)t ∈+∞上递增,所以()f x 在(0,1)x ∈上单调递减,在(1,)x ∈+∞上单调递增,且5(),2f x ⎡⎫∈+∞⎪⎢⎣⎭,由奇函数的对称性知:()f x 在(,1)x ∈-∞-上单调递增,在(1,0)x ∈-上单调递减,且5(),2f x ⎛⎤∈-∞ ⎝⎦,所以()f x 值域为55,,22⎛⎤⎡⎫-∞-+∞⎪⎥⎢⎝⎦⎣⎭ ,故A 正确,B 错误;对于C ,当0x >时,()22211011x x x f x x x x x x x +-=+-=+>++恒成立,所以恒有()f x x>成立,故C 正确;对于D ,由222211111()1111x x x x f f x x x x x x ⎛⎫+ ⎪+⎛⎫⎝⎭=+=+= ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,因为12120,0,x x x x >>≠,且12()()f x f x =,所以211x x =,故121112x x x x +=+≥=,当且仅当11x =时等号成立,而11x =时,211x x ==,故等号不成立,所以122x x +>,故D 正确;故选:ACD.【点睛】关键点睛:对于D 选项,根据解析式推导出1()f f x x ⎛⎫= ⎪⎝⎭,进而得到211x x =为关键.13.1【分析】根据命题的否定为真,转化为二次不等式恒成立,利用判别式求解.【详解】因为命题“存在x ∈R ,使220x x m ++≤”是假命题,所以命题“R x ∀∈,220x x m ++>”是真命题,故2240m ∆=-<,即1m >,故1a =.故答案为:114.12-##0.5-【分析】先由反比例函数的性质分析得0c <,再由二次函数的性质确定c 的取值范围,从而结合函数图像即可得解.【详解】因为()21,,2x c f x xx x c x ⎧-≤⎪=⎨⎪-<≤⎩,当0c >时,当0x c <≤时,1(1),x c f x ⎛⎤-∈-∞- ⎝=⎥⎦,不合题意;当0c =时,当0x <时,()(0,)1x f x ∈-=+∞,不合题意;所以0c <,当x c ≤时,110x c <-≤-,即()10,f x c ⎛⎤∈- ⎥⎝⎦,当2c x <≤时,()221124f x x x x ⎛⎫=--+ ⎪⎝⎭=-开口向下,对称轴为12x =,当2x =时,()2242f =-=-,令()2f c =-,即22c c -=-,解得1c =-或2c =(舍去),令()0f c =,即20c c -=,解得0c =或1c =,作出()f x 的大致图象,如图,因为()f x 的值域为[]22-,,所以12c -=,解得12c =-,经检验,满足题意.故答案为:12-.15.27【分析】先分析得前两天共售出的商品种类,再考虑第三天售出商品种类的情况,根据题意即可得解.【详解】由题意,第一天售出17种商品,第二天售出13种商品,前两天都售出的商品有3种,所以第一天售出但第二天未售出的商品有17314-=种,第二天售出但第一天未售出的商品有13310-=种,所以前两天共售出的商品有1410327++=种,第三天售出14种商品,后两天都售出的商品有5种,所以第三天售出但第二天未售出的商品有1459-=种,因为914<,所以这9种商品都是第一天售出但第二天未售出的商品时,该网店这三天售出的商品种类最少,其最小值为27.故答案为:27.16.725##0.28【分析】利用直角梯形的几何性质,求出()211232x x S =-++,从而可得21S S 的表达式,结合函数的单调性,即可得解.【详解】依题意,作CG AD ⊥于G,则2,1GD AD BC CG AB =-===,则CD =由题意知//EF CD ,则FEA D ∠=∠,而1tan 2CG D GD ∠==,sin D =;故1tan 2FEA ∠=,设(01)AF x x =<<,则2AE x =,故EF =,作EH CD ⊥于H,则)sin 32EH ED D x =⋅-,故)()()()()2111132132232522S x x x x x =⋅-=+-=-++,则()()()2221111312321222x S x x x =⨯+⨯--++=-+,故22212321S x x x S x --=+++,令223t x x =-++,则223x x t -=-+,因为01x <<,故252,8t ⎛⎤∈ ⎥⎝⎦,则213141S t S t t -++==-+,而41y t =-+在252,8⎛⎤ ⎥⎝⎦上单调递减,故41y t =-+的最小值为47125258-+=,即21S S 的最小值为725.故答案为:725.【点睛】关键点睛:解答本题的关键是结合梯形的几何性质表示出相关线段长,求出梯形CDEF 的面积表达式,即可求解答案.17.(1)49(2)4【分析】(1)利用二次函数的性质得到42b f aa ⎛⎫-=- ⎪⎝⎭,结合()51f -=得到关于,a b 的方程组,解之即可得解;(2)利用韦达定理,结合(1)中结论与完全平方公式即可得解.【详解】(1)因为二次函数()()21,f x ax bx a b =++∈R 的最小值为4a -,所以0a >,则()f x 开口向上,对称轴为2b x a =-,所以42b f a a ⎛⎫-=- ⎪⎝⎭,即21422b b a b a a a ⎛⎫⎛⎫-+-+=- ⎪ ⎪⎝⎭⎝⎭,则22164b a a =+,因为()51f -=,即()()21155a b -++-⨯=,则5b a =,将5b a =代入22164b a a =+,得2225164a a a =+,解得49a =或0a =(舍去),所以49a =.(2)因为()0f x =,即210ax bx ++=的两个根分别为12,x x ,所以2121,b x x a a x x +=-=,所以()()22222222114144b b a x x x a a x x a x -⎛⎫-+=--⨯=⎪⎝⎭=-,由(1)可知22164b a a =+,即22164a b a =-,所以()221221616a x x a =-=,故124x x -=.18.