2013届高考一轮复习数学资料(赢在高考) (26)
- 格式:doc
- 大小:504.50 KB
- 文档页数:6
高中数学常用公式及结论(绝对全)1 元素与集合的关系:U x A x CA ∈⇔∉,U x CA x A ∈⇔∉.A A ∅⇔≠∅Ø2 集合12{,,,}n a a a 的子集个数共有2n个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个. 3 二次函数的解析式的三种形式:(1) 一般式2()(0)f x a x b x c a =++≠; (2) 顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式)(3) 零点式12()()()(0)fx a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)(4)切线式:02()()(()),0x k xd fx a x a =-+≠+。
(当已知抛物线与直线y kx d =+相切且切点的横坐标为x 时,设为此式)4 真值表: 同真且真,同假或假5 常见结论的否定形式; 原结论 反设词原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有n 个至多有(1n -)个 小于不小于至多有n 个 至少有(1n +)个 对所有x ,成立 存在某x ,不成立 p 或qp ⌝且q ⌝对任何x ,不成立 存在某x ,成立 p 且qp ⌝或q ⌝6 四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)原命题 互逆 逆命题若p则q 若q则p 互 互互 为 为 互 否 否逆 逆 否 否否命题 逆否命题 若非p则非q 互逆 若非q则非p充要条件: (1)、p q ⇒,则P 是q 的充分条件,反之,q 是p 的必要条件;(2)、p q ⇒,且q ≠> p ,则P 是q 的充分不必要条件; (3)、p ≠> p ,且q p ⇒,则P 是q 的必要不充分条件;4、p ≠> p ,且q ≠> p ,则P 是q 的既不充分又不必要条件。
【赢在高考】2013届高考数学一轮复习 4.6配套练习1.已知sin α=则sin 4α-cos 4α的值为( ) A.35- B.15- C.15 D.35【答案】 A【解析】 sin 4α-cos 4α=sin 2α-cos 22α=sin 23112155α-=⨯-=-,选A. 2.已知(0)2x π∈-,,cos 45x =,则tan2x 等于( ) A.247- B.724- C.724 D.247【答案】 A【解析】 方法一:∵(0)2x π∈-,,∴sinx<0. ∴sin 35x =-. ∴sin2x=2sinxcos 2425x =-,cos2x=2cos 27125x -=. ∴tan sin2x 242cos2x 7x ==-. 方法二:由方法一知:sin 35x =-, ∵(0)2x π∈-,,∴tan 34x =-. ∴tan 2tanx 242271xtan x ==--. 3.已知cos 122α=〔其中(0)4πα∈-,〕,则sin α的值为 ( )A.12B.12- D.-【答案】 B【解析】 ∵12=cos 212α=-sin 2α,∴sin 214α=. 又∵(0)4πα∈-,,∴sin 12α=-. 4.有四个关于三角函数的命题:1p :x ∃∈R ,sin 22x +cos 2122x = 2p :x y ∃,∈R ,sin(x-y)=sinx-siny3p :[0x ∀∈,π]=sinx 4p :sinx=cos 2y x y π⇒+= 其中的假命题是( )A.14p p ,B.24p p ,C.13p p ,D.23p p , 【答案】 A【解析】 x ∀∈R ,sin 22x +cos 212x =,故1p 为假命题. 由sinx=cos y ⇒sinx=sin ()2y x π-⇒=π()2y π--+2k π,或22x y k π=-+π. ∴22x y k π-=+π或x+y=2k π+(2k π∈Z ),故4p 为假命题. 故选A.5.已知sin(π1)3α+=-,且α是第二象限角,那么sin 2α= .【答案】 【解析】 ∵sin(π1)3α+=-, ∴sin 13α=. 又∵α是第二象限的角,∴cos α==.∴sin 22α=sin αcos 12(3α=⨯⨯=1.函数f(x)=cos 22x -sin 22x +sinx 的最小正周期是…… ( ) A.2π B.π C.32π D.2π【答案】 D【解析】 f(x)=cosx+sin x =()4x π+, ∴函数f(x)的最小正周期是T=2π.2.函数y=sin 22x 是( )A.周期为π的奇函数B.周期为π的偶函数C.周期为2π的奇函数D.周期为2π的偶函数 【答案】 D【解析】 ∵y=sin 21cos4x 22x -=,∴函数y=sin 22x 是周期为2π的偶函数,故应选D. 3.(cos 12π-sin )(12πcos 12π+sin )12π等于( )A.-B.12- C.12 【答案】 D【解析】 原式=cos 212π-sin 212π=cos (2)12π⨯=cos 6π=4.设a=1414sin cos ︒+︒,b=16sin ︒+16cos ︒c ,=则a 、b 、c 的大小关系是( )A.a<b<cB.b<c<aC.a<c<bD.b<a<c【答案】 C【解析】 a =59sin ︒c ,=60sin ︒b ,61sin ︒,∴a<c<b.或21a =+28sin ︒2311122b <+=,=+32sin ︒>1+12=23322c ,=,∴a<c<b.5.若2πα<<π,且cos a α=,则sin 2α等于( )B.D.【答案】 A【解析】 ∵cos 12α=-sin 22α,∴sin 21cos 1222a αα--==.又422παπ<<,∴sin 2α=6.若cos(x+y)cos 1()3x y -=,则cos 2x -sin 2y 等于 ( ) A.13- B.13 C.23- D.23【答案】 B【解析】 由cos ()x y +⋅cos 1()3x y -=,得(cosxcosy-sinxsin )(y ⋅cosxcosy+sinxsin 1)3y =.∴cos 2x ⋅2cos y-sin 2x ⋅sin 213y =.∴cos 2(1x ⋅-sin 2)(1y --cos 2)x ⋅sin 213y =. 整理得cos 2x -sin 213y =. 7.已知下列各式中,值为12的是( ) A.1515sin cos ︒︒ B.2cos 6π-sin 26πC.tan3021tan 30︒-︒ 【答案】 B【解析】 ∵11515302sin cos sin ︒︒=︒14=; cos 26π-sin 26π=cos 132π=;tan302tan301122221tan 301tan 30︒︒=⨯=⨯-︒-︒60tan ︒==15cos ︒=cos(4530︒-︒)=45304530cos cos sin sin ︒︒+︒︒=. 8.(2012江苏南京月考)设α是第二象限的角, tan 43α=-,且sin 2α<cos 2α,则cos 2α= .【答案】 -【解析】 ∵α是第二象限的角, ∴2α可能在第一或第三象限. 又sin 2α<cos 2α,∴2α为第三象限的角. ∴cos 20α<.∵tan 43α=-,∴cos 35α=-.∴cos 2α==9.6426678sin sin sin sin ︒︒︒︒= .【答案】 116【解析】 原式=6482412sin cos cos cos ︒︒︒︒1666122448166cos sin cos cos cos cos ︒︒︒︒︒=︒ 966116616616sin cos cos cos ︒︒===︒︒.10.化简sin 2()6πα-+sin 2()6πα+-sin 2α得的结果是 . 【答案】 12【解析】 原式1cos(2)1cos(2)3322ππαα---+=+-sin 2α 121[=-cos (2)3πα-+cos 3(2)]πα+-sin 2α =1-cos 2α⋅cos 3π-sin 2α cos21cos211222αα-=--=. 11.当40x π<<时,函数cos2x 1()2sinxcosx x sin f x +=-的最小值是【答案】 8【解析】 cos2x 1()2sinxcosx xsin f x +=- 22x cos 222sinxcosx x tanx xsin tan ==--. 又04x π<<,∴令t=tan (01)x ∈,. ∴22111()(0]244t t t -=--+∈,. ∴()[8)f x ∈,+∞,即min ()8f x =.12.已知函数44x 2cos2x 1cos ()2tan(x)(x)sin 44f x ππ--=+-. (1)求17()12f π-的值; (2)当2[0]x π∈,时,求12()()g x f x =+sin2x 的最大值和最小值.【解】 44x 2cos2x 1cos ()2tan(x)(x)sin f x ππ--=+- 21cos2x 4()2cos2x 122tan(x)(x)cos 44ππ+--=++ 22x cos 2sin(x)cos(x)ππ==++cos2x.17(1)()212f π-=cos 1726π=cos 56π=1(2)()()2g x f x =+sin2x=cos2x+sin2x=(2)4x π+, 因为[0]2x π∈,, 所以52444x πππ≤+≤.因此max min ()()1g x g x ==-.13.已知函数f(x)=sin2x ωx ωsin ()(0)2x πωω+>的最小正周期为π. (1)求f(x);(2)当[]122x ππ∈-,时,求函数f(x)的值域.【解】 1cos2x (1)()2f x ω-=+x ωcos x ωsin 122x ω-cos 122x ω+ =sin 1(2)62x πω-+. ∵函数f(x)的最小正周期为π,且0ω>, ∴22πω=π,解得1ω=. ∴f(x)=sin 1(2)62x π-+. (2)∵[]122x ππ∈-,,∴52[]636x πππ-∈-,.根据正弦函数的图象可得: 当262x ππ-=,即x π=时,f(x)取得最大值为31122+=;当263x ππ-=-,即12x π=-时,f(x)取得最小值为12=.∴f(x)的值域为3]2.14.观察以下各等式:①102020606010tan tan tan tan tan tan ︒︒+︒︒+︒︒=1;②5101075755tan tan tan tan tan tan ︒︒+︒︒+︒︒=1.分析上述各式的共同特点,写出能反映一般规律的一个等式,并对你的结论进行证明.【解】 推广结论为:若90αβγ++=︒,则tan αtan β+tan βtan γ+tan γtan 1α=. 证明:由90αβ+=︒γ-,得tan ()αβ+=tan(90︒)γ-, 即tan tan 1tan tan αβαβ+=-tan(90︒1)tan γγ-=, ∴tan βtan γ+tan γtan 1α=-tan αtan β, 即tan αtan β+tan βtan γ+tan γtan 1α=.。
2013高考数学一轮复习试题 10-2 理A 级 基础达标演练(时间:40分钟 满分:60分)一、选择题(每小题5分,共25分)1.(2011·重庆)从一堆苹果中任取10只,称得它们的质量如下(单位:克):125,120,122,105,130,114,116,95,120,134, 则样本数据落在[114.5,124.5)内的频率为( ). A .0.2 B .0.3 C .0.4 D .0.5解析 数据落在[114.5,124.5)内的有:120,122,116,120共4个,故所求频率为410=0.4. 答案 C2.(2012·银川模拟)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ). A.65 B.65C. 2 D .2 解析 由题可知样本的平均值为1,所以a +0+1+2+35=1,解得a =-1,所以样本的方差为15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2. 答案 D3.(2011·厦门质检)某工厂对一批产品进行了抽样检测,如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).A .90B .75C .60D .45解析 产品净重小于100克的频率为(0.050+0.100)×2=0.300,设样本容量为n ,则36n =0.300,所以n =120,净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90. 答案 A4.(2011·安庆模拟)如图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是( ).A .161 cmB .162 cmC .163 cmD .164 cm解析 由给定的茎叶图可知,这10位同学身高的中位数为161+1632=162(cm).答案 B5.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表:s 1,s 2,s 3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( ).A .s 3>s 1>s 2B .s 2>s 1>s 3C .s 1>s 2>s 3D .s 2>s 3>s 1 解析 ∵x 甲=+8+9+20=8.5,s 21=-2+-2+-2+-2]20=1.25,x 乙=+++20=8.5, s 22=-2+-2]+-2+-2]20=1.45,x 丙=+++20=8.5, s 23=-2+-2]+-2+-2]20=1.05.由s 22>s 21>s 23,得s 2>s 1>s 3. 答案 B二、填空题(每小题4分,共12分)6.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是________,________.解析 由茎叶图可知,甲图中共有9个数,分别为28,31,39,45,42,55,58,57,66,其中位数为45;乙图中共有9个数分别为29,34,35,48,42,46,53,55,67其中位数为46. 答案 45 467.