【教材分析与导入设计】3.1.2共面向量定理Z
- 格式:doc
- 大小:36.00 KB
- 文档页数:2
高中数学人教B版选修2-1第三章《3.1.2 空间向量的基本定理》优质课公开课教案教师资格证面试试讲教案
1教学目标
1.知识与技能
通过本节学习理解向量共线的条件,共面向量定理和空间向量基本定理.
能够判定空间向量是否共面.
了解基向量、基底的概念、空间任意三个不共面的向量都可构成空间的一个基底.
2.过程与方法
通过对空间向量基本定理的学习,让学生体验数学定理的产生、形成过程,体验定理所蕴含的数学思想.
3.情感态度与价值观
事物之间可以相互转化,渗透由特殊到一般的思想,通过对空间向量基本定理的运用,增强学生的应用意识.
2学情分析
立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。
立体几何是中学数学的一个难点,学生普遍反映“几何比代数难学”。
但很多学好这部分的同学,又觉得这部分很简单。
立体几何中抓住向量这个重要工具
如点到直线的距离,抓住直线的方向向量;找二面角的平面角而不是二面角,二面角的平面角等于二面角的大小.具体你可以,比如先求平面的法向量,那么两个平面的法向量的夹角的大小就是二面角的大小。
求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。
对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。
不断总结,才能不断高。
3重点难点
重点:共线向量定理、共面向量定理和空间向量分解定理.
难点:空间向量分解定理.。
3.1.2空间向量共面定理教学目标:1.理解共线向量定理和共面向量定理及它们的推论;2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式.教学重、难点:共线、共面定理及其应用. 教学过程: (一)复习:1.空间向量的概念及表示:(二)阅读课本P 74~P 75,⑴怎样的向量叫做共线,共面向量?⑵两个向量共线,共面的充要条件是什么?1.共线(平行)向量:2.共线向量定理:推论:问题思考3.向量与平面平行:4.共面向量定理:如何证明?推论:()()1=020?a λ≠当实数时,表示什么意思?充要条件中,为什么规定(三)预习练习1、下列说法正确的是:A.在平面内共线的向量在空间不一定共线B.在空间共线的向量在平面内不一定共线C.在平面内共线的向量在空间一定不共线D.在空间共线的向量在平面内一定共线E.在平面内,任意两个向量一定共线2已知A 、B 、M 三点不共线,对于平面ABM 外的任一点O ,确定在下列各条件下,点P 是否与A 、B 、M 一定共面?3下列命题中正确的有______4.对于空间中的三个向量 它们一定是: A.共面向量 B.共线向量 C.不共面向量 D.既不共线又不共面向量5.已知点M 在平面ABC 内,并且对空间任意一点O , ,则x的值为:_____(四)典型例题例1、已知A 、B 、P 三点共线,O 为空间任意一点,且 ,求 的值.αβ=+OP OA OBαβ+(1)3=+-OB OM OP OA (2)4=--OP OA OB OM(1)=+⇒ 与、共面;p xa yb p a b (2)⇒=+与、共面 ;p a b p xa yb (3)=+⇒、、、共面;MP xMA yMB P M A B (4)⇒=+、、、共面;P M A B MP xMA yMB 2、、-MA MB MA MB=11++33OM xOA OB OC (1)λλ=≠-AP PB变式、设点P 在直线AB 上并且 ,O 为空间任意一点, 求证:方法一:方法二:11111111,,,1,,,ABCD AC O OA kOA OB kOB OC kOC OD kODA B C D ====11变式:如图平行四边形,从平面外一点引向量求证:()四点共面 (2)A C ||平面D'B'C'D ABC1λλ+=+OA OBOP 1,11,,,33ABCD ADEF M N BD AE BM BD AN AE MN CED ==例、如图,已知矩形与所在平面相互垂直,点分别在对角线上,且求证:平面五:课堂小结六,课后作业 P761,2,3强化训练:1.若对任意一点O , ,则x+y=1是P 、A 、B 三点共线的: ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件2.已知两个非零向量21,e e 不共线,如果21AB e e =+,2128AC e e =+,2133AD e e =-,求证:,,,A B C D 共面.3.已知324,(1)82a m n p b x m n yp =--=+++,0a ≠,若//a b ,求实数,x y 的值。