(1)934x x ⎧⎫<<⎨⎬⎩⎭(2)(]{},11-∞-⋃【分析】(1)分别解出集合A 与集合B ,然后求得U B ð,进而求得()U AB ð的值;(2)由题意得A 是B 的真子集,由此列不等式组,解不等式组可求得a 的取值范围.【详解】(1)因为{}10|133x A x x x x -⎧⎫=≤=≤<⎨⎬-⎩⎭∣,当12a =时,1190|22944B x x x x x ⎧⎫⎛⎫⎛⎫⎧⎫=--≤=≤⎨⎬⎨⎬ ⎪⎪⎝⎭⎝⎭⎩⎭⎩⎭∣,则{1|2U B x x =<ð或94x ⎫>⎬⎭,所以()934UB A x x ⎧⎫⋂=<<⎨⎬⎩⎭ð.(2)因为{}()(){}2|13,|20A x xB x x a x a =≤<=---≤,又()22172024a a a ⎛⎫+-=-+> ⎪⎝⎭,所以22a a +>,由()()220x a x a ---≤得22a x a ≤≤+,所以{}2|2B x a x a =≤≤+,因为x B ∈是x A ∈的必要不充分条件,所以A B ,所以2123a a ≤⎧⎨+≥⎩,解得1a ≤-或1a =,所以实数a 的取值范围为(]{},11-∞-⋃.19.(1)3332,0()0,032,0x x x f x x x x x ⎧-+>⎪==⎨⎪--<⎩(2)①证明见解析;②()f x 在[)1,+∞上单调递增(3)图像见解析【分析】(1)利用函数奇偶性,结合题设条件即可求得()f x 的解析式;(2)①利用函数单调性的定义,结合作差法即可得证;②在①的基本上继续判断即可;(3)利用(1)与(2)中的结论,结合()f x 的单调性与奇偶性即可作图.【详解】(1)因为当0x >时,()332f x x x =-+,所以当0x <时,0x ->,则()()()333232f x x x x x -=---+=-++,又()f x 是定义在R 上的奇函数,所以()()332f x f x x x =--=--,且()00f =,所以3332,0()0,032,0x x x f x x x x x ⎧-+>⎪==⎨⎪--<⎩.(2)①设1201x x <<<,则3111()32f x x x =-+,3222()32f x x x =-+,所以3322121122121122()()(32)(32)()(3)f x f x x x x x x x x x x x -=-+--+=-++-,因为1201x x <<<,所以120x x -<,且22112201,01,01x x x x <<<<<<,则22112230x x x x ++-<,所以12())0(f x f x ->,即12()()f x f x >,故()f x 在()0,1上是单调递减函数.②()f x 在[)1,+∞上单调递增,理由如下:当121x x >≥时,120x x ->,22112230x x x x ++->,则12()()f x f x >,所以()f x 在[)1,+∞上单调递增.(3)由(2)知,()f x 在()0,1上单调递减,在[)1,+∞上单调递增,且()10f =,又()f x 是定义在R 上的奇函数,所以()f x 在()1,0-上单调递减,在(],1-∞-上单调递增,且()()110f f -=-=,所以()f x的图象如图,.20.(1)()210040300,021000100040,251x x x f x x x x ⎧-+≤≤⎪=⎨--<≤⎪+⎩(2)当施用肥料为4千克时,该水果单株最大利润,最大利润为640元【分析】(1)根据题意,利用销售额减去成本投入可得出利润解析式;(2)利用分段函数的单调性及基本不等式计算最值即可得解.【详解】(1)依题意,当02x ≤≤时,()()203010f x W x x x=--()2220534010040300x x x x =⨯+-=-+;当25x <≤时,()()203010f x W x x x=--5010001000204040100040111x x x x x x x x =⨯-=-=--+++;所以()210040300,021000100040,251x x x f x x x x ⎧-+≤≤⎪=⎨--<≤⎪+⎩;(2)当02x ≤≤时,()221100403001002965f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,此时由二次函数的性质可知()()max 21004402300620f x f ==⨯-⨯+=;当25x <≤时,()()10001000100040104040111f x x x x x =--=--+++1040640≤-,当且仅当()10004011x x =++,即4x =时,等号成立;综上,当施用肥料为4千克时,该水果单株最大利润,最大利润为640元.21.(1)定义域为[]0,2;值域为2⎤⎦(2)①12,02121(),22222a a a m a a a a a ⎧+≥-≠⎪⎪⎪=---<<-⎨⎪≤且;②{}212⎡⎤⎢⎥⎣⎦ 【分析】(1)根据根式的概念可得()f x 定义域,再计算()22f x =+求解可得()f x 值域;(2)①令2t ⎤=⎦,设函数()22a F t t t a =-++,2t ⎤∈⎦,再根据二次函数对称轴与区间的位置关系分类讨论求解即可;②分类讨论a 的取值范围,结合()m a 的解析式即可得解.【详解】(1)因为()f x =,所以020x x ≥⎧⎨-≥⎩,则[]0,2x ∈,又()222f x x x ==+-+2=+当[]0,2x ∈时,()[]2110,1x --+∈,所以()[]22,4f x ∈,又()0f x ≥,所以()2f x ⎤∈⎦;(2)依题意,得()h x =令2t ⎤=⎦,则22222t t -=+=,令()22222t a F t t a t t a -=+⋅=+-,2t ⎤∈⎦,当0a >时,此时二次函数对称轴10t a =-<<()()max 2F t F =2a =+.