速度和时间的关系
- 格式:ppt
- 大小:353.50 KB
- 文档页数:12
速度、位移与时间的关系基础知识必备一、速度与时间的关系由加速度的定义式t v a ∆∆==tv v t 0-,可得:at v v t +=0 1、式中v 0是开始计时时的瞬时速度,v t 是经过时间t 后的瞬时速度,a 是匀变速直线运动的加速度;2、公式中的v 0、v t 、a 都是矢量,都有方向,所以必然要规定正方向;3、当公式中的v 0=0时,公式变为v t =at ,表示物体做从静止开始的匀加速直线运动,当a =0时,v t =v 0,表示物体做匀速直线运动。
二、匀变速直线运动的平均速度20t v v v +=三、位移与时间的关系:2021at t v x +=四、解决匀变速直线运动问题的一般思路:1、审清题意,建立正确的物理情景并画出草图2、判断物体的运动情况,并明白哪些是已知量,哪些是未知量;3、选取正方向,一般以初速度的方向为正方向4、选择适当的公式求解;5、一般先进行字母运算,再代入数值6、检查所得结果是否符合题意或实际情况,如汽车刹车后不能倒退,时间不能倒流。
典型例题:【例1】质点做匀变速直线运动,若在A 点时的速度是5m/s ,经3s 到达B 点时速度是14m/s ,则它的加速度是____________m/s 2;再经过4s 到达C 点,则它到达C 点时的速度是________m/s 2.答案:3 26【练习1】一个物体做初速度为4m/s 、加速度3m/s 2的匀加速直线运动,求它在第5s 末和第8s 末的瞬时速度。
答案:由at v v t +=0,得v 1=19m/s ,v 2=28m/s【例2】一质点做匀加速直线运动,从v 0=5m/s 开始计时,经历3s 后,速度达到9m/s ,则求该质点在这3s 内的位移为多少?答案:21m【练习2】一个物体做匀变速直线运动,某时刻的速度大小为4m/s ,2s 后速度大小变为12m/s 。
求在这2s 内该物体的位移为多大?答案:16m【练习3】一个物体做匀变速直线运动,第1s末的速度大小为3.0m/s,第2s末的速度大小为4.0m/s,则()A.物体第2s内的位移一定是3.5mB.物体的初速度一定是2.0m/sC.物体第2s内的平均速度大小可能为0.5m/sD.物体第2s内的位移可能为14m答案:C【例3】一辆汽车正在笔直的公路上以72km/h的速度行驶,司机看见红色交通信号灯便踩下刹车制动器,汽车开始减速,设汽车做匀减速运动的加速度为5m/s2,求开始制动后6s 内汽车行驶的距离是多少?答案:40m【练习4】做匀变速直线运动的物体,在时间t内的发生的位移仅取决于()A.初速度B.加速度C.末速度D.平均速度答案:D【练习5】以18m/s的速度行驶的汽车,紧急刹车后做匀减速直线运动,其加速度的大小为6m/s2.求汽车刹车后在4s内通过的路程。
相对论--关于时间和速度之间的关系这是我QQ空间的⼀篇⽇志,我觉得有必要复制过来给⼤家看:没错,时间和速度的关系就是:速度越快时间越慢……这是相对论中的⼀条推论!这篇⽇志,是纪念今天的,也是纪念在⾼中时期接触相对论之后⼀直存在的⼀个问题:⼀个宇航员,他以接近光速的速度远离地球,那么,地球上的⼈观察他飞船上的时钟,是变慢的!很好解释!他远离了,飞船上所有东西经过光线,来到地球,距离约远,到达地球就越慢!所有我们看飞船上所有的动作都是慢动作!和相对论吻合,他在上边飞⼀圈回来⽐我们年轻,甚⾄我们地球上过了⼏代⼈,他还是跟当初飞出去的⼈⼀样年轻。
问题来了:那么他朝地球飞的时候,我们观察他的动作应该是变快,⽽不是变慢才对!因为上边的解释……和相对论⽭盾??这是第⼀个问题,这是我⾼中时期接触相对论之后就有的疑问!可惜,当时问了物理⽼师,貌似⽼师解释起来很费劲!貌似他也不怎么懂!还是我听不懂?不知道了!⾼中时还有⼀个问题(问题2):宇航员的速度是相对的,他远离我们,他看我们的时候,我们也是远离他的!那他看我们应该也是时间变慢,我们也会变年轻的!但事实却是:他变年轻⽽已!?今天,我想通了,上边是可以解释的!⽽且,让我理解了,速度、时间、质量、空间的内在联系如果有兴趣听我瞎想的,可以继续看下去!问题⼀解析:当他远离地球,我们观察他的所有动作都是慢动作,这点不⽤解释吧!?很好理解。