《3.1.2空间向量基本定理》教案一、教学目标:1.知识目标:了解向量与平面平行的意义,掌握它们的表示方法。
理解共线向量定理、共面向量定理和空间向量分解定理,理解空间任一向量可用空间不共面的三个已知向量唯一线性表示,会在简单问题中选用空间三个不共面向量作为基底表示其他向量。
会用空间向量的基本定理解决立体几何中有关的简单问题。
2.能力目标:通过空间向量分解定理的得出过程,体会由特殊到一般,由低维到高维的思想方法。
培养学生类比、联想、维数转换的思想方法和空间想象能力。
3.情感目标:创设适当的问题情境,从生活中的常见现象引入课题,开始就引起学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,体现新课程改革的理念之一,加强数学与生活实践的联系。
二、教学重点:运用空间向量基本定理表示空间任一向量,并能根据表达式判断向量与基底的关系。
三、教学难点:空间向量的分解作图,用不同的基底表示空间任一向量。
灵活运用空间向量基本定理证明空间直线的平行、共面问题。
四、教学过程1.复习引入:在平面向量中,我们学习了平行向量基本定理、平面向量基本定理,请大家回忆一下定理的内容。
(找同学回答)由上节课的学习,我们可以把平面向量的线性运算推广到空间向量,那么请大家思考:平行向量基本定理在空间中是否成立?结论在空间中也成立。
这就是空间中的“共线向量定理”(板书并投影) 注意:①向量0a ≠;②a b ∥b a λ⇒=是共线向量的性质定理,b a λ=⇒a b ∥是空间向量共线的判定定理; 2、问题探究:“向量与平面平行”的概念:如果向量a 的基线平行于平面α或在平面α内,就称a 平行于平面α,记作a ∥α。
平行于同一平面的向量叫做共面向量。
即可以平移到同一平面内的向量就是共面向量。
探究1:空间中任意两个向量一定共面吗?为什么? 探究2:空间中任意三个向量一定共面吗?请举例说明。
探究3:如果空间中三个向量共面,它们存在怎样的关系? 演示空间中三向量共面的情况,引导学生猜想。
3.1.2 共面向量定理[对应学生用书P50]如图,在平行六面体ABCD-A1B1C1D1中,观察下列几组向量,回答问题.问题1:、、可以移到一个平面内吗?提示:可以,因为=,三个向量可移到平面ABCD内.问题2:,,三个向量的位置关系?提示:三个向量都在平面ACC1A1内.问题3:、、三个向量是什么关系?提示:相等.1.共面向量一般地,能够平移到同一平面内的向量叫做共面向量.2.共面向量定理如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在有序实数组(x,y),使得p=x a+y b.1.空间中任意两个向量都是共面的,空间中任意三个向量可能共面,也可能不共面.2.向量共面不具有传递性.3.共面向量定理给出了平面向量的表示式,说明两个不共线的向量能确定一个平面,它是判定三个向量是否共面的依据.[对应学生用书P51][例1] 给出以下命题:①用分别在两条异面直线上的两条有向线段表示两个向量,则这两个向量一定不共面; ②已知空间四边形ABCD ,则由四条线段AB 、BC 、CD 、DA 分别确定的四个向量之和为零向量;③若存在有序实数组(x ,y )使得=x +y ,则O 、P 、A 、B 四点共面; ④若三个向量共面,则这三个向量的起点和终点一定共面; ⑤若a ,b ,c 三向量两两共面,则a ,b ,c 三向量共面. 其中正确命题的序号是________.[思路点拨] 先紧扣每个命题的条件,再充分利用相关概念做出正确的判断. [精解详析] ①错:空间中任意两个向量都是共面的; ②错:因为四条线段确定的向量没有强调方向; ③正确:因为、、共面, ∴O 、P 、A 、B 四点共面; ④错:没有强调零向量;⑤错:例如三棱柱的三条侧棱表示的向量. [答案] ③[一点通] 共面向量不一定在同一个平面内,但可以平移到同一个平面内.判定向量共面的主要依据是共面向量定理.1.下列说法正确的是________(填序号).①以三个向量为三条棱一定可以作成一个平行六面体;②设平行六面体的三条棱是、、,则这一平行六面体的对角线所对应的向量是++; ③若=12(+)成立,则P 点一定是线段AB 的中点;④在空间中,若向量与是共线向量,则A 、B 、C 、D 四点共面.