当a<0时,此时对称轴10t a =->,当12a -≥,即102a -≤<时,开口向下,则()()max 2F t F =2a=+;12a <-<,即2122a -<<-,对称轴1t a =-,开口向下,则()max 1F t F a ⎛⎫=- ⎪⎝⎭12a a =--,当1a -≤22a ≤-时,开口向下,()max Ft F=综上,12,0211(),22222a a a m a a a a a ⎧+≥-≠⎪⎪⎪=---<<-⎨⎪≤且.②当0a >时,1a >,则122a a +=+,解得1a =或1a =-(舍去);当102a -≤<时,12a≤-,则2a +=2a (舍去);当2122a -<<-时,12a -<<12a a --=2a =(舍去);当a ≤≤时,1a ≤≤,则()1m a m a ⎛⎫== ⎪⎝⎭;当2a -<<1122a <<-12a a =--,解得a =(舍去);当2a ≤-时,1102a -≤<12a =+,解得212a =--(舍去);综上,1a =或22a ≤≤,即{}1a ⎡∈⎢⎣⎦ .【点睛】关键点睛:本题解决的关键是熟练掌握分类讨论的方法,利用二次函数的性质,结合轴动区间定即可得解.22.(1)答案见解析(2)3,2⎛⎤-∞ ⎥⎝⎦【分析】(1)依题意化简不等式得()()22320ax x x -+>,从而分类讨论即可得解;(2)由题意可得()ax 0m f x m ≥,然后分704a <≤,744a <<和4a ≥三种情况讨论()y f x =的最大值,从而可求得结果.【详解】(1)因为()()3R af x x a x =-+∈,所以由()()2221f x f x -->,得()23223122a a x x x x ⎡⎤-+---+>⎢⎥-⎣⎦,化简得2022a a x x ->-,即()()32022a x x x +>-,即()()22320ax x x -+>,当0a =时,该不等式无解,当0a >时,不等式化为()()22320x x x -+>,解得203x -<<或2x >,当a<0时,不等式化为()()22320x x x -+<,解得23x <-或02x <<,综上,当0a =时,()()2221f x f x -->的解集为∅,当0a >时,()()2221f x f x -->的解集为()2,02,3⎛⎫-+∞ ⎪⎝⎭ ,当a<0时,()()2221f x f x -->的解集为()2,0,23⎛⎫-∞- ⎪⎝⎭ .(2)因为对任意的正实数a ,存在01,12x ⎡⎤∈⎢⎥⎣⎦,使得()0f x m ≥,所以()ax 0m f x m ≥,易知当0a >时,()3af x x x =-+在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以1,12x ⎡⎤∈⎢⎥⎣⎦时,()1()max ,12f x f f ⎧⎫⎛⎫≤⎨⎬ ⎪⎝⎭⎩⎭,且()112f f ⎛⎫< ⎪⎝⎭,因为()117232,14222f a a f a⎛⎫=-+=-=- ⎪⎝⎭,所以()172,1422f a f a ⎛⎫=-=- ⎪⎝⎭,当720240a a ⎧-≥⎪⎨⎪-≥⎩,即704a <≤时,max ()4f x a =-,因为704a <≤,所以9444a ≤-<,所以94m ≤;当720240a a ⎧-<⎪⎨⎪->⎩,即744a <<时,令7242a a ⎛⎫--=- ⎪⎝⎭,得52a =,所以()153max ,14222f f ⎧⎫⎛⎫≥-=⎨⎬ ⎪⎝⎭⎩⎭,故32m ≤;当720240a a ⎧-≤⎪⎨⎪-≤⎩,即4a ≥时,所以max 77()2222f x a a =-=-,因为4a ≥,所以79222a -≥,所以92m ≤;综上,32m ≤,所以m 的取值范围为3,2⎛⎤-∞⎥⎝⎦.【点睛】关键点睛:本题第2小题的解决关键在于分类讨论()1,12f f ⎛⎫⎪⎝⎭的正负情况,从而确定()0maxf x ,由此得解.。
青海省海东市第一中学2023-2024学年高一上学期期中考试数学试题数学一、单选题1.已知集合{}1,2,3,4,5M =,{}1,3,5,7,9N =,且,M N 都是全集U 的子集,则下图所示的韦恩图中阴影部分表示的集合为( )A .{}1,3,5B .{}2,4C .{}7,9D .{}12.已知命题p :“x ∃∈R ,使得23250x x -+=”,则命题p 的否定是( )A .x ∃∈R ,使得23250x x -+≠ B .x ∃∉R ,使得23250x x -+≠C .x ∀∈R ,23250x x -+≠ D .x ∀∉R ,23250x x -+≠3.若a b c >>,则下列不等式恒成立的是( ) A .ab ac > B .22a c > C .()0a b c b -->D .a c b c >4.“()()340x y +-=成立”是“()()22340x y ++-=成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5.已知,p q 都是正数,且66log log 2p q -=,则( ) A .6p q =B .36p q =C .6q p =D .36q p =6.已知函数()f x 是奇函数,()g x 是偶函数,且()()232f x g x x x +=+-,则()f x =( )A .2464xx x -- B .2464xx x +- C .2334xx x -- D .2234xx x +- 7.已知函数||2()32x f x x =++,则(21)(3)f x f x ->-的解集为( )A .4(,)3-∞B .4(,)3+∞C .4(2,)3-D .4(,2)(,)3-∞-⋃+∞8.