(2011·哈尔滨模拟)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:解析 甲班数据的平均值为7, 方差s 2甲=-2+02+02+-2+025=25; 乙班数据的平均值为7, 方差s 2乙=-2+02+-2+02+-25=65, 所以s 2=s 2甲=25.答案 258.(2011·浙江)某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.解析 根据样本的频率分布直方图,成绩小于60分的学生的频率为(0.002+0.006+0.012)×10=0.20,所以可推测3 000名学生中成绩小于60分的人数为600名. 答案 600三、解答题(共23分)9.(11分)(2011·新课标全国)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表(2)已知用B 配方生产的一件产品的利润y(单位:元)与其质量指标值t 的关系式为y =⎩⎪⎨⎪⎧-2,t <94,2,94≤t<102,4,t≥102.估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润.解 (1)由试验结果知,用A 配方生产的产品中优质品的频率为22+8100=0.3,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32+10100=0.42,所以用B 配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值t≥94,由试验结果知,质量指标值t≥94的频率为0.96.所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96.用B 配方生产的产品平均一件的利润为 1100×[4×(-2)+54×2+42×4]=2.68(元). 10.(12分)某市统计局就某地居民的月收入调查了10 000人,并根据所得数据画出样本的频率分布直方图如图所示.(每个分组包括左端点,不包括右端点,如第一组表示[1 000,1 500))(1)求居民收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中按分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽取多少人? 解 (1)月收入在[3 000,3 500)的频率为 0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25, 0.1+0.2+0.25=0.55>0.5, 所以,样本数据的中位数为 2 000+0.5-+0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频数为0.25×10 000=2 500(人),从10 000人中用分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取10010 000×2 500=25(人).B 级 综合创新备选(时间:30分钟 满分:40分)一、选择题(每小题5分,共10分)1.(2012·湖州质检)对某种电子元件的使用寿命进行跟踪调查,所得样本的频率分布直方图如图所示,由图可知,这一批电子元件中使用寿命在100~300 h 的电子元件的数量与使用寿命在300~600 h 的电子元件的数量的比是( ).A.12B.13C.14D.16解析 寿命在100~300 h 的电子元件的频率为⎝ ⎛⎭⎪⎫12 000+32 000×100=420=15; 寿命在300~600 h 的电子元件的频率为⎝ ⎛⎭⎪⎫1400+1250+32 000×100=45. ∴它们的电子元件数量之比为15∶45=14.答案 C2.(2012·太原质检)一组数据的平均数是 2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( ).A .57.2,3.6B .57.2,56.4C .62.8,63.6D .62.8,3.6 解析 平均数增加,方差不变. 答案 D二、填空题(每小题4分,共8分)3.(2011·青岛模拟)某校开展“爱我青岛,爱我家乡”摄影比赛,9位评委为参赛作品A 给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x 应该是________.解析当x≥4时,89+89+92+93+92+91+947=6407≠91,∴x <4,则89+89+92+93+92+91+x +907=91,∴x=1.答案 14.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则x 2+y 2的值为________.解析 由15(x +y +10+11+9)=10,15[(x -10)2+(y -10)2+0+1+1]=2,联立解得,x 2+y2=208. 答案 208三、解答题(共22分)5.(10分)某制造商3月生产了一批乒乓球,随机抽取100个进行检查,测得每个球的直径(单位:mm ),将数据进行分组,得到如下频率分布表:(1)补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;(2)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm ,试求这批乒乓球的直径误差不超过0.03 mm 的概率;(3)统计方法中,同一组数据常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数). 解 (1)频率分布表如下:频率颁布直方图如图:(2)误差不超过0.03 mm,即直径落在[39.97,40.03]内,其概率为0.2+0.5+0.2=0.9.(3)整体数据的平均值为39.96×0.10+39.98×0.20+40.00×0.50+40.02×0.20=40.00(mm).6.(12分)(2010·安徽)某市2010年4月1日~4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85, 75,71,49,45.样本频率分布表:(1)完成频率分布表; (2)作出频率分布直方图;(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染. 请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价. 解 (1)频率分布表:(2)频率分布直方图:(3)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的115.有26天处于良的水平,占当月天数的1315.处于优或良的天数共有28天,占当有月数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115.污染指数在80以上接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%.说明该市空气质量有待进一步改善.用心爱心专心- 11 -。
2013高考数学第一轮复习资料(教师版)第一章集合第一节集合的含义、表示及基本关系A组1.已知A={1,2},B={x|x∈A},则集合A与B的关系为________.。
解析:由集合B={x|x∈A}知,B={1,2}.答案:A=B2.若∅{x|x2≤a,a∈R},则实数a的取值范围是________.。
解析:由题意知,x2≤a有解,故a≥0.答案:a≥03.已知集合A={y|y=x2-2x-1,x∈R},集合B={x|-2≤x<8},则集合A与B的关系是________.解析:y=x2-2x-1=(x-1)2-2≥-2,∴A={y|y≥-2},∴B A.答案:B A4.(2009年高考广东卷改编)已知全集U=R,则正确表示集合M={-1,0,1}和N ={x|x2+x=0}关系的韦恩(Venn)图是________.解析:由N={x|x2+x=0},得N={-1,0},则N M.答案:②5.(2010年苏、锡、常、镇四市调查)已知集合A={x|x>5},集合B={x|x>a},若命题“x∈A”是命题“x∈B”的充分不必要条件,则实数a的取值范围是________.解析:命题“x∈A”是命题“x∈B”的充分不必要条件,∴A B,∴a<5.答案:a<56.(原创题)已知m∈A,n∈B,且集合A={x|x=2a,a∈Z},B={x|x=2a+1,a∈Z},又C={x|x=4a+1,a∈Z},判断m+n属于哪一个集合?解:∵m∈A,∴设m=2a1,a1∈Z,又∵n∈B,∴设n=2a2+1,a2∈Z,∴m+n=2(a1+a2)+1,而a1+a2∈Z,∴m+n∈B.B组1.设a,b都是非零实数,y=a|a|+b|b|+ab|ab|可能取的值组成的集合是________.解析:分四种情况:(1)a>0且b>0;(2)a>0且b<0;(3)a<0且b>0;(4)a<0且b<0,讨论得y=3或y=-1.答案:{3,-1}2.已知集合A ={-1,3,2m -1},集合B ={3,m 2}.若B ⊆A ,则实数m =________.解析:∵B ⊆A ,显然m 2≠-1且m 2≠3,故m 2=2m -1,即(m -1)2=0,∴m =1.答案:13.设P ,Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是________个.解析:依次分别取a =0,2,5;b =1,2,6,并分别求和,注意到集合元素的互异性,∴P +Q ={1,2,6,3,4,8,7,11}.答案:84.已知集合M ={x |x 2=1},集合N ={x |ax =1},若N M ,那么a 的值是________.解析:M ={x |x =1或x =-1},N M ,所以N =∅时,a =0;当a ≠0时,x =1a=1或-1,∴a =1或-1.答案:0,1,-1 5.满足{1}A ⊆{1,2,3}的集合A 的个数是________个.解析:A 中一定有元素1,所以A 有{1,2},{1,3},{1,2,3}.答案:36.已知集合A ={x |x =a +16,a ∈Z },B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z },则A 、B 、C 之间的关系是________.解析:用列举法寻找规律.答案:A B =C7.集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的________.解析:结合数轴若A ⊆B ⇔a ≥4,故“A ⊆B ”是“a >5”的必要但不充分条件.答案:必要不充分条件8.(2010年江苏启东模拟)设集合M ={m |m =2n ,n ∈N ,且m <500},则M 中所有元素的和为________.解析:∵2n <500,∴n =0,1,2,3,4,5,6,7,8.∴M 中所有元素的和S =1+2+22+…+28=511.答案:5119.(2009年高考北京卷)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:依题可知,由S 的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A ={x ,xy ,lg(xy )},B ={0,|x |,y },且A =B ,试求x ,y 的值.解:由lg(xy )知,xy >0,故x ≠0,xy ≠0,于是由A =B 得lg(xy )=0,xy =1.∴A ={x,1,0},B ={0,|x |,1x}. 于是必有|x |=1,1x=x ≠1,故x =-1,从而y =-1. 11.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A ,B ={x |m +1≤x ≤2m -1},求实数m 的取值范围;(2)若A ⊆B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围;(3)若A =B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围.解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)∵B ⊆A ,∴①若B =∅,则m +1>2m -1,即m <2,此时满足B ⊆A .②若B ≠∅,则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3].(2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧ 2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎨⎧ m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3,4].(3)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈∅.,即不存在m 值使得A =B . 12.已知集合A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A 是B 的真子集,求a 的取值范围;(2)若B 是A 的子集,求a 的取值范围;(3)若A =B ,求a 的取值范围.解:由x 2-3x +2≤0,即(x -1)(x -2)≤0,得1≤x ≤2,故A ={x |1≤x ≤2}, 而集合B ={x |(x -1)(x -a )≤0},(1)若A 是B 的真子集,即A B ,则此时B ={x |1≤x ≤ a },故a >2.(2)若B 是A 的子集,即B ⊆A ,由数轴可知1≤a ≤2.(3)若A =B ,则必有a =2 第二节 集合的基本运算A 组1.(2009年高考浙江卷改编)设U =R ,A ={x |x >0},B ={x |x >1},则A ∩∁U B =____.解析:∁U B ={x |x ≤1},∴A ∩∁U B ={x |0<x ≤1}.答案:{x |0<x ≤1}2.(2009年高考全国卷Ⅰ改编)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有________个.解析:A ∩B ={4,7,9},A ∪B ={3,4,5,7,8,9},∁U (A ∩B )={3,5,8}.答案:33.已知集合M ={0,1,2},N ={x |x =2a ,a ∈M },则集合M ∩N =________.解析:由题意知,N ={0,2,4},故M ∩N ={0,2}.