⑤若a ,b ,c 三向量共面,则由a ,b 所在直线所确定的平面与由b ,c 所在直线确定的平面是同一个平面.解析:①②③⑤不正确,④正确. 答案:④2.已知三个向量a ,b ,c 不共面,并且p =a +b -c ,q =2a -3b -5c ,r =-7a +18b +22c ,试问向量p 、q 、r 是否共面?解:设r =x p +y q ,则-7a +18b +22c =x (a +b -c )+y (2a -3b -5c ) =(x +2y )a +(x -3y )b +(-x -5y )c ,∴⎩⎪⎨⎪⎧x +2y =-7,x -3y =18,-x -5y =22.解得⎩⎪⎨⎪⎧x =3,y =-5,∴r =3p -5q .∴p 、q 、r 共面.[例2] 如图所示,平行六面体ABCD -A 1B 1C 1D 1中,E 、F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.证明:与、共面.[思路点拨] 由共面向量定理,只要用、线性表示出即可. [精解详析] ∵=++ =++13+23=(+13)+(+23)=+++ =+, ∴与、共面.[一点通] 利用向量法证明向量共面问题,关键是熟练的进行向量的表示,恰当应用向量共面的充要条件.解题过程中注意区分向量所在的直线的位置关系与向量的位置关系,解答本题,实质上是证明存在惟一一对实数x ,y 使向量=x +y 成立,也就是用空间向量的加、减法则及运算律,结合图形,用、表示.3.如图,正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为BB 1和A 1D 1的中点.证明:向量,,是共面向量.证明:法一:=++ =12-+12 =12(+- =12-. 由向量共面的充要条件知,,,是共面向量.法二:连接A1D ,BD ,取A 1D 中点G ,连结FG ,BG ,则有FG 綊12DD 1,BE 綊12DD 1,∴FG 綊BE .∴四边形BEFG 为平行四边形. ∴EF ∥BG .BG ⊆平面A 1BD ,EF 平面A 1BD∴EF ∥平面A 1BD .同理,B 1C ∥A 1D ,∴B 1C ∥平面A 1BD , ∴,,都与平面A 1BD 平行. ∴,,是共面向量.4.已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足=k ,=k (0≤k ≤1).求证:与向量,共面.证明: 如图,在封闭四边形MABN 中,=++.① 在封闭四边形MC 1CN 中,=++② ∵=k , ∴=k (+)∴(1-k )=k ,即(1-k )+k =0, 同理(1-k )+k =0.①×(1-k )+②×k 得=(1-k )+k , ∵=-,∴=(1-k )-k , 故向量与向量,共面.[例3] 如图所示,已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点.(1)用向量法证明E ,F ,G ,H 四点共面; (2)用向量法证明BD ∥平面EFGH .[思路点拨] (1)要证E ,F ,G ,H 四点共面,根据共面向量定理的推论,只要能找到实数x ,y ,使=x +y 即可.(2)要证BD ∥平面EFGH ,只需证向量与向量、共面即可. [精解详析] (1)如图所示,连接BG ,EG ,则:=+=+12(+)=++=+.由共面向量定理知E ,F ,G ,H 四点共面. (2)设=a ,=b ,=c , 则=-=c -a .=+=-a 2+12(c +b )=-12a +12b +12c ,=+=-12c +12(a +b )=12a +12b -12c .假设存在x ,y ,使=x +y .即c -a =x ⎝ ⎛⎭⎪⎫-12a +12b +12c +y ⎝ ⎛⎭⎪⎫12a +12b -12c =⎝ ⎛⎭⎪⎫y 2-x 2a +⎝ ⎛⎭⎪⎫x 2+y 2b +⎝ ⎛⎭⎪⎫x 2-y2c . ∵a ,b ,c 不共线.∴⎩⎪⎨⎪⎧y 2-x2=-1,x 2+y2=0,x 2-y 2=1,解得⎩⎪⎨⎪⎧x =1,y =-1.∴=-.∴、、是共面向量, ∵BD 不在平面EFGH 内. ∴BD ∥平面EFGH . [一点通]1.空间一点P 位于平面MAB 内的充分必要条件是存在实数对x 、y ,使=x +y .满足这个关系式的点P 都在平面MAB 内;反之,平面MAB 内的任一点P 都满足这个关系式,这个充要条件常用来证明四点共面.