已知2021202220212022a ⎛⎫= ⎪⎝⎭,2020202220222021b -⎛⎫= ⎪⎝⎭,2021202220222020c -⎛⎫= ⎪⎝⎭,则( )A .c<a<bB .c b a <<C .a c b <<D .b a c <<二、多选题9.下列命题为真命题的是( )A .若集合{}1,2,3A =,{}1,3,2B =,则A B = B .x ∀∈R ,20x ≥C .x ∃∈R ,210x +=D .若集合{}1,0,1M =-,{}0,1N =,则M N Ü10.已知命题p :x ∀∈R ,()22140x a x +++>,则命题p 成立的一个充分条件可以是( )A .512a a ⎧⎫-<<⎨⎬⎩⎭B .{}10a a -<<C .5322a a ⎧⎫-≤<⎨⎬⎩⎭D .322a a ⎧⎫-<<⎨⎬⎩⎭11.下列判断正确的有( )A . 1.42.15577--⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭B .0.30.522<C .2π>D .0.80.70.70.7<12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x ∈R ,用[]x 表示不超过x 的最大整数,[]y x =也被称为“高斯函数”,例如:[ 2.5]3,[0.1]0-=-=.已知函数2()f x x ⎡⎤=⎣⎦,下列说法中正确的是( )A .()f x 是偶函数B .()f x 在[1,1]-上的值域是{0,1}C .()f x 在(0,)+∞上是增函数D .2,()0x f f x x ⎡⎤∀∈-=⎣⎦R三、填空题13.10.21323-⎛⎫+= ⎪⎝⎭.14.已知指数函数()f x 的图象经过点1,22⎛⎫⎪⎝⎭,则()2f =.15.函数3()21f x x =-.16.函数()321x f x x -=+-的最小值为.四、解答题17.已知集合{}14A x x =≤<,{}27B x x =<<. (1)求A B ⋃; (2)求()A B ⋂R ð.18.已知命题:p x ∀∈R ,2230x m +->,命题:q x ∃∈R ,2220x mx m -++<. (1)若命题p 为真命题,求实数m 的取值范围;(2)若命题p ,q 至少有一个为真命题,求实数m 的取值范围. 19.已知函数()()2312443m m f x m m x+-=-是幂函数,且()()35f f <.(1)求实数m 的值;(2)若()()2134f a f a +<-,求实数a 的取值范围.20.已知函数2()f x ax x =+,且(2)1f -=.(1)证明:()f x 在区间(0,)+∞上单调递减; (2)若1()21t f x t -≤+对[1,)x ∀∈+∞恒成立,求实数t 的取值范围. 21.如图,某大学将一矩形ABCD 操场扩建成一个更大的矩形DEFG 操场,要求A 在DE 上,C 在DG 上,且B 在EG 上.若30AD =米.20DC =米,设DG x =米(20x >).(1)要使矩形DEFG 的面积大于2700平方米,求x 的取值范围; (2)当DG 的长度是多少时,矩形DEFG 的面积最小?并求出最小面积.22.定义在D 上的函数()f x ,如果满足:对任意,x D ∈存在常数0,M >都有()M f x M-≤≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知()422x xf x a =+⋅-.(1)当2a =-时,求函数()f x 在()0,∞+上的值域,并判断函数()f x 在()0,∞+上是否为有界函数﹐请说明理由﹔(2)若函数()f x 在(),0∞-上是以2为上界的有界函数,求实数a 的取值范围.。
卜人入州八九几市潮王学校静宁一中二零二零—二零二壹高一第一学期中期试题(卷)数学本套试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部.试卷总分值是150分.考试时间是是120分钟.第I 卷〔选择题,一共60分〕一、选择题:本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.1.全集{1,2,3,4,5}U=,集合{}1,3A =,,那么A C U =() A.∅B.{}1,3 C.{}2,4,5 D.{}1,2,3,4,52.函数y =ln x 的单调递增区间是() A .[e ,+∞) B .[1,+∞)C .(-∞,+∞)D .(0,+∞) 3.函数f (x )=在区间[1,2]上的最大值为A ,最小值为B ,那么A -B 等于()A. B .-C .1 D .-14.以下结论正确的选项是〔〕A .2030321..<<B .2030312..<< C .2031032..<<D .0322103..<<5.假设函数f (x )满足f (3x +2)=9x +8,那么f (2)的值是()A .26B .8C .-10D .8或者-106.函数y =a x +2(a >0且a ≠1)的图象经过的定点坐标是()A .(0,1)B .(2,1)C .(-2,0)D .(-2,1) 7.如图,一个简单空间几何体的三视图其主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,那么其体积是〔〕.AD.838.函数y =+的定义域是() A .(1,2)B .[1,4]C .[1,2)D .(1,2]9.假设轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于〔〕A.πB.2πC.4πD.8π10.函数2()f x x=的零点所在的区间为() 俯视图A.10,2⎛⎫ ⎪⎝⎭B.1,12⎛⎫ ⎪⎝⎭C.31,2⎛⎫ ⎪⎝⎭D.3,22⎛⎫ ⎪⎝⎭ 11.