下边解释⼀下,他朝地球飞来的时候,我们看他是慢动作还是动作加快了!其实,他朝地球飞来的时候,假设他是以⾮常⾮常接近光速的速度朝地球开来!那么,他在到达地球前的1秒,地球上的⼈是观察不到他的!因为他所有的动作经过光线射向地球,这些光线还没到达地球!当最后⼀秒到达地球的时候,这是我们看到的的确是他的动作,所有在飞船上的动作都瞬间来到地球!看他的动作那是超快的!!或许他在上边⼏分钟⾥所有的动作都浓缩在这1秒钟内!结论:我们看他的动作是加快的!但是,没观察到他之前,地球已经经历了好⼏⼗年,好⼏百年了!(如果他是从远离地球1000光年的地⽅飞来,那么地球已经过了1000年了),⽽他只过了⼏分钟!他的确变年轻了!⽽且年轻的离谱我的解释符合相对论的观点。
速度与时间的关系与计算方法速度与时间是物理学中两个重要的概念,它们之间有着密切的关系。
在本文中,我们将探讨速度与时间之间的关系,以及计算速度和时间的方法。
一、速度与时间的关系速度是描述物体运动快慢的物理量,它可以表示物体在单位时间内所经过的距离。
速度与时间之间的关系可以用公式来表示:速度=距离÷时间。
根据这个公式,我们可以得出以下几个结论:1. 当速度不变时,距离与时间成正比。
也就是说,如果速度保持不变,那么距离和时间之间的比值保持不变。
例如,一个物体以匀速10米/秒的速度运动,经过2秒钟后,它所运动的距离为20米;经过4秒钟后,它所运动的距离为40米。
2. 当距离不变时,速度与时间成反比。
也就是说,如果距离保持不变,那么速度和时间之间的比值保持不变。
例如,一个物体需要以20米/秒的速度运动10米,那么所花费的时间就是0.5秒;如果以10米/秒的速度运动,所需要的时间就是1秒。
3. 当速度和距离都不变时,时间与速度成反比,与距离成正比。
也就是说,如果速度和距离都保持不变,那么所消耗的时间和速度成反比,和距离成正比。
例如,一个物体以20米/秒的速度运动40米,所需要的时间是2秒;以10米/秒的速度运动80米,所需要的时间也是2秒。
二、速度和时间的计算方法在实际问题中,我们常常需要根据已知条件计算出速度或时间。
下面介绍几种常见的计算方法。
1. 计算速度当已知距离和时间时,可以用公式速度=距离÷时间来计算速度。
例如,假设一辆汽车以80公里/小时的速度行驶了2小时,我们可以通过计算来求出汽车行驶的距离:速度=距离÷时间,距离=速度×时间,所以距离=80公里/小时×2小时=160公里。
2. 计算时间当已知速度和距离时,可以用公式时间=距离÷速度来计算时间。
例如,假设一辆火车以每小时100公里的速度行驶了400公里,我们可以通过计算来求出火车行驶的时间:时间=距离÷速度,时间=400公里÷100公里/小时=4小时。
小学数学教案时间和速度的关系小学数学教案时间和速度的关系引言:时间和速度是数学中常见的概念,对于小学学生来说,理解时间和速度的关系对于解决实际问题非常重要。
通过本节课的学习,学生将能够掌握时间和速度的基本概念,并运用所学知识解决简单的时间和速度问题。
一、时间的概念时间是物质存在和运动的基本属性,描述物体在运动中所经历的持续性。
时间的单位是秒(s)。
1. 观察现象:请同学们观察自己环教室跑一圈所需的时间,并记录下来。
2. 小组合作:将记录的时间进行比较,并找出跑得最快和最慢的同学,讨论原因。
二、速度的概念速度描述物体在单位时间内所消耗的路程,是时间和路程的比值,用公式 v = s / t 表示,其中 v 表示速度,s 表示路程,t 表示时间。
1. 示例演示:老师用一个小车在教室直线跑,在不同的时间内记录下小车所走的路程,并计算速度。
2. 小组活动:学生自行选择对象,测量其在不同时间内所走的路程,并计算出速度。
三、时间和速度的关系时间和速度是相互关联的,可以通过时间和速度之间的关系解决各种实际问题。
1. 探究活动:老师出示一张路程相同的地图,要求学生根据不同的速度,在地图上标出在不同时间到达的位置。