答案:{0,2}4.(原创题)设A,B是非空集合,定义AⓐB={x|x∈A∪B且x∉A∩B},已知A ={x|0≤x≤2},B={y|y≥0},则AⓐB=________.解析:A∪B=[0,+∞),A∩B=[0,2],所以AⓐB=(2,+∞).答案:(2,+∞)5.(2009年高考湖南卷)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设两项运动都喜欢的人数为x,画出韦恩图得到方程15-x+x+10-x+8=30x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).答案:126.(2010年浙江嘉兴质检)已知集合A={x|x>1},集合B={x|m≤x≤m+3}.(1)当m=-1时,求A∩B,A∪B;(2)若B⊆A,求m的取值范围.解:(1)当m=-1时,B={x|-1≤x≤2},∴A∩B={x|1<x≤2},A∪B={x|x≥-1}.(2)若B⊆A,则m>1,即m的取值范围为(1,+∞)B组1.若集合M={x∈R|-3<x<1},N={x∈Z|-1≤x≤2},则M∩N=________.解析:因为集合N={-1,0,1,2},所以M∩N={-1,0}.答案:{-1,0} 2.已知全集U={-1,0,1,2},集合A={-1,2},B={0,2},则(∁U A)∩B=________.解析:∁U A={0,1},故(∁U A)∩B={0}.答案:{0}3.(2010年济南市高三模拟)若全集U=R,集合M={x|-2≤x≤2},N={x|x2-3x≤0},则M∩(∁U N)=________.解析:根据已知得M∩(∁U N)={x|-2≤x≤2}∩{x|x<0或x>3}={x|-2≤x<0}.答案:{x|-2≤x<0}4.集合A={3,log2a},B={a,b},若A∩B={2},则A∪B=________.解析:由A∩B={2}得log2a=2,∴a=4,从而b=2,∴A∪B={2,3,4}.答案:{2,3,4}5.(2009年高考江西卷改编)已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为________.解析:U=A∪B中有m个元素,∵(∁U A)∪(∁U B)=∁U(A∩B)中有n个元素,∴A∩B中有m-n个元素.答案:m-n6.(2009年高考重庆卷)设U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n是3的倍数},则∁U(A∪B)=________.解析:U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={3,6},∴A∪B={1,3,5,6,7},得∁U(A∪B)={2,4,8}.答案:{2,4,8}7.定义A⊗B={z|z=xy+xy,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1},则集合(A ⊗B )⊗C 的所有元素之和为________.解析:由题意可求(A ⊗B )中所含的元素有0,4,5,则(A ⊗B )⊗C 中所含的元素有0,8,10,故所有元素之和为18.答案:188.若集合{(x ,y )|x +y -2=0且x -2y +4=x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧ x =0,y =2.点(0,2)在y =3x +b 上,∴b =2. 9.设全集I ={2,3,a 2+2a -3},A ={2,|a +1|},∁I A ={5},M ={x |x =log 2|a |},则集合M 的所有子集是________.解析:∵A ∪(∁I A )=I ,∴{2,3,a 2+2a -3}={2,5,|a +1|},∴|a +1|=3,且a 2+2a -3=5,解得a =-4或a =2,∴M ={log 22,log 2|-4|}={1,2}.答案:∅,{1},{2},{1,2}10.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.解:由x 2-3x +2=0得x =1或x =2,故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中的方程,得a 2+4a +3=0⇒a =-1或a =-3;当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件;综上,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3).∵A ∪B =A ,∴B ⊆A , ①当Δ<0,即a <-3时,B =∅满足条件;②当Δ=0,即a =-3时,B ={2}满足条件;③当Δ>0,即a >-3时,B =A ={1,2}才能满足条件,则由根与系数的关系得⎩⎪⎨⎪⎧ 1+2=-2(a +1)1×2=a 2-5⇒⎩⎪⎨⎪⎧a =-52,a 2=7,矛盾.综上,a 的取值范围是a ≤-3. 11.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解:A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有-42+2×4+m =0,解得m =8,此时B ={x |-2<x <4},符合题意.12.已知集合A ={x ∈R |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 是单元素集,求a 的值及集合A ;(3)求集合M ={a ∈R |A ≠∅}.解:(1)A 是空集,即方程ax 2-3x +2=0无解.若a =0,方程有一解x =23,不合题意. 若a ≠0,要方程ax 2-3x +2=0无解,则Δ=9-8a <0,则a >98. 综上可知,若A =∅,则a 的取值范围应为a >98. (2)当a =0时,方程ax 2-3x +2=0只有一根x =23,A ={23}符合题意. 当a ≠0时,则Δ=9-8a =0,即a =98时, 方程有两个相等的实数根x =43,则A ={43}. 综上可知,当a =0时,A ={23};当a =98时,A ={43}. (3)当a =0时,A ={23}≠∅.当a ≠0时,要使方程有实数根, 则Δ=9-8a ≥0,即a ≤98. 综上可知,a 的取值范围是a ≤98,即M ={a ∈R |A ≠∅}={a |a ≤98}第二章 函数第一节 对函数的进一步认识A 组1.(2009年高考江西卷改编)函数y =-x 2-3x +4x的定义域为________. 解析:⎩⎪⎨⎪⎧-x 2-3x +4≥0,x ≠0,⇒x ∈[-4,0)∪(0,1] 答案:[-4,0)∪(0,1]2.(2010年绍兴第一次质检)如图,函数f (x )的图象是曲线段OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (1f (3))的值等于________. 解析:由图象知f (3)=1,f (1f (3))=f (1)=2.答案:23.(2009年高考北京卷)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,-x ,x >1.若f (x )=2,则x =________. 解析:依题意得x ≤1时,3x =2,∴x =log 32;当x >1时,-x =2,x =-2(舍去).故x =log 32.答案:log 324.(2010年黄冈市高三质检)函数f :{1,2}→{1,2}满足f [f (x )]>1的这样的函数个数有________个.解析:如图.答案:15.(原创题)由等式x 3+a 1x 2+a 2x +a 3=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3定义一个映射f (a 1,a 2,a 3)=(b 1,b 2,b 3),则f (2,1,-1)=________.解析:由题意知x 3+2x 2+x -1=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3,令x =-1得:-1=b 3;再令x =0与x =1得⎩⎪⎨⎪⎧-1=1+b 1+b 2+b 33=8+4b 1+2b 2+b 3, 解得b 1=-1,b 2=0.答案:(-1,0,-1) 6.已知函数f (x )=⎩⎪⎨⎪⎧ 1+1x (x >1),x 2+1 (-1≤x ≤1),2x +3 (x <-1).(1)求f (1-12-1),f {f [f (-2)]}的值;(2)求f (3x -1);(3)若f (a )=32, 求a . 解:f (x )为分段函数,应分段求解.(1)∵1-12-1=1-(2+1)=-2<-1,∴f (-2)=-22+3, 又∵f (-2)=-1,f [f (-2)]=f (-1)=2,∴f {f [f (-2)]}=1+12=32. (2)若3x -1>1,即x >23,f (3x -1)=1+13x -1=3x 3x -1; 若-1≤3x -1≤1,即0≤x ≤32,f (3x -1)=(3x -1)2+1=9x 2-6x +2; 若3x -1<-1,即x <0,f (3x -1)=2(3x -1)+3=6x +1.∴f (3x -1)=⎩⎪⎨⎪⎧ 3x 3x -1(x >23),9x 2-6x +2 (0≤x ≤23),6x +1 (x <0).(3)∵f (a )=32,∴a >1或-1≤a ≤1. 当a >1时,有1+1a =32,∴a =2; 当-1≤a ≤1时,a 2+1=32,∴a =±22. ∴a =2或±22. B 组1.(2010年广东江门质检)函数y =13x -2+lg(2x -1)的定义域是________. 解析:由3x -2>0,2x -1>0,得x >23.答案:{x |x >23} 2.(2010年山东枣庄模拟)函数f (x )=⎩⎪⎨⎪⎧ -2x +1,(x <-1),-3,(-1≤x ≤2),2x -1,(x >2),则f (f (f (32)+5))=_. 解析:∵-1≤32≤2,∴f (32)+5=-3+5=2,∵-1≤2≤2,∴f (2)=-3, ∴f (-3)=(-2)×(-3)+1=7.答案:73.定义在区间(-1,1)上的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )的解析式为________.解析:∵对任意的x ∈(-1,1),有-x ∈(-1,1),由2f (x )-f (-x )=lg(x +1),①由2f (-x )-f (x )=lg(-x +1),②①×2+②消去f (-x ),得3f (x )=2lg(x +1)+lg(-x +1), ∴f (x )=23lg(x +1)+13lg(1-x ),(-1<x <1). 答案:f (x )=23lg(x +1)+13lg(1-x ),(-1<x <1) 4.设函数y =f (x )满足f (x +1)=f (x )+1,则函数y =f (x )与y =x 图象交点的个数可能是________个.解析:由f (x +1)=f (x )+1可得f (1)=f (0)+1,f (2)=f (0)+2,f (3)=f (0)+3,…本题中如果f (0)=0,那么y =f (x )和y =x 有无数个交点;若f (0)≠0,则y =f (x )和y =x 有零个交点.答案:0或无数5.设函数f (x )=⎩⎪⎨⎪⎧2 (x >0)x 2+bx +c (x ≤0),若f (-4)=f (0),f (-2)=-2,则f (x )的解析式为f (x )=________,关于x 的方程f (x )=x 的解的个数为________个.解析:由题意得⎩⎪⎨⎪⎧ 16-4b +c =c4-2b +c =-2 ⎩⎪⎨⎪⎧b =4c =2,∴f (x )=⎩⎪⎨⎪⎧ 2 (x >0)x 2+4x +2 (x ≤0). 由数形结合得f (x )=x 的解的个数有3个.答案:⎩⎪⎨⎪⎧2 (x >0)x 2+4x +2 (x ≤0)3 6.设函数f (x )=log a x (a >0,a ≠1),函数g (x )=-x 2+bx +c ,若f (2+2)-f (2+1)=12,g (x )的图象过点A (4,-5)及B (-2,-5),则a =__________,函数f [g (x )]的定义域为__________.答案:2 (-1,3)7.(2009年高考天津卷改编)设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0x +6,x <0,则不等式f (x )>f (1)的解集是________. 解析:由已知,函数先增后减再增,当x ≥0,f (x )>f (1)=3时,令f (x )=3, 解得x =1,x =3.故f (x )>f (1)的解集为0≤x <1或x >3.当x <0,x +6=3时,x =-3,故f (x )>f (1)=3,解得-3<x <0或x >3. 综上,f (x )>f (1)的解集为{x |-3<x <1或x >3}.答案:{x |-3<x <1或x >3}8.(2009年高考山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(4-x ), x ≤0,f (x -1)-f (x -2), x >0,则f (3)的值为________. 解析:∵f (3)=f (2)-f (1),又f (2)=f (1)-f (0),∴f (3)=-f (0),∵f (0)=log 24=2,∴f (3)=-2.答案:-29.有一个有进水管和出水管的容器,每单位时间进水量是一定的,设从某时刻开始,5分钟内只进水,不出水,在随后的15分钟内既进水,又出水,得到时间x 与容器中的水量y 之间关系如图.再随后,只放水不进水,水放完为止,则这段时间内(即x ≥20),y 与x 之间函数的函数关系是________.解析:设进水速度为a 1升/分钟,出水速度为a 2升/分钟,则由题意得⎩⎪⎨⎪⎧ 5a 1=205a 1+15(a 1-a 2)=35,得⎩⎪⎨⎪⎧a 1=4a 2=3,则y =35-3(x -20),得y =-3x +95,又因为水放完为止,所以时间为x ≤953,又知x ≥20,故解析式为y =-3x +95(20≤x ≤953).答案:y =-3x +95(20≤x ≤953)10.函数f (x )=(1-a 2)x 2+3(1-a )x +6.(1)若f (x )的定义域为R ,求实数a 的取值范围;(2)若f (x )的定义域为[-2,1],求实数a 的值.