函数2()lg()f x ax x a =-+定义域为R ,那么实数a 的取值范围是〔〕A .11(,)22-B .11(,)(,)22-∞-+∞ C .1(,)2+∞D .11(,][,)22-∞-+∞ 12.假设函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,)内恒有f (x )>0,那么f (x )的单调递增区间为()A .(-∞,-)B .(-,+∞)C .(-∞,-)D .(0,+∞)第二卷〔非选择题,一共90分〕二、填空题:本大题一一共4小题,每一小题5分,一共20分.把答案填在题中横线上.13.幂函数21)(x x f =,那么函数()f x 的定义域是.14.设1(1)()3(1)x x f x x x +≥⎧=⎨-<⎩,那么5(())2-f f 的值是. 15.计算4log 3log 32⋅的值是. 16.函数2()2(1)2f x x a x =+-+在区间(,4)-∞上是减函数,那么a 的取值范围是.三、解答题:本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤.17.〔本小题总分值是10分〕集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.〔1〕求A ∩B ;〔2〕假设集合C ={x |2x +a >0},满足B ∪C =C ,务实数a 的取值范围.18.〔本小题总分值是12分〕假设函数f (x )=ax 2-x -1仅有一个零点,务实数a 的值. 19.〔本小题总分值是12分〕a >0,且a ≠1,假设函数f (x )=2a x-5在区间[-1,2]的最大值为10,求a 的值. 20.〔本小题总分值是12分〕设函数f (x )=ax 2+(b -8)x -a -ab 的两个零点分别是-3和2. 〔1〕求f (x );〔2〕当函数f (x )的定义域是[0,1]时,求函数f (x )的值域.21.〔本小题总分值是12分〕棱长为5,底面为正方形,各侧面均为正三角形的四棱锥S —ABCD ,〔1〕求它的外表积;〔2〕求它的体积。
福建省厦门双十中学2024-2025学年高一上学期11月期中考试数学试题(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. [0,1]D. 2. 命题“”的否定是()A. B. C. D. 3. 函数的单调递减区间是()A. B. C. D. 4. 已知函数(其中,为常数,且),若的图象如图所示,则函数的图象是(){1},{2}M xx N x x =≥=<∣∣R ()M N ⋂=ð[1,2)(,1)[2,)-∞+∞ (,0)[2,)-∞⋃+∞20,310x x x ∃>-->20,310x x x ∃>--≤20,310x x x ∃≤--≤20,310x x x ∀>--≤20,310x x x ∀≤--≤()22()log 2f x x x =--1,2⎛⎫-∞ ⎪⎝⎭(,1)∞--1,2⎛⎫+∞⎪⎝⎭(2,)+∞()()()f x x a x b =--a b b a <()f x ()x g x a b =+A. B. C. D.5. 已知,,,则( ).A. B. C. D.6. “函数的定义域为”是“”的()A 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 若函数(,为常数)在区间上有最大值,则在区间上()A. 有最大值B. 有最大值C. 有最小值D. 有最小值8. 已知函数对于任意、,总有,且当时,,若已知,则不等式的解集为()A. B. C. D. (4,+∞)二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 设正数,满足,则()A.的最小值为 B.C.的最大值为D. 的最小值为410. 声强级Li (单位:dB )与声强I (单位:)之间的关系是:,其中指的是人能听到的最低声强,对应的声强级称为闻阈.人能承受的最大声强为,对应的声强级为120dB ,称为痛阈.某歌唱家唱歌时,声强级范围为(单位:dB ).下列选项中正确的是()A. 闻阈声强为B. 声强级增加10dB ,则声强变为原来的2倍C. 此歌唱家唱歌时的声强范围(单位:)的132a -=21log 3b =121log 3c =a b c >>a c b >>c a b >>c b a>>()2()lg 1f x ax ax =-+R 04a <<)3()ln1f x mx n x =++m n []1,37()f x [3,1]--655-7-()f x x R y ∈()()()2f x f y f x y +=++0x >()2f x >()23f =()()226f x f x +->()2,∞+()1,+∞()3,+∞m n 1m n +=12m n+3+1444m n +2/m ω010lgILi I =⨯0I 21/m ω[]70,801210-2/m ω5410,10--⎡⎤⎣⎦2/m ωD. 如果声强变为原来的10倍,对应声强级增加10dB11. 已知函数,且,则下列说法正确的是()A. B. C. D. 的取值范围为三、填空题:本题共3小题,每小题5分,共15分.12. 已知幂函数的图象过点,则______.13. __________.14. 已知是定义在R 上偶函数,且对,都有,且当时,.若在区间内关于的方程至少有2个不同的实数根,至多有3个不同的实数根,则实数的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在①,②,③这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合,(1)当时,求;(2)若,求实数a 的取值范围.注:如果选择多个条件解答按第一个解答计分.16. 已知函数,关于的不等式的解集为,且.(1)求值;(2)是否存在实数,使函数的最小值为?