在许多情况下,可以用“若存在有序实数组(x ,y ,z )使得对于空间任意一点O ,有=x +y +z ,且x +y +z =1成立,则P 、A 、B 、C 四点共面”作为判定空间中四个点共面的依据.2.用共面向量定理证明线面平行的关键是: (1)在直线上取一向量;(2)在平面内找出两个不共线的向量,并用这两个不共线的向量表示直线上的向量; (3)说明直线不在面内,三个条件缺一不可.5.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,O 是B 1D 1的中点.求证:B 1C ∥平面ODC 1.证明:设=a ,=b ,=c ,则=c -a ,又O 是B 1D 1的中点,所以=12=12(b -a ).因为D 1D 綊C 1C ,所以=c ,=+=12(b -a )+c .=-12(a +b ),假设存在实数x ,y ,使=x +y ,所以c -a =x ⎣⎢⎡⎦⎥⎤12(b -a )+c -y ·12(a +b ) =-12(x +y )a +x c +⎝ ⎛⎭⎪⎫x 2-y 2b ,且a ,b ,c 不共线,所以x =1,12(x +y )=1,且x -y 2=0,即x =1,y =1.所以=+,所以,,是共面向量,又因为不在,所确定的平面ODC 1内,所以B 1C ∥平面ODC 1.6.如图,已知P 是平面四边形ABCD 所在平面外一点,连结PA 、PB 、PC 、PD ,点E 、F 、G 、H 分别为△PAB 、△PBC 、△PCD 、△PDA 的重心.求证:E 、F 、G 、H 四点共面.证明:分别延长PE 、PF 、PG 、PH 交平面四边形ABCD 各边于M 、N 、Q 、R . ∵E 、F 、G 、H 分别是所在三角形的重心,∴M 、N 、Q 、R 为所在边的中点,顺次连结M 、N 、Q 、R 所得四边形为平行四边形,且有=23,=23, =23,=23. ∵MNQR 为平行四边形, ∴=-=23-23=23=23(+)=23(-)+23(-) =23·⎝ ⎛⎭⎪⎫32 PF -32 PF +23⎝⎛⎭⎪⎫32 PH -32 PF=+.∴由共面向量定理得E 、F 、G 、H 四点共面.向量e 1,e 2,e 3共面⇔存在三个不全为0的实数λ,μ,γ,使得λe 1+μe 2+γe 3=0.若e 1,e 2,e 3是不共面的三个向量,且λe 1+μe 2+γe 3=0(其中λ,μ,γ∈R ),则λ=μ=γ=0.空间一点P 位于平面MAB 内的充要条件是存在惟一的有序实数对x ,y ,使=x +y .[对应课时跟踪训练(十九)]1.下列结论中,正确的是________(填序号). ①若a 、b 、c 共面,则存在实数x ,y ,使a =x b +y c ; ②若a 、b 、c 不共面,则不存在实数x ,y ,使a =x b +y c ;③若a 、b 、c 共面,b 、c 不共线,则存在实数x 、y ,使a =x b +y c .解析:要注意共面向量定理给出的是一个充要条件.所以第②个命题正确.但定理的应用又有一个前提:b 、c 是不共线向量,否则即使三个向量a 、b 、c 共面,也不一定具有线性关系,故①不正确,③正确.答案:②③2.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由向量=15+23+λ确定的点P与A ,B ,C 共面,那么λ=________.解析:∵P 与A ,B ,C 共面, ∴=α+β, ∴=α(-)+β(-), 即=+α-α+β-β =(1-α-β)+α+β, ∴1-α-β+α+β=1. 因此15+23+λ=1.解得λ=215.答案:2153.如图,平行六面体ABCD -A 1B 1C 1D 1中,E 、F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1,若=x +y +zAA 1,则x +y +z =________.解析:=-=+-(+)=+23--13=-+13∴x =-1,y =1,z =13.∴x +y +z =13.答案:134.i ,j ,k 是三个不共面的向量,=i -2j +2k ,=2i +j -3k ,=λi +3j -5k ,且A 、B 、C 、D 四点共面,则λ的值为________.解析:若A 、B 、C 、D 四点共面,则向量、、共面,故存在不全为零的实数a ,b ,c , 使得a +b +c =0.