解:(1)①若1-a 2=0,即a =±1,(ⅰ)若a =1时,f (x )=6,定义域为R ,符合题意;(ⅱ)当a =-1时,f (x )=6x +6,定义域为[-1,+∞),不合题意. ②若1-a 2≠0,则g (x )=(1-a 2)x 2+3(1-a )x +6为二次函数.由题意知g (x )≥0对x ∈R 恒成立,∴⎩⎪⎨⎪⎧ 1-a 2>0,Δ≤0,∴⎩⎪⎨⎪⎧-1<a <1,(a -1)(11a +5)≤0, ∴-511≤a <1.由①②可得-511≤a ≤1. (2)由题意知,不等式(1-a 2)x 2+3(1-a )x +6≥0的解集为[-2,1],显然1-a 2≠0且-2,1是方程(1-a 2)x 2+3(1-a )x +6=0的两个根.∴⎩⎪⎨⎪⎧ 1-a 2<0,-2+1=3(1-a )a 2-1,-2=61-a 2,Δ=[3(1-a )]2-24(1-a 2)>0∴⎩⎪⎨⎪⎧ a <-1或a >1,a =2,a =±2.a <-511或a >1∴a =2.11.已知f (x +2)=f (x )(x ∈R ),并且当x ∈[-1,1]时,f (x )=-x 2+1,求当x ∈[2k -1,2k +1](k ∈Z )时、f (x )的解析式.解:由f (x +2)=f (x ),可推知f (x )是以2为周期的周期函数.当x ∈[2k -1,2k +1]时,2k -1≤x ≤2k +1,-1≤x -2k ≤1.∴f (x -2k )=-(x -2k )2+1. 又f (x )=f (x -2)=f (x -4)=…=f (x -2k ),∴f (x )=-(x -2k )2+1,x ∈[2k -1,2k +1],k ∈Z .12.在2008年11月4日珠海航展上,中国自主研制的ARJ 21支线客机备受关注,接到了包括美国在内的多国订单.某工厂有216名工人接受了生产1000件该支线客机某零部件的总任务,已知每件零件由4个C 型装置和3个H 型装置配套组成,每个工人每小时能加工6个C 型装置或3个H 型装置.现将工人分成两组同时开始加工,每组分别加工一种装置,设加工C 型装置的工人有x 位,他们加工完C 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x ).(单位:h ,时间可不为整数)(1)写出g (x ),h (x )的解析式;(2)写出这216名工人完成总任务的时间f (x )的解析式;(3)应怎样分组,才能使完成总任务的时间最少?解:(1)g (x )=20003x (0<x <216,x ∈N *),h (x )=1000216-x (0<x <216,x ∈N *). (2)f (x )=⎩⎪⎨⎪⎧ 20003x (0<x ≤86,x ∈N *).1000216-x (87≤x <216,x ∈N *).(3)分别为86、130或87、129.第二节 函数的单调性A 组1.(2009年高考福建卷改编)下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.①f (x )=1x②f (x )=(x -1)2 ③f (x )=e x ④f (x )=ln(x +1) 解析:∵对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2),∴f (x )在(0,+∞)上为减函数.答案:①2.函数f (x )(x ∈R )的图象如右图所示,则函数g (x )=f (log a x )(0<a <1)的单调减区间是________.解析:∵0<a <1,y =log a x 为减函数,∴log a x ∈[0,12]时,g (x )为减函数. 由0≤log a x ≤12a ≤x ≤1.答案:[a ,1](或(a ,1))3.函数y =x -4+15-3x 的值域是________.解析:令x =4+sin 2α,α∈[0,π2],y =sin α+3cos α=2sin(α+π3),∴1≤y ≤2. 答案:[1,2]4.已知函数f (x )=|e x +a e x |(a ∈R )在区间[0,1]上单调递增,则实数a 的取值范围__. 解析:当a <0,且e x +a e x ≥0时,只需满足e 0+a e 0≥0即可,则-1≤a <0;当a =0时,f (x )=|e x |=e x 符合题意;当a >0时,f (x )=e x +a e x ,则满足f ′(x )=e x -a e x ≥0在x ∈[0,1]上恒成立.只需满足a ≤(e 2x )min 成立即可,故a ≤1,综上-1≤a ≤1.答案:-1≤a ≤15.(原创题)如果对于函数f (x )定义域内任意的x ,都有f (x )≥M (M 为常数),称M 为f (x )的下界,下界M 中的最大值叫做f (x )的下确界,下列函数中,有下确界的所有函数是________.①f (x )=sin x ;②f (x )=lg x ;③f (x )=e x ;④f (x )=⎩⎪⎨⎪⎧1 (x >0)0 (x =0)-1 (x <-1)解析:∵sin x ≥-1,∴f (x )=sin x 的下确界为-1,即f (x )=sin x 是有下确界的函数;∵f (x )=lg x 的值域为(-∞,+∞),∴f (x )=lg x 没有下确界;∴f (x )=e x 的值域为(0,+∞),∴f (x )=e x 的下确界为0,即f (x )=e x 是有下确界的函数; ∵f (x )=⎩⎨⎧1 (x >0)0 (x =0)-1 (x <-1)的下确界为-1.∴f (x )=⎩⎨⎧ 1 (x >0)0 (x =0)-1 (x <-1)是有下确界的函数.答案:①③④6.已知函数f (x )=x 2,g (x )=x -1.(1)若存在x ∈R 使f (x )<b ·g (x ),求实数b 的取值范围;(2)设F (x )=f (x )-mg (x )+1-m -m 2,且|F (x )|在[0,1]上单调递增,求实数m 的取值范围.解:(1)x ∈R ,f (x )<b ·g (x x ∈R ,x 2-bx +b =(-b )2-4b b <0或b >4.(2)F (x )=x 2-mx +1-m 2,Δ=m 2-4(1-m 2)=5m 2-4,①当Δ≤0即-255≤m ≤255时,则必需 ⎩⎨⎧ m 2≤0-255≤m ≤255-255≤m ≤0. ②当Δ>0即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2),若m 2≥1,则x 1≤0. ⎩⎪⎨⎪⎧ m 2≥1F (0)=1-m 2≤0m ≥2. 若m 2≤0,则x 2≤0, ⎩⎪⎨⎪⎧ m 2≤0F (0)=1-m 2≥0-1≤m <-255.综上所述:-1≤m ≤0或m ≥2. B 组1.(2010年山东东营模拟)下列函数中,单调增区间是(-∞,0]的是________.①y =-1x②y =-(x -1) ③y =x 2-2 ④y =-|x | 解析:由函数y =-|x |的图象可知其增区间为(-∞,0].答案:④2.若函数f (x )=log 2(x 2-ax +3a )在区间[2,+∞)上是增函数,则实数a 的取值范围是________.解析:令g (x )=x 2-ax +3a ,由题知g (x )在[2,+∞)上是增函数,且g (2)>0.∴⎩⎪⎨⎪⎧ a 2≤2,4-2a +3a >0,∴-4<a ≤4.答案:-4<a ≤43.若函数f (x )=x +a x (a >0)在(34,+∞)上是单调增函数,则实数a 的取值范围__. 解析:∵f (x )=x +a x (a >0)在(a ,+∞)上为增函数,∴a ≤34,0<a ≤916. 答案:(0,916] 4.(2009年高考陕西卷改编)定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则下列结论正确的是________. ①f (3)<f (-2)<f (1) ②f (1)<f (-2)<f (3)③f (-2)<f (1)<f (3) ④f (3)<f (1)<f (-2)解析:由已知f (x 2)-f (x 1)x 2-x 1<0,得f (x )在x ∈[0,+∞)上单调递减,由偶函数性质得f (2)=f (-2),即f (3)<f (-2)<f (1).答案:①5.(2010年陕西西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧a x (x <0),(a -3)x +4a (x ≥0)满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是________. 解析:由题意知,f (x )为减函数,所以⎩⎪⎨⎪⎧ 0<a <1,a -3<0,a 0≥(a -3)×0+4a ,解得0<a ≤14. 6.(2010年宁夏石嘴山模拟)函数f (x )的图象是如下图所示的折线段OAB ,点A 的坐标为(1,2),点B 的坐标为(3,0),定义函数g (x )=f (x )·(x -1),则函数g (x )的最大值为________.解析:g (x )=⎩⎪⎨⎪⎧2x (x -1) (0≤x <1),(-x +3)(x -1) (1≤x ≤3),当0≤x <1时,最大值为0;当1≤x ≤3时,在x =2取得最大值1.答案:17.(2010年安徽合肥模拟)已知定义域在[-1,1]上的函数y =f (x )的值域为[-2,0],则函数y =f (cos x )的值域是________.解析:∵cos x ∈[-1,1],函数y =f (x )的值域为[-2,0],∴y =f (cos x )的值域为[-2,0].答案:[-2,0]8.已知f (x )=log 3x +2,x ∈[1,9],则函数y =[f (x )]2+f (x 2)的最大值是________.解析:∵函数y =[f (x )]2+f (x 2)的定义域为 ⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9,∴x ∈[1,3],令log 3x =t ,t ∈[0,1], ∴y =(t +2)2+2t +2=(t +3)2-3,∴当t =1时,y max =13.答案:139.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为__________.解析:令μ=2x 2+x ,当x ∈(0,12)时,μ∈(0,1),而此时f (x )>0恒成立,∴0<a <1. μ=2(x +14)2-18,则减区间为(-∞,-14).而必然有2x 2+x >0,即x >0或x <-12.∴f (x )的单调递增区间为(-∞,-12).答案:(-∞,-12) 10.试讨论函数y =2(log 12x )2-2log 12x +1的单调性. 解:易知函数的定义域为(0,+∞).如果令u =g (x )=log 12x ,y =f (u )=2u 2-2u +1,那么原函数y =f [g (x )]是由g (x )与f (u )复合而成的复合函数,而u =log 12x 在x ∈(0,+∞)内是减函数,y =2u 2-2u +1=2(u -12)2+12在u ∈(-∞,12)上是减函数,在u ∈(12,+∞)上是增函数.又u ≤12,即log 12x ≤12,得x ≥22;u >12,得0<x <22.由此,从下表讨论复合函数y =f [g (x )]的单调性:故函数y =2(log 12x )2-2log 12x +1在区间(0,22)上单调递减,在区间(22,+∞)上单调递增.11.(2010年广西河池模拟)已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f (x 1x 2)<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2), 所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)由f (x 1x 2)=f (x 1)-f (x 2)得f (93)=f (9)-f (3),而f (3)=-1,所以f (9)=-2. 由于函数f (x )在区间(0,+∞)上是单调递减函数,由f (|x |)<f (9),得|x |>9,∴x >9或x <-9.因此不等式的解集为{x |x >9或x <-9}.12.已知:f (x )=log 3x 2+ax +b x,x ∈(0,+∞),是否存在实数a ,b ,使f (x )同时满足下列三个条件:(1)在(0,1]上是减函数,(2)在[1,+∞)上是增函数,(3)f(x)的最小值是1.若存在,求出a、b;若不存在,说明理由.解:∵f(x)在(0,1]上是减函数,[1,+∞)上是增函数,∴x=1时,f(x)最小,log31+a+b1=1.即a+b=2.设0<x1<x2≤1,则f(x1)>f(x2).即x12+ax1+bx1>x22+ax2+bx2恒成立.由此得(x1-x2)(x1x2-b)x1x2>0恒成立.又∵x1-x2<0,x1x2>0,∴x1x2-b<0恒成立,∴b≥1.设1≤x3<x4,则f(x3)<f(x4)恒成立.∴(x3-x4)(x3x4-b)x3x4<0恒成立.∵x3-x4<0,x3x4>0,∴x3x4>b恒成立.∴b≤1.由b≥1且b≤1可知b=1,∴a=1.∴存在a、b,使f(x)同时满足三个条件.第三节函数的性质A组1.设偶函数f(x)=log a|x-b|在(-∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系为________.解析:由f(x)为偶函数,知b=0,∴f(x)=log a|x|,又f(x)在(-∞,0)上单调递增,所以0<a<1,1<a+1<2,则f(x)在(0,+∞)上单调递减,所以f(a+1)>f(b +2).答案:f(a+1)>f(b+2)2.(2010年广东三校模拟)定义在R上的函数f(x)既是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)等于________.解析:f(x)为奇函数,且x∈R,所以f(0)=0,由周期为2可知,f(4)=0,f(7)=f(1),又由f(x+2)=f(x),令x=-1得f(1)=f(-1)=-f(1)⇒f(1)=0,所以f(1)+f(4)+f(7)=0.答案:03.(2009年高考山东卷改编)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则f(-25)、f(11)、f(80)的大小关系为________.