若存在,求出的值;若不存在,说明理由.17. 已知的定义在R 上的奇函数,其中为指数函数,且的图象过点.的的()21,2,5,2,x x f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩()()()()f a f b f d f c ==<1c ≥0a c +<25a d <222ab d ++()18,34()y f x =(()16f =411log 2324lg lg245(64)49---+-=()f x x ∀∈R (2)(2)f x f x -=+[]2,0x ∈-()112xf x ⎛⎫=- ⎪⎝⎭(]2,6-x ()()()log 201a f x x a -+=>a A B A = A B A = A B =∅ {}123A x a x a =-<<+{}2280B x x x =--≤2a =A B ()()log 1a f x x a =>x ()1f x <(),m n 103m n +=a λ()()()2123,,93g x f x f x x λ⎡⎤⎡⎤=-+∈⎣⎦⎢⎥⎣⎦34λ()()()1m g x f x g x -=+()g x ()g x ()2,9(1)求实数的值,并求的解析式;(2)判断的单调性,并用单调性的定义加以证明.(3)若对于任意的,不等式恒成立,求实数的取值范围.18. 随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度(单位:千米/小时)和车流密度(单位:辆/千米)所满足的关系式:.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度不小于40千米/小时,求车流密度的取值范围;(2)隧道内的车流量(单位时间内通过隧道的车辆数,单位:辆/小时)满足,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).(参考数据:)19. 若函数与区间同时满足:①区间为的定义域的子集,②对任意,存在常数,使得成立,则称是区间上的有界函数,其中称为的一个上界.(注:涉及复合函数单调性求最值可直接使用单调性,不需要证明)(1)试判断函数,是否为上的有界函数?并说明理由.(2)已知函数是区间上的有界函数,设在区间上的上界为,求的取值范围;(3)若函数,问:在区间上是否存在上界?若存在,求出取值范围;若不存在,请说明理由.的m ()f x ()f x []1,2t ∈()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭m v x ()60,030R 80,30120150x v k kx x <≤⎧⎪=∈⎨-<≤⎪-⎩v x y y x v =⋅2.236≈()f x D D ()f x x D ∈0M ≥()f x M ≤()f x D M ()f x ()1923xxf x =-⋅()22223xf x x x =-+R ()121log 1x g x x +=-[]2,3()g x []2,3M M ()2313xxm f x m +⋅=+⋅()f x []0,1M M福建省厦门双十中学2024-2025学年高一上学期11月期中考试数学试题一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B2.【答案】C3.【答案】B4.【答案】A5.【答案】C6.【答案】B7.【答案】C8.【答案】A二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【答案】ABD10.【答案】ACD11.【答案】CD三、填空题:本题共3小题,每小题5分,共15分.12.【答案】413. 【答案】14.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 【解析】【分析】(1)代入的值表示出,求解出一元二次不等式的解集表示出,根据并集运算求解出结果;(2)若选①:根据条件得到,然后分类讨论是否为空集,由此列出不等式组求解出结果;若选②:根据条件得到,然后列出不等式组求解出结果;若选③:根据交集结果分析集合的端点值的关系,列出不等式并求解出结果.【小问1详解】当时,,,因此,.【小问2详解】选①,因为,可得.当时,即当时,,合乎题意;当时,即当时,,由可得,解得,此时.综上所述,实数a 的取值范围是或;选②,因为,可得.可得,此时不等式组无解,所以实数a 的取值范围是;选③,当时,即当时,,,满足题意;当时,即当时,,3-2a ≤<a A B A B ⊆A B A ⊆,A B 2a ={}17A x x =<<{}{}228024B x x x x x =--≤=-≤≤{}27A B x x ⋃=-≤<A B A = A B ⊆123a a -≥+4a ≤-A B =∅⊆123a a -<+4a >-A ≠∅A B ⊆12234a a -≥-⎧⎨+≤⎩112a -≤≤112a -≤≤{4a a ≤-112a ⎫-≤≤⎬⎭A B A = B A ⊆12234123a a a a -≤-⎧⎪+≥⎨⎪-<+⎩∅123a a -≥+4a ≤-A =∅A B =∅ 123a a -<+4a >-A ≠∅因为,则或,解得或,此时或,综上所述,实数a 的取值范围是或.16. 【解析】【分析】(1)先根据,求出不等式的解,结合可得的值;(2)利用换元法,把函数转化为二次函数,结合二次函数区间最值法求解.