即a (i -2j +2k )+b (2i +j -3k )+c (λi +3j -5k )=0. ∴(a +2b +λc )i +(-2a +b +3c )j +(2a -3b -5c )k =0. ∵i ,j ,k 不共面,∴⎩⎪⎨⎪⎧a +2b +λc =0,-2a +b +3c =0,2a -3b -5c =0.∴⎩⎪⎨⎪⎧a =c ,b =-c ,λ=1.答案:15.命题:若A 、B 、C 三点不共线,O 是平面ABC 外一点,=13+13+13,则点M 一定在平面ABC 上,且在△ABC 内部是________命题(填“真”或“假”).解析:=-=-23+13+13=13(-)+13(-)=13(+). 令BC 中点为D ,则=23,∴点M 一定在平面ABC 上,且在△ABC 内部,故命题为真命题.答案:真6.已知A ,B ,C 三点不共线,平面ABC 外的一点O 满足=13+13+13.判断,,三个向量是否共面.解:(1)由已知得++=3, ∴-=(-)+(-), 即=+=--, ∴,,共面.7.若e 1,e 2,e 3是三个不共面的向量,试问向量a =3e 1+2e 2+e 3,b =-e 1+e 2+3e 3,c =2e 1-e 2-4e 3是否共面,并说明理由.解:法一:令x (3e 1+2e 2+e 3)+y (-e 1+e 2+3e 3)+z (2e 1-e 2-4e 3)=0, 亦即(3x -y +2z )e 1+(2x +y -z )e 2+(x +3y -4z )e 3=0, 因为e 1,e 2,e 3是三个不共面的向量, 所以⎩⎪⎨⎪⎧ 3x -y +2z =0,2x +y -z =0,x +3y -4z =0,解得⎩⎪⎨⎪⎧x =-1,y =7,z =5,从而a =7b +5c ,a ,b ,c 三个向量共面. 法二:令存在λ,μ,使a =λb +μ c 成立, 即3e 1+2e 2+e 3=λ(-e 1+e 2+3e 3)+μ(2e 1-e 2-4e 3), 因为e 1,e 2,e 3是三个不共面向量, 所以⎩⎪⎨⎪⎧3=-λ+2μ,2=λ-μ,1=3λ-4μ.解这个方程组得λ=7,μ=5,从而a =7b +5c ,即a ,b ,c 三向量共面.8.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,AB =2EF ,H 为BC 的中点.求证:FH ∥平面EDB .证明:因为H 为BC 的中点,所以=12(+)=12(++++)=12(2+++).因为EF ∥AB ,CD 綊AB ,且AB =2EF , 所以2+=0, 所以=12(+)=12+12.又与不共线,根据向量共面的充要条件可知,,共面.由于FH 不在平面EDB 内, 所以FH ∥平面EDB。
《3.1.2 共面向量定理》教案教学目标1. 掌握空间向量的数乘运算律,能进行简单的代数式化简;2. 理解共线向量定理和共面向量定理3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.教学重难点掌握空间向量的数乘运算律,能进行简单的代数式化简;教学过程一、课前准备1:什么叫空间向量共线?空间两个向量,a b, 若b是非零向量,则a与b平行的充要条件是2:直线AB,点O是直线AB外一点,若1233OP OA OB=+,试判断A,B,P三点是否共线?二、新课导学※探究指引探究任务一:空间向量的共面新知:如何理解共面向量?问题:空间任意两个向量不共线的两个向量,a b有怎样的位置关系?空间三个向量又有怎样的位置关系?2. 空间共面向量定理:定理:对空间两个不共线向量,a b,向量p与向量,a b共面的充要条件是存在, 使得.试试:若空间任意一点O和不共线的三点A,B,C满足关系式111236OP OA OB OC=++,则点P与A,B,C共面吗?反思:若空间任意一点O和不共线的三点A,B,C满足关系式OP xOA yOB zOC=++,且点P与A,B,C共面,则x y z++=.※动手试试下列等式中,使M,A,B,C四点共面的个数是①;OM OA OB OC=--②111;532 OM OA OB OC =++③0;MA MB MC++=④0OM OA OB OC+++=. ※典型例题例1已知矩形ABCD 和ADEF 所在的平面互相垂直,点M 、N 分别在BD,AE 上, 且分别是距B 点、A 点较近的三等分点,求证:MN//平面CDE例2 如图,已知平行四边形ABCD,过平面AC 外一点O 作射线OA,OB,OC,OD,在四条射线上分别取点E,,F,G ,H,并且使,OE OF OG OH k OA OB OC OD==== 求证:E,F,G,H 四点共面.巩固练习 已知空间四边形ABCD 的四个顶点A,B,C,D 不共面,E,F,G,H 分别是AB,BC,CD,AD 的中点,求证:E,F,G,H 四点共面.AB DE FMN A BC D F EGH三、总结提升※学习小结共面向量定理。