2. 小组讨论:学生根据自己的观察和计算结果,讨论速度越快花费的时间越短的原因,并总结时间和速度的关系。
四、综合练习时间和速度的关系经常出现在生活中的各种实际问题中,通过综合练习,巩固学生对时间和速度的理解和应用能力。
1. 问题解答:老师出示一些实际问题,要求学生利用时间和速度的关系解答。
2. 小组探究:学生自行组织小组进行拓展练习,在生活中发现更多与时间和速度有关的问题,并提出解决方法。
结尾:通过本节课的学习,学生对时间和速度的概念有了更深入的理解,并能够应用所学知识解决实际问题。
在日常生活中,时间和速度的关系无处不在,希望同学们能够将所学知识灵活运用,提高解决问题的能力。
速度、时间与距离的关系速度、时间和距离是物理学中的重要概念,它们之间存在着密切的关系。
在本文中,我们将探讨速度、时间和距离之间的关系,以及它们在现实生活中的应用。
一、速度与时间的关系速度是指单位时间内所走过的距离,通常用公式 v = s/t 来表示,其中 v 表示速度,s 表示距离,t 表示时间。
根据这个公式,我们可以得出速度与时间的关系公式:v = s/t。
从中我们可以看出,速度与时间成反比关系,即速度越大,所用的时间越短;速度越小,所用的时间越长。
举个例子,如果我们在一条笔直的路上以每小时60公里的速度行驶,那么我们能在1小时内行驶60公里,如果速度提高到每小时120公里,那么我们只需要半个小时就能行驶相同的距离。
二、速度与距离的关系速度与距离之间存在着直接关系,它们可以通过公式 v = s/t 来计算。
当我们已知速度和时间时,可以通过速度乘以时间来计算出距离。
例如,我们知道某辆汽车的速度是每小时80公里,行驶了2小时,那么我们可以用公式 v = s/t 来计算出距离:80 = s/2,解得 s = 160公里。
从这个例子中可以看出,速度越快,所走过的距离就越远;速度越慢,所走过的距离就越短。
三、时间与距离的关系时间与距离之间也存在着直接关系,它们可以通过速度与距离的公式来计算。
当我们已知速度和距离时,可以通过距离除以速度来计算出时间。
比如,我们知道某个人骑自行车以每小时20公里的速度行驶了60公里,那么我们可以用公式 v = s/t 来计算出时间:20 = 60/t,解得 t = 3小时。
通过这个例子可以看出,距离越长,所花费的时间就越多;距离越短,所花费的时间就越少。
四、应用实例速度、时间和距离的关系在我们日常生活中有许多应用。
1. 交通工具的选择:当我们需要出行时,可以根据目的地的距离和时间来选择合适的交通工具。
如果目的地距离较近,我们可以选择步行或骑自行车;如果距离较远,我们可以选择坐公交车、开车或搭乘火车等交通工具。
速度时间关系式
速度时间关系式是描述物体在一段时间内的运动情况的数学表达式。
其中最常见的速度时间关系式是:速度=路程÷时间(v=s÷t)。
这个关系式表明,速度(v)等于物体在单位时间(t)内所经过的路程(s)。
也就是说,速度是衡量物体在单位时间内移动的快慢程度的物理量。
在实际应用中,速度时间关系式可以用于许多领域,如物理学、工程学、交通运输等。
例如,在交通运输中,我们可以通过测量车辆在一段时间内行驶的路程和时间,来计算车辆的平均速度,从而评估道路的拥堵情况和交通流量。
此外,速度时间关系式还可以通过变形得到其他有用的关系式。
例如,将速度公式变形为时间=路程÷速度(t=s÷v),我们可以计算物体在给定速度下行驶给定路程所需的时间。
总的来说,速度时间关系式是一个基本而重要的物理概念,它为我们提供了一种描述物体运动的方式,并在实际生活中有广泛的应用。
交通工具的速度与时间的关系交通工具的速度与时间的关系是一个常见的物理问题,也是我们在日常生活中经常会遇到的。
本文将就交通工具的速度与时间的关系展开讨论。
1. 速度与时间的定义速度是物体在单位时间内所运动的距离,通常用“米/秒”等单位来表示。
而时间是运动发生的持续时长,通常用“秒”、“分钟”、“小时”等单位来表示。
2. 不同交通工具的速度不同交通工具的速度是有差异的。