【小问1详解】由可得,又,所以,又因为的解集为,所以,因为,所以,即,解得或,因为,所以;【小问2详解】由(1)可得,令,则,设,①当时,在上单调递增,则,解得,符合要求;②当时,在上单调递减,在上单调递增,,解得,又,故;③当时,在上单调递减,,解得,不合题意;综上所述,存在实数或符合题意.17.A B =∅ 232a +≤-14a -≥52a ≤-5a ≥542a -<≤-5a ≥52a a ⎧≤-⎨⎩}5a ≥()1f x <103n m +=a ()g x log 1a x <1log 1a x -<<1a >1x a a <<()1f x <(),m n 1,n a m a==103n m +=1103a a +=()()231033130a a a a -+=--=3a =13a =1a >3a =()()2331log 2log 3,,93g x x x x λ⎡⎤=-+∈⎢⎥⎣⎦31log ,,93t x x ⎡⎤=∈⎢⎥⎣⎦[]1,2t ∈-()[]223,1,2h t t t t λ=-+∈-1λ≤-()h t []1,2-()()min 31424h t h λ=-=+=138λ=-12λ-<<()h t []1,λ-[],2λ()()22min 3234h t h λλλ==-+=32λ=±12λ-<<32λ=2λ≥()h t []1,2-()()min 324434h t h λ==-+=25216λ=<138λ=-32【解析】【分析】(1)利用待定系数法可求出的表达式,结合奇函数性质计算即可得解;(2)设,从而计算的正负即可得证;(3)由奇函数性质结合函数单调性可得对恒成立,构造二次函,结合二次函数性质可得,解出即可得.【小问1详解】设,由的图象过点,可得,∴(负值舍去),即,故函数,由为奇函数,可得,∴,即,满足,即为奇函数,故;【小问2详解】在上单调递减,证明如下:,设,则,则,结合,可得,∴,即,故在上单调递减;【小问3详解】()g x 12x x <()()12f x f x -212134mt t t -≥+[]1,2t ∈()()21284h t t m t =+-+()()1020h h ⎧≤⎪⎨≤⎪⎩()()0,1xg x aa a =>≠()g x ()2,929a =3a =()3xg x =()()()3113xxm g x m f x g x --==++()f x ()()()01001011m g m f g --===++1m =()1313x x f x -=+()()13311313x x x xf x f x -----===-++()f x 1m =()f x R ()()2131321131313xx x x xf x -+-===-+++12x x <12033x x <<()()()()()211212122332213131313x x x x x x f x f x --=-=++++12033x x <<()212330x x->()()120f x f x ->()()12f x f x >()f x R由且为奇函数,所以,又在上单调递减,所以对恒成立,所以对恒成立,令,所以有,即,解得.18.【解析】【分析】(1)根据题意得,再根据分段函数解不等式即可得答案;(2)由题意得,再根据基本不等式求解最值即可得答案【小问1详解】解:由题意知当(辆/千米)时,(千米/小时),代入,解得,所以.当时,,符合题意;当时,令,解得,所以.所以,若车流速度不小于40千米/小时,则车流密度的取值范围是.【小问2详解】解:由题意得,当时,为增函数,所以,当时等号成立;当时,()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭()f x ()212134f mt f t t ⎛⎫-≤+ ⎪⎝⎭()f x R 212134mt t t -≥+[]1,2t ∈()212840t m t +-+≤[]1,2t ∈()()21284h t t m t =+-+()()1020h h ⎧≤⎪⎨≤⎪⎩1128404241640m m +-+≤⎧⎨+-+≤⎩178m ≥2400k =60,030240080,30120150x x y xx x x <≤⎧⎪=⎨-<≤⎪-⎩120x =0v =80150kv x=--2400k =60,030240080,30120150x v x x <≤⎧⎪=⎨-<≤⎪-⎩030x <≤6040v =≥30120x <≤24008040150x-≥-90x ≤3090x <≤v x (]0,9060,030240080,30120150x x y xx x x <≤⎧⎪=⎨-<≤⎪-⎩030x <≤60y x =1800y ≤30x =30120x <≤.当且仅当,即时等号成立.所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.19. 【解析】【分析】(1)根据有界函数的定义,分别计算出及的值域即可判断;(2)先求解函数的值域,进而求解的取值范围,再根据有界函数的定义确定上界M 的取值范围;(3)先求解函数及,再根据有界函数的定义,讨论m 取不同数值时,函数是否存在上界,并求解出对应的上界范围.【小问1详解】,的值域为不是上的有界函数;,则,当时,,当时,则,当时,,当且仅当则()()2150180150450024004500808080180150150150150x x x y x x x x x --+--⎡⎤⎛⎫=-==--+ ⎪⎢⎥---⎝⎭⎣⎦4800(33667≤-≈4500150150x x-=-30(583x =≈()1f x ()2f x ()g x ()g x ()f x ()f x ()()21923311xxxf x =-⋅=-- ()1f x ∴[)1,-+∞()1f x ∴R ()22223xf x x x =-+()200f =0x ≠()22223232x f x x x x x ==-++-0x >3x x +≥=x =()20f x <≤=0x <33x x x x ⎛⎫+=--+≤-=- ⎪-⎝⎭x =()20f x >≥=综上可得,,即有上恒成立,是上的有界函数;【小问2详解】,易知在区间上单调递增,∴,∴,所以上界构成的集合为;【小问3详解】,当时,,,此时的取值范围是,当时,在上是单调递减函数,其值域为,故,此时的取值范围是,当时,,若在上是有界函数,则区间为定义域的子集,所以不包含0,所以或,解得:或,时,在上是单调递增函数,此时的值域为,①,即时,()2f