3.1.2共面向量定理一、教学目标:1.了解共面向量的含义,理解共面向量定理;2.能运用共面向量定理证明有关线面平行和点共面的简单问题.二、教学重难点:1.共面向量定理的理解.2.运用共面向量定理证明有关线面平行和点共面的简单问题. 三、教学方法建议:新授课、启发式一一引导发现、合作探究.四、教学流程与教学方法设计(A )类问题(自学通过)1.自己作图,通过长方体体验并归纳什么是共面向量.2.通过类比得出共面向量定理.(B )类问题(学生板演,教师点拨)3.如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线AE BD ,上,且AE AN BD BM 31,31==. 求证:MN //平面CDED4.设空间任意一点O 和不共线的三点C B A ,,若点P 满足向量关系OP xOA yOB zOC =++(其中1=++z y x ),试问C B A P ,,,四点是否共面?推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对y x ,使得:MP xMA yMB =+,或对空间任意一点O 有:OP OM xMA yMB =++.五、问题解决情况检测(A )类问题检测课后练习1,2.(B )类问题检测1.已知非零向量1e ,2e 不共线,如果12AB e e =+,1228 AC e e =+,1233AD e e =-,求证:D C B A ,,,共面.(C )类问题检测2.已知平行四边形ABCD ,从平面AC 外一点O 引向量OE kOA =,OF kOB =,OG kOC =,OH kOD =.求证①四点H G F E ,,,共面; ②平面//AC 平面EG .六、教学反思。
3.1.2共面向量
本节教材分析
共面向量定理是在共线向量定理的基础上,同样是从平面向量拓展得来的,即在空间的任何一个平面内共面向量定理仍然成立;本定理是本章后续内容的基础,它的证明,教材中进行了完整的交待.这个内容的学习,难度不是很大,但是要注意空间向量向平面向量的合理转化.
一、三维目标
1.知识与技能
(1)了解共面向量的含义,理解共面向量定理;
(2)利用共面向量定理证明有关线面平行和点共面的简单问题;
2.过程与方法
(1)通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神.
(2)通过平面向量共线,推广到空间向量的共面,通过共面向量的学习,使学生学习类比、归纳、推广、化归等思想.从而体会数学探索活动的基本规律.
(3)运用类比的方法,自主探究向量共面的条件,并能灵活运用;
3.情感、态度与价值观
体会类比,化归的思想方法;领悟数学研究方法的模式化特点,感受理性思维的力量.
二、教学重点
共面向量的含义,共面向量定理的证明和应用.
三、教学难点
利用共面向量定理证明有关线面平行和点共面的简单问题.
四、教学建议
空间向量的共面向量定理可与平面向量的基本定理可以在形式上的相同,而且本质上也是一致的,因此可以从平面向量引入,给出空间向量的共面定理.在应用定理的时候可引导学生从共面向量的概念和定理出发寻找思路.直线与平面的平行,可转化为直线上的向量与平面内的两个不共线向量共面的问题,同时说明直线不在平面内.另外教学中还可以在用向量证明后,再让学生尝试用综合法来证明,然后对两种证明方法加以比较.
新课导入设计
导入一
1、关于空间向量线性运算的理解
C
(1)
B
C (2)
平面向量加法的三角形法则可以推广到空间向量,只要图形封闭,其中的一个向量即可
以用其它向量线性表示.
从平面几何到立体几何,类比是常用的推理方法.
导入二
复习、关于空间向量线性运算的理解
思考1、如图(1),MN
可以由哪些向量相加得到?图(2)中呢?
平面向量加法的三角形法则可以推广到空间向量,只要图形封闭,其中的一个向量即可
以用其它向量线性表示.
从平面到空间,类比是常用的推理方法.
思考2、 的向
量称为平行向量或共线向量呢? 思考3、怎样判定向量b 与非零向量a 是否为共线向量呢? . 思考4:对于空间任意一点O ,试问满足y x +=(其中x+y=1)的三点P ,A ,
B,三点是否共线?
思考5、这个结论能解决什么问题? .
.。