解析:因为f(x)满足f(x-4)=-f(x),所以f(x-8)=f(x),所以函数是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3),又因为f(x)在R 上是奇函数,f(0)=0,得f(80)=f(0)=0,f(-25)=f(-1)=-f(1),而由f(x-4)=-f(x)得f(11)=f(3)=-f(-3)=-f(1-4)=f(1),又因为f(x)在区间[0,2]上是增函数,所以f (1)>f (0)=0,所以-f (1)<0,即f (-25)<f (80)<f (11).答案:f (-25)<f (80)<f (11)4.(2009年高考辽宁卷改编)已知偶函数f (x )在区间[0,+∞)上单调增加,则满足f (2x -1)<f (13)的x 取值范围是________. 解析:由于f (x )是偶函数,故f (x )=f (|x |),由f (|2x -1|)<f (13),再根据f (x )的单调性得|2x -1|<13,解得13<x <23.答案:(13,23) 5.(原创题)已知定义在R 上的函数f (x )是偶函数,对x ∈R ,f (2+x )=f (2-x ),当f (-3)=-2时,f (2011)的值为________.解析:因为定义在R 上的函数f (x )是偶函数,所以f (2+x )=f (2-x )=f (x -2),故函数f (x )是以4为周期的函数,所以f (2011)=f (3+502×4)=f (3)=f (-3)=-2.答案:-26.已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时函数取得最小值-5.(1)证明:f (1)+f (4)=0;(2)求y =f (x ),x ∈[1,4]的解析式;(3)求y =f (x )在[4,9]上的解析式.解:(1)证明:∵f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1), 又∵y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0.(2)当x ∈[1,4]时,由题意可设f (x )=a (x -2)2-5(a >0),由f (1)+f (4)=0,得a (1-2)2-5+a (4-2)2-5=0,∴a =2,∴f (x )=2(x -2)2-5(1≤x ≤4).(3)∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=0,又知y =f (x )在[0,1]上是一次函数,∴可设f (x )=kx (0≤x ≤1),而f (1)=2(1-2)2-5=-3,∴k =-3,∴当0≤x ≤1时,f (x )=-3x ,从而当-1≤x <0时,f (x )=-f (-x )=-3x ,故-1≤x ≤1时,f (x )=-3x .∴当4≤x ≤6时,有-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15.当6<x ≤9时,1<x -5≤4,∴f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5.∴f (x )=⎩⎪⎨⎪⎧-3x +15, 4≤x ≤62(x -7)2-5, 6<x ≤9. B 组1.(2009年高考全国卷Ⅰ改编)函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则下列结论正确的是________.①f (x )是偶函数 ②f (x )是奇函数 ③f (x )=f (x +2)④f (x +3)是奇函数解析:∵f (x +1)与f (x -1)都是奇函数,∴f (-x +1)=-f (x +1),f (-x -1)=-f (x -1),∴函数f (x )关于点(1,0),及点(-1,0)对称,函数f (x )是周期T =2[1-(-1)]=4的周期函数.∴f (-x -1+4)=-f (x -1+4),f (-x +3)=-f (x +3),即f (x +3)是奇函数.答案:④2.已知定义在R 上的函数f (x )满足f (x )=-f (x +32),且f (-2)=f (-1)=-1,f (0)=2,f (1)+f (2)+…+f (2009)+f (2010)=________.解析:f (x )=-f (x +32)⇒f (x +3)=f (x ),即周期为3,由f (-2)=f (-1)=-1,f (0)=2,所以f (1)=-1,f (2)=-1,f (3)=2,所以f (1)+f (2)+…+f (2009)+f (2010)=f (2008)+f (2009)+f (2010)=f (1)+f (2)+f (3)=0.答案:03.(2010年浙江台州模拟)已知f (x )是定义在R 上的奇函数,且f (1)=1,若将f (x )的图象向右平移一个单位后,得到一个偶函数的图象,则f (1)+f (2)+f (3)+…+f (2010)=________.解析:f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),将f (x )的图象向右平移一个单位后,得到一个偶函数的图象,则满足f (-2+x )=-f (x ),即f (x +2)=-f (x ),所以周期为4,f (1)=1,f (2)=f (0)=0,f (3)=-f (1)=-1,f (4)=0,所以f (1)+f (2)+f (3)+f (4)=0,则f (1)+f (2)+f (3)+…+f (2010)=f (4)×502+f (2)=0.答案:04.(2010年湖南郴州质检)已知函数f (x )是R 上的偶函数,且在(0,+∞)上有f ′(x )>0,若f (-1)=0,那么关于x 的不等式xf (x )<0的解集是________.解析:在(0,+∞)上有f ′(x )>0,则在(0,+∞)上f (x )是增函数,在(-∞,0)上是减函数,又f (x )在R 上是偶函数,且f (-1)=0,∴f (1)=0.从而可知x ∈(-∞,-1)时,f (x )>0;x ∈(-1,0)时,f (x )<0;x ∈(0,1)时,f (x )<0;x ∈(1,+∞)时,f (x )>0.∴不等式的解集为(-∞,-1)∪(0,1)答案:(-∞,-1)∪(0,1).5.(2009年高考江西卷改编)已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2009)+f (2010)的值为________.解析:∵f (x )是偶函数,∴f (-2009)=f (2009).∵f (x )在x ≥0时f (x +2)=f (x ),∴f (x )周期为 2.∴f (-2009)+f (2010)=f (2009)+f (2010)=f (1)+f (0)=log 22+log 21=0+1=1.答案:16.(2010年江苏苏州模拟)已知函数f (x )是偶函数,并且对于定义域内任意的x ,满足f (x +2)=-1f (x ),若当2<x <3时,f (x )=x ,则f (2009.5)=________. 解析:由f (x +2)=-1f (x ),可得f (x +4)=f (x ),f (2009.5)=f (502×4+1.5)=f (1.5)=f (-2.5)∵f (x )是偶函数,∴f (2009.5)=f (2.5)=52.答案:527.(2010年安徽黄山质检)定义在R 上的函数f (x )在(-∞,a ]上是增函数,函数y =f (x +a )是偶函数,当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,则f (2a -x 1)与f (x 2)的大小关系为________.解析:∵y =f (x +a )为偶函数,∴y =f (x +a )的图象关于y 轴对称,∴y =f (x )的图象关于x =a 对称.又∵f (x )在(-∞,a ]上是增函数,∴f (x )在[a ,+∞)上是减函数.当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,有a -x 1<x 2-a ,即a <2a -x 1<x 2,∴f (2a -x 1)>f (x 2).答案:f (2a -x 1)>f (x 2)8.已知函数f (x )为R 上的奇函数,当x ≥0时,f (x )=x (x +1).若f (a )=-2,则实数a =________.解析:当x ≥0时,f (x )=x (x +1)>0,由f (x )为奇函数知x <0时,f (x )<0,∴a <0,f (-a )=2,∴-a (-a +1)=2,∴a =2(舍)或a =-1.答案:-19.(2009年高考山东卷)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数.若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.解析:因为定义在R 上的奇函数,满足f (x -4)=-f (x ),所以f (4-x )=f (x ),因此,函数图象关于直线x =2对称且f (0)=0.由f (x -4)=-f (x )知f (x -8)=f (x ),所以函数是以8为周期的周期函数.又因为f (x )在区间[0,2]上是增函数,所以f (x )在区间[-2,0]上也是增函数,如图所示,那么方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,不妨设x 1<x 2<x 3<x 4.由对称性知x 1+x 2=-12,x 3+x 4=4,所以x 1+x 2+x 3+x 4=-12+4=-8. 答案:-810.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式.解:∵f (x )是奇函数,可得f (0)=-f (0),∴f (0)=0.当x >0时,-x <0,由已知f (-x )=x lg(2+x ),∴-f (x )=x lg(2+x ),即f (x )=-x lg(2+x ) (x >0).∴f (x )=⎩⎪⎨⎪⎧ -x lg(2-x ) (x <0),-x lg(2+x ) (x ≥0).即f (x )=-x lg(2+|x |)(x ∈R ). 11.已知函数f (x ),当x ,y ∈R 时,恒有f (x +y )=f (x )+f (y ).(1)求证:f (x )是奇函数;(2)如果x ∈R +,f (x )<0,并且f (1)=-12,试求f (x )在区间[-2,6]上的最值. 解:(1)证明:∴函数定义域为R ,其定义域关于原点对称.∵f (x +y )=f (x )+f (y ),令y =-x ,∴f (0)=f (x )+f (-x ).令x =y =0,∴f (0)=f (0)+f (0),得f (0)=0.∴f (x )+f (-x )=0,得f (-x )=-f (x ),∴f (x )为奇函数.(2)法一:设x ,y ∈R +,∵f (x +y )=f (x )+f (y ),∴f (x +y )-f (x )=f (y ). ∵x ∈R +,f (x )<0,∴f (x +y )-f (x )<0,∴f (x +y )<f (x ).∵x +y >x ,∴f (x )在(0,+∞)上是减函数.又∵f (x )为奇函数,f (0)=0,∴f (x )在(-∞,+∞)上是减函数.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3.法二:设x 1<x 2,且x 1,x 2∈R .则f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1).∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)-f (x 1)<0.即f (x )在R 上单调递减.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3. 12.已知函数f (x )的定义域为R ,且满足f (x +2)=-f (x ).(1)求证:f (x )是周期函数;(2)若f (x )为奇函数,且当0≤x ≤1时,f (x )=12x ,求使f (x )=-12在[0,2010]上的所有x 的个数.解:(1)证明:∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴f (x )是以4为周期的周期函数.(2)当0≤x ≤1时,f (x )=12x ,设-1≤x ≤0,则0≤-x ≤1,∴f (-x )=12(-x )=-12x .∵f (x )是奇函数,∴f (-x )=-f (x ),∴-f (x )=-12x ,即f (x )=12x .故f (x )=12x (-1≤x ≤1)又设1<x <3,则-1<x -2<1,∴f (x -2)=12(x -2),又∵f (x -2)=-f (2-x )=-f [(-x )+2]=-[-f (-x )]=-f (x ),∴-f (x )=12(x-2),∴f (x )=-12(x -2)(1<x <3).∴f (x )=⎩⎨⎧12x (-1≤x ≤1)-12(x -2) (1<x <3)由f (x )=-12,解得x =-1.∵f (x )是以4为周期的周期函数.故f (x )=-12的所有x =4n -1(n ∈Z ).令0≤4n -1≤2010,则14≤n ≤50234,又∵n ∈Z ,∴1≤n ≤502(n ∈Z ),∴在[0,2010]上共有502个x 使f (x )=-12.第三章 指数函数和对数函数第一节 指数函数A 组1.(2010年黑龙江哈尔滨模拟)若a >1,b <0,且a b +a -b =22,则a b -a -b 的值等于________.解析:∵a >1,b <0,∴0<a b <1,a -b >1.又∵(a b +a -b )2=a 2b +a -2b +2=8,∴a 2b +a -2b =6,∴(a b -a -b )2=a 2b +a -2b -2=4,∴a b -a -b =-2.答案:-22.已知f (x )=a x +b 的图象如图所示,则f (3)=________.解析:由图象知f (0)=1+b =-2,∴b =-3.又f (2)=a 2-3=0,∴a =3,则f (3)=(3)3-3=33-3. 答案:33-33.函数y =(12)2x -x 2的值域是________.解析:∵2x -x 2=-(x -1)2+1≤1,∴(12)2x -x 2≥12.