x ∈()2f x ≤R ()2f x ∴R ()112212log log 111x g x x x +⎛⎫==+ ⎪--⎝⎭()g x []2,3()[][]2log 3,1,2,3g x x ∈--∈()[]1221log 1,log 31x g x x +=∈-M [)2log 3,+∞()23113311x x x m f x m m +⋅==++⋅+⋅0m =()2f x =()2f x =M [)2,+∞0m >()1311x f x m =++⋅[]0,1()232,131m m f x m m ++⎡⎤∈⎢⎥++⎣⎦()232,131m m f x m m ++⎡⎤∈⎢⎥++⎣⎦M 2,1m m +⎡⎫+∞⎪⎢+⎣⎭0m <[]1331,1x m m m +⋅∈++()f x []0,1[]0,1()f x []31,1m m ++310m +>10+<m 1m <-103m -<<0m <()1311xf x m =++⋅[]0,1()f x 232,131m m m m ++⎡⎤⎢⎥++⎣⎦232311m m m m ++≥++m ≤103m -<<,此时的取值范围是,②,即时,,此时的取值范围是,综上:当时,存在上界,;当或时,存在上界,;当时,存在上界,,当时,此时不存在上界.()32323131m m f x m m ++≤=++M 32,31m m +⎡⎫+∞⎪⎢+⎣⎭232311m m m m ++<++1m <<-()2211m m f x m m ++≤=-++M 2,1m m +⎡⎫-+∞⎪⎢+⎣⎭0m ≥M 2,1m M m +⎡⎫∈+∞⎪⎢+⎣⎭1m ≤--103m -<<M 32,31m M m +⎡⎫∈+∞⎪⎢+⎣⎭11m -<<-M 2,1m M m +⎡⎫∈-+∞⎪⎢+⎣⎭113m -≤≤-M。
2024-2025学年上学期高一期中考试数学试题注意事项:1.答卷前,考生务必将姓名、准考证号等在答卷上填写清楚2.选择题答案用2B 铅笔在答题卷把对应题目的答案标号涂黑,非选择题用0.5mm 黑色签字笔在每题对应的答题区内做答,答在试卷上无效。
第Ⅰ卷(选择题共58分)一、单选题:本题共8个小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列说法正确的有( )A .10以内的质数组成的集合是B .与是同一个集合C :方程的解集是D .集合中的元素是的三边长,则一定不是等腰三角形2.命题:p :,的否定为( )A .,B .,C .,D .,3.已知函数的定义域为,则函数的定义域为( )A .B .C .D .4下列函数中,既是奇函数,又在区间上是减函数的是( )A .B .C .D .5下列说法正确的是( )A .若,则B .若a ,b ,,则C .若,则D .若,,则6.不等式的一个必要不充分条件是( )A .B .C .D .7已知,,且恒成立,则实数m 的取值范围是( )A .B .C .D .{}0,2,3,5,7∅{}02210xx -+={}1,1{},,M a b c =ABC ∆ABC ∆x ∀∈R 0x x +≥x ∃∈R 0x x +≥x ∃∈R 0x x +<x ∃∈R 0x x +≤x ∀∈R 0x x +<()f x []0,1()1f x +[]0,1[]1,0-{}0[]1,2()0,+∞y x=3y x =2y x =3y x=-22acbc >a b>()0,m ∈+∞b b m a a m+<+a b >11a b<a b >x y >ax by>22530x x --<132x -<<16x -<<102x -<<132x <<0a >0b >211a b+=a b m +≥(,3-∞(],6-∞(,3-∞+(],7-∞8.今有一台坏天平,两臂长不等,其余均精确,有人要用它称物体的质量,他将物体放在左右托盘各称一次,记两次称量结果分别为a ,b ,设物体的真实质量为G ,则( )A .B .C .D二、选择题:本题共3小题,每小题6分,共18分。
辽宁省抚顺市四方高级中学2016-2017学年高一数学上学期期中试题
(无答案)
考试时间:90分钟满分:120分
一、选择题(每题中有的只有一个正确答案,每小题5分,共60分)
1. 已知集合,, ,则
2. 已知集合,,则
3.与函数相同的函数是
4.函数的定义域是
5.函数是
奇函数偶函数既是奇函数又是偶函数非奇非偶函数
6.已知,则等于
7. 下列函数中,满足“对任意的,当时,都有”的是
8.下列函数中没有零点的是
9. 已知 ,则=
10.二次函数的图象可由的图象作如下()变换得到:
向左平移1个单位长度,再向下平移4个单位长度
向左平移1个单位长度,再向上平移4个单位长度
向右平移1个单位长度,再向下平移4个单位长度
向右平移1个单位长度,再向上平移4个单位长度
11. 函数 (且)的图象恒过点
12. 已知, (且),若,则与
在同一坐标系内的图象可能是( )
二、填空(每小题5分,共20分)
13.设函数是上的减函数,则的取值范围(用区间表示)是 .
14.已知函数,满足,且,则 .
15. ,,,则的大小关系(从大到小排列)是 .
16.设为定义在上的奇函数,当时,(为常数),则
.
三、综合题(写出必要的解题过程与步骤,每小题10分,共40分)
17.(每小题5分,共10 分)
(1)化简
(2)计算
18. (10 分)有300米长的篱笆材料,如果利用已有的一面墙(设长度够用)作为一边,围成一块矩形菜地,问矩形的长、宽各为多少时,这块菜地的面积最大?
19. (10 分)已知
(且) .
(1)求的定义域;
(2)判断的奇偶性并说明理由;
(3)求使的的取值范围.
20. (10 分)已知函数,其中
.
(1)求函数的最大值和最小值;
(2)若实数满足恒成立,求的取值范围.。