例如,汽车、火车和飞机等交通工具的速度相对较快,而自行车和步行则相对较慢。
不同交通工具的速度主要受到以下因素的影响:动力源、道路条件和交通规则等。
3. 速度与时间的关系速度与时间之间存在着密切的关系。
根据速度与时间的定义,可得出速度等于距离除以时间的公式:速度 = 距离 / 时间。
这意味着速度与时间成反比关系,即速度越大,所需要的时间越短;反之,速度越小,所需要的时间越长。
4. 速度与路程的关系在交通工具的运动过程中,路程是指物体从起点到终点所走过的总距离。
路程与速度、时间之间存在着一定的关系。
根据公式路程 = 速度 ×时间,可以看出,速度越快,所走过的路程越长;而速度越慢,所走过的路程则相应减少。
5. 速度的影响因素交通工具的速度不仅受到车辆自身性能的限制,还受到外部因素的影响。
例如,道路条件、交通拥堵、气候等因素都会影响交通工具的速度。
在实际生活中,我们常常会感受到在拥堵路段行驶速度较慢,而在畅通路段速度较快的情况。
6. 时间的节约与效率由于速度与时间成反比关系,选择更快的交通工具能够有效地节约时间。
因此,很多人在选择出行方式时,会根据行程的远近来选择适合的交通工具,以达到更高效的目的。
7. 速度与安全的平衡在追求速度的同时,我们也应该注重交通工具的安全性。
不论速度快慢,安全始终是我们出行时的首要考虑因素。
因此,在使用交通工具时,我们要保持安全驾驶,并遵守交通法规,以确保出行的安全。
总结:交通工具的速度与时间存在着关系,速度越大,所需要的时间越短;速度越小,所需要的时间则越长。
时间路程速度的公式
计算时间、路程和速度的公式为:
时间=路程÷速度。
路程=速度×时间。
速度=路程÷时间。
时间・路程・速度三者间的关系是:当时间和路程确定时,速度就可以用上述的第一个公式来计算;当时间和速度确定时,路程可以用上述的第二个公式来计算;而当路程和速度确定时,时间可以用上述的第三个公式来计算。
时间、路程、速度之间的关系可以用一个简单公式来表示:
路程=时间×速度。
这个公式也可以用于计算时间、路程和速度之间的关系。
匀变速直线运动的速度与时间的关系【知识整合】1.匀变速直线运动:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动,匀变速直线运动的v t -图象是一条倾斜的直线。
在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;如果物体的速度随着时间均匀减少,这个运动叫做匀减速直线运动。
2.速度与时间的关系式:对于匀变速直线运动,其加速度是恒定的,由加速度的定义式0()/t a v v t =-,可得0t v v at =+(1)此式叫匀变速直线运动的速度公式,它反映了匀变速直线运动的速度随时间变化的规律,式中0v 是开始计时时刻的速度,t v 是经时间t 后的速度。
(2)速度公式中,末速度t v 是t 的一次函数,其函数图像是一条倾斜的直线,斜率即加速度a ,纵轴上的截距为初速度0v 。
(3)速度公式中的0v 、t v 、a ,都是矢量,在直线运动中,若规定正方向后,它们都可用带正、负号的代数值表示,且矢量运算转化为代数运算,通常情况下取初速度方向为正方向,对于匀加速直线运动,a 取正值;对匀减速直线运动,a 取负值,计算的结果0t v >,说明t v 方向与0v 方向相同;0t v <说明t v 的方向与0v 方向相反。
(4)从静止开始的匀加速直线运动,即00v =,则t v at =,速度与时间成正比。
3.速度——时间图像(1)速度——时间图像(v t -图像):在平面直角坐标系中,用纵轴表示速度,用横轴表示时间,作出物体的速度——时间图像,就可以反映出物体的速度随时间的变化规律。
(2)匀速直线运动的v t -图像:物体做匀速直线运动时,速度是恒定的,所以匀速直线运动的v t -图像是平行于时间轴的直线。
匀变速直线运动的v t -图像是一条倾斜的直线,在下图中,a 反映了物体的速度随时间均匀增加,即为匀加速直线运动的图像;b 反映了物体的速度随时间匀匀减小,即为匀减速直线运动的图像。