答案:[12,+∞) 4.(2009年高考山东卷)若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.解析:函数f (x )的零点的个数就是函数y =a x 与函数y =x +a 交点的个数,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有惟一交点,故a >1. 答案:(1,+∞)5.(原创题)若函数f (x )=a x-1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a 等于________.解析:由题意知⎩⎨⎧0<a <1a 2-1=0a 0-1=2无解或⎩⎨⎧a >1a 0-1=0a 2-1=2⇒a = 3.答案: 36.已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.解:(1)因为f (x )是R 上的奇函数,所以f (0)=0,即-1+b2+a=0,解得b =1.从而有f (x )=-2x +12x +1+a .又由f (1)=-f (-1)知-2+14+a =--12+11+a ,解得a =2.(2)法一:由(1)知f (x )=-2x +12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数,又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0⇔f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k .即对一切t ∈R 有3t 2-2t -k >0,从而Δ=4+12k <0,解得k <-13.法二:由(1)知f (x )=-2x +12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0即(22t2-k +1+2)(-2t 2-2t +1)+(2t 2-2t +1+2)(-22t 2-k +1)<0整理得23t 2-2t -k >1,因底数2>1,故3t 2-2t -k >0上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.B 组1.如果函数f (x )=a x+b -1(a >0且a ≠1)的图象经过第一、二、四象限,不经过第三象限,那么一定有________.①0<a <1且b >0 ②0<a <1且0<b <1 ③a >1且b <0 ④a >1且b >0解析:当0<a <1时,把指数函数f (x )=a x 的图象向下平移,观察可知-1<b -1<0,即0<b <1.答案:②2.(2010年保定模拟)若f (x )=-x 2+2ax 与g (x )=(a +1)1-x 在区间[1,2]上都是减函数,则a 的取值范围是________.解析:f (x )=-x 2+2ax =-(x -a )2+a 2,所以f (x )在[a ,+∞)上为减函数,又f (x ),g (x )都在[1,2]上为减函数,所以需⎩⎨⎧a ≤1a +1>1⇒0<a ≤1.答案:(0,1]3.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件①f (x )=a x ·g (x )(a >0,a ≠1);②g (x )≠0;若f (1)g (1)+f (-1)g (-1)=52,则a 等于________.解析:由f (x )=a x ·g (x )得f (x )g (x )=a x ,所以f (1)g (1)+f (-1)g (-1)=52⇒a +a -1=52,解得a=2或12.答案:2或124.(2010年北京朝阳模拟)已知函数f (x )=a x (a >0且a ≠1),其反函数为f -1(x ).若f (2)=9,则f -1(13)+f (1)的值是________.解析:因为f (2)=a 2=9,且a >0,∴a =3,则f (x )=3x =13,∴x =-1,故f -1(13)=-1.又f (1)=3,所以f -1(13)+f (1)=2.答案:25.(2010年山东青岛质检)已知f (x )=(13)x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________.解析:设y =g (x )上任意一点P (x ,y ),P (x ,y )关于x =1的对称点P ′(2-x ,y )在f (x )=(13)x 上,∴y =(13)2-x =3x -2.答案:y =3x -2(x ∈R )6.(2009年高考山东卷改编)函数y =e x +e -xe x -e-x 的图象大致为________.解析:∵f (-x )=e -x+e xe -x -e x =-e x+e -xe x -e -x=-f (x ),∴f (x )为奇函数,排除④.又∵y =e x +e -x e x -e -x =e 2x +1e 2x -1=e 2x -1+2e 2x -1=1+2e 2x -1在(-∞,0)、(0,+∞)上都是减函数,排除②、③.答案:①7.(2009年高考辽宁卷改编)已知函数f (x )满足:当x ≥4时,f (x )=(12)x ;当x <4时,f (x )=f (x +1),则f (2+log 23)=________.解析:∵2<3<4=22,∴1<log 23<2.∴3<2+log 23<4,∴f (2+log 23)=f (3+log 23)=f (log 224)=(12)log 224=2-log 224=2log 2124=124.答案:1248.(2009年高考湖南卷改编)设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K , f (x )>K .取函数f (x )=2-|x |,当K =12时,函数f K (x )的单调递增区间为________.解析:由f (x )=2-|x |≤12得x ≥1或x ≤-1,∴f K (x )=⎩⎪⎨⎪⎧2-|x |,x ≥1或x ≤-1,12,-1<x <1.则单调增区间为(-∞,-1].答案:(-∞,-1]9.函数y =2|x |的定义域为[a ,b ],值域为[1,16],当a 变动时,函数b =g (a )的图象可以是________.解析:函数y =2|x |的图象如图.当a =-4时,0≤b ≤4,当b =4时,-4≤a ≤0,答案:②10.(2010年宁夏银川模拟)已知函数f (x )=a 2x +2a x -。
2013届高考数学填空题复习测试261.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表123s s s ,,分别表示甲、乙、丙三人成绩的标准差,则123s s s ,,的大小顺序是 .2.已知点Q b a p 与点),((1,0)在直线0132=+-y x 的两侧,则下列说法:(1)0132>+-b a ; (2)0≠a 时,ab 有最小值,无最大值; (3)M b a R M >+∈∃+22,使恒成立 ;(4)且0>a 1≠a ,时0>b , 则1-a b 的取值范围为(-),32()31,∞+⋃-∞. 其中正确的是 (把你认为所有正确的命题的序号都填上). 3.函数()f x 的定义域为D ,若满足①()f x 在D 内是单调函数,②存在[],a b D ⊆,使()f x 在[],a b 上的值域为[],a b ,那么()y f x =叫做闭函数,现有()2f x x k =++是闭函数,那么k 的取值范围是 .4.设x ,y 满足约束条件3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,若目标函数x y z a b =+(a >0,b >0)的最大值为10,则5a +4b 的最小值为 .5.已知P 为抛物线x y 42=的焦点,过P 的直线l 与抛物线交与A,B 两点,若Q 在直线l 上,且满足||||||||AP QB AQ PB =,则点Q 总在定直线1x =-上.试猜测如果P 为椭圆221259x y +=的左焦点,过P 的直线l 与椭圆交与A,B 两点,若Q 在直线l 上,且满足||||||||AP QB AQ PB =,则点Q 总在定直线 上.6.设5021,,,a a a 是从1,0,1-这三个整数中取值的数列,若95021=+++a a a ,且 107)1()1()1(2502221=++++++a a a ,则5021,,,a a a 中数字0的个为 .7. 设()f x 是定义在R 上的函数,若(0)2010f =,且对任意的x R ∈,满足(2)()32,(6)()632x x f x f x f x f x +-≤⋅+-≥⋅,则(2010)f = . 甲的成绩 环数 7 8 9 10 频数 5 5 5 5 丙的成绩 环数 7 8 9 10 频数 4 6 6 4 乙的成绩环数 7 8 9 10 频数 6 4 4 6D 1C 1B 1A 1D C B A (第12题) 8. 已知数列{}n a ,{}n b 满足11a =,22a =,12b =,且对任意的正整数,,,i j k l ,当i j k l +=+时,都有i j k l a b a b =,则1010a b +的值是 .9.已知椭圆的中心在坐标原点,焦点在x 轴上,以其两个焦点和短轴的两个端点为顶点的四边形是一个面积为4的正方形,设P 为该椭圆上的动点,C 、D 的坐标分别是()()2,0,2,0-,则PD PC ⋅的最大值为 .10.已知函数xx x x f 4341ln )(+-=,2()2 4.g x x bx =-+若对任意1(0,2)x ∈,存在[]21,2x ∈,使12()()f x g x ≥,则实数b 取值范围是 .11.设F 是椭圆C :221(0,0)x y a b a b+=>>的右焦点,C 的一个动点到F 的最大距离为d ,若C 的右准线上存在点P ,使得PF d =,则椭圆C 的离心率的取值范围是 .12. 若正四棱柱ABCD -A 1B 1C 1D 1内接于半径为R 的半球,上底面顶点A 1、B 1、C 1、D 1在半球球面上,下底面ABCD 在半球的底面上,则该正四棱柱体积的最大值为 .13.用一些棱长为1cm 的小正方体码放成一个几何体,图1为其俯视图,图2为其主视图则这个几何体的体积最大是 cm 3.图1(俯视图) 图2(主视图) 14.设P 是椭圆1162522=+y x 上任意一点,A 和F 分别是椭圆的左顶点和右焦点,则AF PA PF PA ⋅+⋅41的最小值为 . 15.函数212()21021(3,)n g x x x x n n -=+--≥∈N 在实数范围内的零点个数为 .参考答案2、(3)(4);3、9(,2]4--;4、8;5、254x =-;6、11;7、201022009+;8、1536; 9、6;10、14[,)2+∞;11、1,12⎡⎫⎪⎢⎣⎭;12、3439R ;13、7;14、9-;15、3个。
用心 爱心 专心12013高考数学一轮复习试题 5.3答案 一、选择题 D .-781.解析: a ·(b ·c )=(1,-3)×(4×2+6×3)=(26,-78).答案: A2.解析: 设P 点坐标为(x,0),则AP →=(x -2,-2), BP →=(x -4,-1).AP →·BP →=(x -2)(x -4)+(-2)×(-1)=x 2-6x +10=(x -3)2+1.当x =3时,AP →·BP →有最小值1. ∴点P 坐标为(3,0),故选C.答案: C3.解析: 对于A ,(a +b )(a -b )=a 2-b 2=0,则(a +b )⊥(a -b ),A 正确;对于B , cos 〈a ,b 〉=ab|a ||b |=cos(α-β),a 与b 的夹角等于α-β或β-α,则B 错误;对于C ,|a +b |+|a -b |=2+2cos α-β+2-2cos α-β, ∵-1<cos(α-β)<1,∴|a +b |+|a -b |>2,则C 正确; 对于D ,a 在a +b 方向上的投影为|a |·cos〈a ,a +b 〉,b 在a +b 方向上的投影为 |b |·cos〈b ,a +b 〉,∵cos 〈a ,a +b 〉=cos 〈b ,a +b 〉,则D 正确.故选B.答案: B4.解析: 由已知得|m |=34,|n |=5,m ·n =11, ∵(λm +n )⊥(2n +m ),∴(λm +n )·(2n +m )=λm 2+(2λ+1)m ·n +2n 2=0,即34λ+(2λ+1)×11+2×5=0,解得λ=-38.答案: C5.解析: ∵|a |=|b |=2,a ·b =-23,∴cos θ=-232×2=-32.又θ∈[0,π],∴sin θ=12.∴|a ×b |=2×2×12=2.故选B.答案: B6.解析: 在△ABC 中,AB →-AC →=CB →,①错误; 若AB →·BC →>0,则∠B 是钝角,△ABC 是钝角三角形,④错误. 答案: C 二、填空题7.解析: ∵a ∥b ,∴x =4,∴b =(4,-2), ∴a +b =(6,-3),b -c =(1,-2-y ). ∵(a +b )⊥(b -c ),∴(a +b )·(b -c )=0, 即6-3(-2-y )=0,∴y =-4,故向量MN →=(-8,8),|MN →|=8 2.答案: 8 28.解析: 由AB →+BC →+CA →=0可得(AB →+BC →+CA →)2=0,∴9+16+25+2(AB →·BC →+BC →·CA →+CA →·AB →)=0, AB →·BC →+BC →·CA →+CA →·AB →=-25.答案: -259.解析: 命题①明显错误.由两向量平行的充要条件得1×6+2k =0,k =-3,故命 10.题②正确.由|a |=|b |=|a -b |,再结合平行四边形法则可得a 与a +b 的夹角为30°,命题③错 误.答案: ②三、解答题10.解析: (1)∵a =(1,2),b =(2,-2), ∴c =4a +b =(4,8)+(2,-2)=(6,6). ∴b ·c =2×6-2×6=0, ∴(b ·c )a =0a =0.(2)a +λb =(1,2)+λ(2,-2)=(2λ+1,2-2λ), 由于a +λb 与a 垂直,∴2λ+1+2(2-2λ)=0,∴λ=52.∴λ的值为52.(3)设向量a 与b 的夹角为θ,向量a 在b 方向上的投影为|a |cos θ.∴|a |cos θ=a ·b|b |=1×2+2×-222+-22=-222=-22. 11.解析: (1)因为a ∥b ,所以2sin θ=cos θ-2sin θ,于是4sin θ=cos θ,故tan θ=14.(2)由|a |=|b |知,sin 2θ+(cos θ-2sin θ)2=5,所以1-2sin 2θ+4sin 2θ=5.从而-2sin 2θ+2(1-cos 2θ)=4,即sin 2θ+cos 2θ=-1,于是sin ⎝⎛⎭⎪⎫2θ+π4=-22.又由0<θ<π知,π4<2θ+π4<9π4, 所以2θ+π4=5π4或2θ+π4=7π4.因此θ=π2或θ=3π4.12.解析: (1)∵m ·n =1,即3sin x 4cos x4+cos 2x4=1,即32sin x 2+12cos x 2+12=1,∴sin ⎝ ⎛⎭⎪⎫x 2+π6=12. ∴cos ⎝ ⎛⎭⎪⎫2π3-x =cos ⎝ ⎛⎭⎪⎫x -2π3=-cos ⎝ ⎛⎭⎪⎫x +π3=-⎣⎢⎡⎦⎥⎤1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=2·⎝ ⎛⎭⎪⎫122-1=-12.(2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C . ∴2sin A cos B -cos B sin C =sin B cos C , ∴2sin A cos B =sin(B +C ), ∵A +B +C =π,∴sin(B +C )=sin A ,且sin A ≠0,∴cos B =12,B =π3,∴0<A <2π3.∴π6<A 2+π6<π2,12<sin ⎝ ⎛⎭⎪⎫A 2+π6<1. 又∵f (x )=m ·n =sin ⎝ ⎛⎭⎪⎫x 2+π6+12,∴f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12.故函数f (A )的取值范围是⎝ ⎛⎭⎪⎫1,32.。
2013年高考数学总复习资料D当⎪⎩⎪⎨⎧-><120a a ,即a<-2时,不等式解为]2,1[a -.当⎪⎩⎪⎨⎧-=<120aa ,即a=-2时,不等式解为x=-1.综上:a=0时,x ∈(-∞,-1).a>0时,x ∈),2[]1,(+∞--∞a .-2<a<0时,x ∈]1,2[-a . a<-2时,x ∈]2,1[a -.a=-2时,x ∈{x|x=-1}.评述:通过上面三个例题的分析与解答,可以概括出分类讨论问题的基本原则为:10:能不分则不分; 20:若不分则无法确定任何一个结果; 30:若分的话,则按谁碍事就分谁.例4.已知函数f(x)=cos 2x+asinx-a 2+2a+5.有最大值2,求实数a 的取值.解:f(x)=1-sin 2x+asinx-a 2+2a+5.6243)2(sin 22++---=a a a x 令sinx=t, t ∈[-1,1].则6243)2()(22++---=a a a t t f (t ∈[-1,1]). (1)当12>a即a>2时,t=1,2533max=++-=a a y解方程得:22132213-=+=a a 或(舍). (2)当121≤≤-a 时,即-2≤a ≤2时,2a t =,262432max=++-=a a y,解方程为:34-=a 或a=4(舍). (3)当12-<a即a<-2时, t=-1时,y max =-a 2+a+5=2即 a 2-a-3=0 ∴ 2131±=a , ∵ a<-2, ∴ 2131±-=a 全都舍去.综上,当342213-=+=a a 或时,能使函数f(x)的最大值为2.例5.设{a n }是由正数组成的等比数列,S n是其前n 项和,证明:15.025.05.0log 2log log ++>+n n n S S S .证明:(1)当q=1时,S n =na 1从而 0)1()2(2121211212<-=+-+⋅=-⋅++a a n a n na S S S n n n(2)当q ≠1时,qq a S nn--=1)1(1, 从而.0)1()1()1)(1(2122121221212<-=-----=-⋅++++nn n n n n n q a q q a q q a S S S由(1)(2)得:212++<⋅n n nS S S .∵ 函数xy 5.0log =为单调递减函数.∴ 15.025.05.0log 2log log ++>+n n n S SS . 例6.设一双曲线的两条渐近线方程为2x-y+1=0, 2x+y-5=0,求此双曲线的离心率.分析:由双曲线的渐近线方程,不能确定其焦点位置,所以应分两种情况求解.解:(1)当双曲线的焦点在直线y=3时,双曲线的方程可改为1)3()1(222=---by a x ,一条渐近线的斜率为2=ab , ∴ b=2.∴555222==+==a aa b a c e .(2)当双曲线的焦点在直线x=1时,仿(1)知双曲线的一条渐近线的斜率为2=b a,此时25=e .综上(1)(2)可知,双曲线的离心率等于255或.评述:例5,例6,的分类讨论是由公式的限制条件与图形的不确定性所引起的,而例1-4是对于含有参数的问题而对参数的允许值进行的全面讨论.例7.解关于x 的不等式 1512)1(<+--x x a . 解:原不等式 012)1(55<⇔+--x x a 0)]2()1)[(2(022)1(012)1(<----⇔<--+-⇔<+--⇔a x a x x a x a x x a⎪⎩⎪⎨⎧>----<-⎪⎩⎪⎨⎧<---->-⎩⎨⎧<--=-⇔0)12)(2(01)3(0)12)(2(01)2(0)21)(2(01)1(a ax x a a a x x a x a 或或由(1) a=1时,x-2>0, 即 x ∈(2,+∞). 由(2)a<1时,012>--a a,下面分为三种情况.①⎩⎨⎧<<⇒⎪⎩⎪⎨⎧>--<012121a a aa a 即a<1时,解为)12,2(aa--.②0012121=⇒⎩⎨⎧=<⇒⎪⎩⎪⎨⎧=--<a a a aa a 时,解为∅.③ ⎪⎩⎪⎨⎧<--<2121a aa ⇒ ⎩⎨⎧><01a a 即0<a<1时,原不等式解为:)2,12(aa --.由(3)a>1时,aa --12的符号不确定,也分为3种情况.①⎩⎨⎧≤>⇒⎪⎩⎪⎨⎧≥-->012121a a a aa ⇒ a 不存在. ② ⇒⎩⎨⎧>>⇒⎪⎩⎪⎨⎧<-->012121a a a a a 当a>1时,原不等式的解为:),2()12,(+∞---∞ aa .综上:a=1时,x ∈(2,+∞).a<1时,x ∈)12,2(a a-- a=0时,x ∈∅.0<a<1时,x ∈)2,12(aa-- a>1时,x ∈),2()12,(+∞---∞ aa . 评述:对于分类讨论的解题程序可大致分为以下几个步骤:10:明确讨论的对象,确定对象的全体; 20:确定分类标准,正确分类,不重不漏; 30:逐步进行讨论,获得结段性结记; 40:归纳总结,综合结记. 课后练习:1.解不等式2)385(log 2>+-x x x2.解不等式1|)3(log ||log |3121≤-+x x3.已知关于x 的不等式052<--ax ax 的解集为M. (1)当a=4时,求集合M:(2)若3∈M ,求实数a 的取值范围.4.在x0y 平面上给定曲线y 2=2x, 设点A 坐标为(a,0), a ∈R ,求曲线上点到点A 距离的最小值d ,并写成d=f(a)的函数表达式.参考答案:1. ),(),(∞+235321 2.]4943[, 3. (1) M 为),(),(2452 ∞- (2)),9()35,(+∞-∞∈ a 4. ⎪⎩⎪⎨⎧<≥-==时当时当1||112)(a a a a a f d .2006年高三数学第三轮总复习函数押题针对训练复习重点:函数问题专题,主要帮助学生整理函数基本知识,解决函数问题的基本方法体系,函数问题中的易错点,并提高学生灵活解决综合函数问题的能力。
【赢在高考】2013届高考数学一轮复习 1.3配套练习1.如果一个命题的否命题是真命题,那么这个命题的逆命题是A.真命题B.假命题C.不一定是真命题D.不一定是假命题【答案】 A2.与命题”若a M ∈,则b M ∉”等价的命题是( )A.若a M ∉,则b M ∉B.若b M ∉,则a M ∈C.若a M ∉,则b M ∈D.若b M ∈,则a M ∉【答案】 D【解析】 因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.故选D.3.条件p:3a ≤,条件q:(3)0a a -≤,则p 是q 的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】 A 【解析】 条件q:03a ≤≤,则p q ⇐.故p 是q 的必要不充分条件.4.”2x ≠或2y ≠-”是”4xy ≠-”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】 A【解析】 一方面,由”2x ≠或2y ≠-”不能推出”4xy ≠-”,例如4323x y =≠,=-,但xy=-4;另一方面由”xy ≠-能推出”2x ≠或2y ≠-”,这是因为当”x=2且-时,必有”xy=-4”.综上所述,”2x ≠或2y ≠-”是xy ≠-4”的必要不充分条件. 5.(2012陕西咸阳月考)已知p:20x x -<,那么命题p 的一个必要不充分条件是( )A.0<x<1B.-1<x<1C.1223x <<D.122x << 【答案】 B【解析】 由20x x -<得0<x<1.设p 的一个必要不充分条件为q,则p q ⇒,但q p.故选B.1.命题”若f(x)是奇函数,则f(-x)是奇函数”的否命题是 ( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数【答案】 B【解析】 原命题的否命题是既否定条件,又否定结论.应选2.设a ,b 是向量,命题”若a =-b ,则|a |=|b |”的逆命题是( )A.若a ≠-b ,则|a |≠|b |B.若a =-b ,则|a |≠|b |C.若|a |≠|b |,则a ≠-bD.若|a |=|b |,则a =-b【答案】 D【解析】 ∵逆命题是以原命题的结论为条件,条件为结论的命题,∴这个命题的逆命题为:若|a |=|b |,则a =-b .3.下列说法中,正确的是( )A.命题”若22am bm <,则a<b”的逆命题是真命题B.命题”x ∃∈R 20x x ,->”的否定是”x ∀∈R 20x x ,-≤”C.命题”p∨q”为真命题,则命题p 和命题q 均为真命题D.已知x ∈R ,则”x>1”是”x>2”的充分不必要条件【答案】 B【解析】 对于选项A,当a<b,m=0时,不能得到22am bm <,因此A 不正确;对于选项B,易知是正确的;对于选项C,由命题”p∨q”为真命题知,p,q 中至少有一个是真命题,不能得到p,q 均为真命题,因此C 不正确;对于选项D,由”x>1”不能得到”x>2”,由”x>2”可得”x>1”,因此”x>1”是”x>2”的必要不充分条件,D 是错误的.综上所述,选B.4.下列命题错误的是( )A.命题”若2320x x -+=,则x=1”的逆否命题为”若1x ≠,则2320x x -+≠”B.若p 且q 为假命题,则p,q 均为假命题C.对于命题p:存在x ∈R ,使得210x x ++<,则p 为:对任意的x ∈R ,均有210x x ++≥ D.”x>2”是”2320x x -+>”的充分不必要条件【答案】 B【解析】 易知A,C,D 均正确,对B,∵p 且q 为假命题,∴p,q 可能均为假命题,也可能一真一假.∴B 错误.5.设集合M={x||x--3)<0},那么a M ∈是”a N ∈”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】 A【解析】 由|x-1|<2,得-2<x-1<2,即-1<x<3;由-解得0<x<3,从而可知集合N 是集合M 的真子集,故”a M ∈”不一定能推出”a N ∈”,但”a N ∈”一定可以推出”a M ∈”,所以”a M ∈”是”a N ∈”的必要不充分条件6.有下列四个命题:(1)”若则x,y 互为倒数”的逆命题;(2)”面积相等的三角形全等”的否命题;(3)”若1m ≤,则方程220x x m -+=有实数解”的逆否命题;(4)”若A B A ⋂=,则A B ⊆”的逆否命题.其中真命题个数为 … ( )A.1B.2C.3D.4 【答案】 D【解析】 (1)、(2)、(4)显然成立.(3)∵220x x m -+=有实数解,∴440m ∆=-≥,即1m ≤,可知(3)成立.7.已知集合A={x|x>5},集合B={x|x>a},若命题”x A ∈”是命题”x B ∈”的充分不必要条件,则实数a 的取值范围是 .【答案】 a<5【解析】 由题意得,命题”x A ∈”是命题”x B ∈”的充分不必要条件,故A 是B 的真子集,画数轴可知a<5为所求.8.给出下列命题:①原命题为真,它的否命题为假;②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真;⑤”若m>1,则22(1)mx m -+x+m+3>0的解集为R ”的逆命题.其中真命题是 .(把你认为正确命题的序号都填在横线上)【答案】②③⑤【解析】 原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故①④错误,②③正确.又因为不等式22(1)mx m -+x+m+3>0的解集为R , 由 204(1)4(3)0m m m m >⎧⎨∆=+-+<⎩ ⇒ 01m m >⎧⎨>⎩1m ⇒>. 故⑤正确.9.已知p:2430x x -+<,q:30x x-<,则p 是q 的 条件. 【答案】 充分不必要【解析】 由2430x x -+<得1<x<3,即(13)x ∈,,由x(x-3)<0得0<x<3,即(03)x ∈,,∵(1,3) (0,3),∴p 是q 的充分不必要条件.10.把下列命题改写成”若p 则q”的形式,并写出它的否命题和逆否命题,最后判断所有命题的真假. (1)ac bc a b >⇒>;(2)已知x 、y 为正整数,当y=x+1时,y=3,x=2;(3)当14m >时210mx x ,-+=无实根; (4)若2230x x --=,则x=3或x=-1.【解】 (1)原命题:若ac>bc,则a>b.(假)否命题:若ac bc ≤,则a b ≤.(假)逆否命题:若a b ≤,则ac bc ≤.(假)(2)原命题:已知x 、y 为正整数,若y=x+1,则y=3且x=2.(假)否命题:已知x 、y 为正整数,若1y x ≠+,则3y ≠或2x ≠.(真)逆否命题:已知x 、y 为正整数,若3y ≠或2x ≠,则y x ≠+1.(假)(3)原命题:若14m >,则210mx x -+=无实根.(真) 否命题:若14m ≤,则210mx x -+=有实根.(真) 逆否命题:若210mx x -+=有实根,则14m ≤.(真) (4)原命题:若2230x x --=,则x=3或x=-1.(真)否命题:若2230x x --≠,则3x ≠且1x ≠-.(真)逆否命题:若3x ≠且1x ≠-,则2230x x --≠.(真)11.已知P={x|28200x x --≤},S={x||x-1|m ≤}.是否存在实数m,使x P ∈是x S ∈的充要条件?当存在时,求出m 的取值范围.【解】 若x P ∈是x S ∈的充要条件,则S=P.由28200210x x x --≤⇒-≤≤,∴P=[-2,10].由|x-1|11m m x m ≤⇒-≤≤+,∴S=[1-m,1+m]. 要使P=S,则 12110m m -=-,⎧⎨+=.⎩ ∴ 39m m =,⎧⎨=.⎩∴这样的m 不存在.。
1.下列函数中,在上为增函数的是( )A. B.C. D.【答案】A【解析】∵的对称轴为x=0,且开口向下,∴为其单调递增区间.2.若R则M的取值范围为… ( )A. B.C. D.[-4,4]【答案】A【解析】∵当a>0时;当a<0时∴M的取值范围为故选A.3.(2012浙江宁波期中测试)已知函数f(x)为R上的减函数,则满足f(|x|)<f(1)的实数x的取值范围是( )A.(-1,1)B.(0,1)C. D.【答案】D【解析】∵f(x)为R上的减函数,且f(|x|)<f(1),∴|x|>1.∴x<-1或x>1.4.已知函数f(x)=log则f(x)的值域为…… ( )A. B.(-2,2)C. D.【答案】C【解析】∵∴时取”=“).令则又∵真数大于0,∴t>0.∴y=log的值域为R,选C.5.函数y=ln的单调递增区间是.【答案】(-1,1)【解析】根据题意需即函数的定义域为(-1,1),原函数的递增区间即为函数在(-1,1)上的递增区间,由于u′′.故函数的递增区间为(-1,1),即为原函数的递增区间1.函数的定义域是则其值域是… ( )A. B.C. D.【答案】A【解析】∵则∴.2.下列函数中,值域是[-2,2]的是( )A. B.f(x)=logC. D.【答案】C【解析】A项的值域为;B项的值域为R;C项的值域为[-2,2];D项中4,即值域为.3.函数y=f(x)是R上的偶函数,且在上为增函数.若则实数a的取值范围是( )A. B.C. D.或【答案】D【解析】由题意知y=f(x)在上递减f(|a||a|或.4.若函数y=f(x)的值域是则函数的值域是( )A. B. C. D.【答案】B【解析】令.问题转化为求函数的值域.于是由函数在上递减,在[1,3]上递增,得.5.函数的值域是( )A.RB.{y|且R}C.{y|且R}D.{y|且且R}【答案】D【解析】∵且∴故{y|且且R}.6.已知函数f(x)= 在上单调递减,那么实数a的取值范围是( )A.(0,1)B.C.D.【答案】C【解析】本题考查对函数单调性概念的理解程度;注意函数在两个区间上如果分别单调,并不能简单地说函数在并区间上单调,故由题意知需满足:.7.函数在上为增函数,则a的取值范围是.【答案】【解析】依题意,得函数的单调增区间为、(-要使在上为增函数,只需即2.8.已知函数f(x)= 在上是增函数,则a的取值范围是.【答案】【解析】若函数f(x)= 在上是增函数,则解得故.9.已知函数的定义域为若对任意N,都有则实数c的取值范围是.【答案】[6,12]【解析】若则f(x)在上递增,不合题意;若c的图象如图所示,则解得.10.若函数在区间(m,2m+1)上是单调递增函数,则.【答案】(-1,0]【解析】由f′得-1<x<1.∴f(x)的增区间为(-1,1).又∵f(x)在(m,2m+1)上单调递增,∴∴.∵区间为(m,2m+1),∴隐含2m+1>m,即m>-1.综上.11.求下列函数的定义域和值域.;(2)y=log;【解】(1)要使函数有意义,则∴函数的定义域为[0,1].∵函数为减函数,∴函数的值域为[-1,1].(2)要使函数有意义,则∴函数的定义域为{x|}.∵∴函数的值域为R.(3)函数的定义域为{0,1,2,3,4,5},函数的值域为{2,3,4,5,6,7}.12.已知函数.(1)当时,求f(x)的最小值;(2)若对任意恒成立,试求实数a的取值范围.【解】(1)当时设则∵∴.∴.∴.∴f(x)在区间上为增函数.∴f(x)在区间上的最小值为.(2)在区间上f(x)>0恒成立恒成立.设则函数在区间上是增函数.∴当x=1时.于是当且仅当即a>-3时,函数在上恒成立,故a>-3.13.已知函数.(1)求证:函数y=f(x)在上是增函数;(2)若f(x)<2x在上恒成立,求实数a的取值范围.【解】(1)证明:当时设则.∴.∴即f(x)在上是增函数.(2)由题意在上恒成立,设则a<h(x)在上恒成立.可证h(x)在上单调递增.∴即.∴a的取值范围为.14.已知函数f(x)对任意实数x均有f(x)=kf(x+2),其中常数k为负数,且f(x)在区间[0,2]上有表达式-(1)求f(-1),f(2.5)的值;(2)写出f(x)在区间[-3,3]上的表达式,并讨论函数f(x)在区间[-3,3]上的单调性.【解】(1)f(-1)=kf(1)=-k,∵f(0.5)=kf(2.5),∴(2)∵对任意实数x,f(x)=kf(x+2),∴f(x-2)=kf(x).∴.当时f(x)=kf4);当时f(x)=kf(x+2)=kx(x+2);当时4).故f(x)=∵k<0,∴f(x)在[-3,-1]与[1,3]上为增函数,在[-1,1]上为减函数.高★考╓试≧题∷库。
1.在△ABC 中,如果BC=6,AB=4,cos 13B =,那么AC 等于 ( )A.6B. C. D.【答案】 A【解析】 2222AC AB BC AB BC =+-⋅cosB,代入数据,解得AC=6.2.在△ABC 中23BC B π,=,=,若△ABC 则tanC 为( )B.1【答案】 C【解析】 由12ABC S BC BA ∆=⋅sin B =得BA=1, 由余弦定理得2222AC AB BC AB BC =+-⋅cosB,∴AC .∴222AC BA BC +=.∴△ABC 为直角三角形,其中A 为直角.∴tan AB C AC==3.已知△ABC 外接圆的半径为R,且2R(sin 2A -sin 2))C b =-sinB,那么角C 的大小为( ) A.30° B.45° C.60° D.90° 【答案】 B【解析】 根据正弦定理,原式可化为222())2224a c b R b R R -=-⋅,∴22)a c b b -=-.∴222a b c +-=.结合余弦定理可知cos 2222a b c C ab +-==∴C=45°. 4.若△ABC 中,acosA=bcosB,则△ABC 一定是( )A.等边三角形B.等腰三角形C.等腰三角形或直角三角形D.直角三角形 【答案】 C【解析】 由acosA=bcosB,根据正弦定理可得 sinAcosA=sinBcosB,即sin2A=sin2B. ∴2A=2B 或2A+2B=π,即A=B 或2A B π+=.∴△ABC 是等腰三角形或直角三角形.5.在△ABC 中,如果A=60°4c a ,=,=则此三角形解的情况是 . 【答案】 无解【解析】 ∵csinA=460sin ︒=>∴三角形无解.1.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°方向上,灯塔B 在观察站C 的南偏东60°方向上,则灯塔A 在灯塔B 的( )A.北偏东10°B.北偏西10°C.南偏东10°D.南偏西10° 【答案】 B【解析】 由已知180ACB ∠=406080︒-︒-︒=︒, 又AC=BC,∴50A ABC ∠=∠=605010︒,︒-︒=︒, ∴灯塔A 位于灯塔B 的北偏西10°.2.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得120ABC ∠=°,则A 、C 两地的距离为( )A.10 km kmC.kmD. km【答案】 D【解析】 利用余弦定理2222AC AB BC AB BC =+-⋅cos120°221102021020()2=+-⨯⨯⨯-=700,∴AC =km).3.下列判断中正确的是( )A.△ABC 中,a=7,b=14,A=30°,有两解B.△ABC 中,a=30,b=25,A=150°,有一解C.△ABC 中,a=6,b=9,A=45°,有两解D.△ABC 中,b=9,c=10,B=60°,无解 【答案】 B【解析】 A:∵a=bsinA,∴有一解; B:∵A>90°,a>b,∴有一解; C:∵a<bsinA,∴无解; D:∵c>b>csinB,∴有两解.4.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c,且222222c a b ab =++,则△ABC 是( ) A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形 【答案】 A【解析】 ∵222222c a b ab =++,∴2221a b c ab +-=-.∴cos 2221024a b c C ab +-==-<. 则△ABC 是钝角三角形.故选A.5.在△ABC 中,若2cosBsinA=sinC,则△ABC 一定是…… ( )A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形【答案】 B【解析】 方法一:由正、余弦定理得2222(222a c b a c R ac R R+-⋅⋅=为△ABC 外接圆半径),整理得22a b =,∴a=b.∴△ABC 一定是等腰三角形.方法二:∵sinC=sin[π-(A+B)]=sin(A+B) =sinAcosB+cosAsinB,∴由已知得sinAcosB-cosAsinB=0, 即sin(A-B)=0.又(A B -∈-π,π),∴A-B=0,即A=B. ∴△ABC 为等腰三角形.6.满足A=45°2c a ,=的△ABC 的个数记为m,则ma 的值为( ) A.4 B.2 C.1 D.不确定 【答案】 A【解析】 由正弦定理a c =,得sin sinA 22c C a === ∵c>a,∴C>A=45°.∴C=60°或120︒.∴满足条件的三角形有2个,即m=2.∴4ma =.7.已知△ABC 三内角A,B,C 所对的三边长分别为a,b,c,且面积ABC S ∆=21(4b + 22)c a -,则角A等于( ) A.45°B.30°C.120°D.15°【答案】 A【解析】 由22211()42ABC S b c a bc ∆=+-=sinA,得sin 2222b c a A bc+-==cosA, ∴A=45°.8.在△ABC 中,角A,B,C 所对的边长分别为a,b,c.若C=120°c ,=,则( ) A.a>b B.a<b C.a=bD.a 与b 的大小关系不能确定 【答案】 A【解析】 在△ABC 中,由余弦定理得2222c a b ab =+-cos120°= 22a b ab ++,将c =代入上式,得2222a a b ab =++,从而2a =2b +ab, ∴220a b ab -=>.∴22a b >.∴a>b.9.在直径为30 m 的圆形广场中央上空,设置一个照明光源,射向地面的光呈圆形,且其轴截面顶角为120°,若要光源恰好照亮整个广场,则光源的高度为 m.【答案】【解析】 轴截面如图,则光源高度15tan60h ==︒m).10.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c.若)c -cosA=acosC,则cosA= .【答案】【解析】 由)c -cosA=acosC,得222222)22b c aa b c c a bcab+-+--⋅=⋅,即2222b c a bc +-=由余弦定理,得cos A =.11.如图,有一扇形AOB,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P,过P 引平行于OB 的直线和OA 交于点C,设AOP θ∠=,求△POC 面积的最大值及此时θ的值.【解】 因为CP ∥OB,所以60CPO POB ∠=∠=°θ-, 所以120OCP ∠=°. 在△POC 中,由正弦定理得sin PCO sin OP CP θ=,∠即2sin120sin CP θ=,︒ 所以CP =sin θ.又2sin(60)sin120OC θ=,︒-︒所以OC =sin(60°)θ-. 因此△POC 的面积为1()S CP OC θ=⋅120sin ︒12=sin θ°)θ-=θsin(60°)θ-=sin θcos 12θ-sin )θ=cos (260θ-°1)](02θ-,∈60︒,︒).所以当30θ=°时()S θ,. 12.在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c.已知c=2, 3C π=.(1)若△ABC 求a,b;(2)若sinB=2sinA,求△ABC 的面积.【解】 (1)由余弦定理及已知条件,得22a b +- ab=4,又因为△ABC所以12ab sin C 得ab=4.联立方程组 2244a b ab ab ⎧+-=,⎨=,⎩解得a=2,b=2.(2)由正弦定理,sinB=2sinA 化为b=2a,联立方程组 2242a b ab b a ⎧+-=,⎨=,⎩解得a b ==.所以△ABC 的面积12S ab =sin C =.13.已知A 、B 、C 为△ABC 的三个内角,且其对边分别为a 、b 、c,且2cos 22A +cosA=0.(1)求角A 的值;(2)若4a b c =+=,求△ABC 的面积.【解】 (1)由2cos 22A +cosA=0,得1+cosA+cosA=0,即cos 12A =-.∵角A 为△ABC 的内角,∴23A π=.(2)由余弦定理得2222a b c bc ,=+-cos 23A A π,=,则22()a b c bc =+-.又4a b c =+=,有2124bc =-,则bc=4.故12ABC S bc ∆=sin A .14.如图,矩形ABCD 是机器人踢球的场地,AB=170 cm,AD=80 cm,机器人先从AD 中点E 进入场地到点F 处,EF=40 cm EF AD ,⊥.场地内有一小球从点B 向点A 运动,机器人从点F 出发去截小球.现机器人和小球同时出发,它们均做匀速直线运动,并且小球运动的速度是机器人行走速度的2倍.若忽略机器人原地旋转所需的时间,则机器人最快可在何处截住小球?【解法一】 设该机器人最快可在点G 处截住小球,点G 在线段AB 上.连接FG,设FG=x cm.根据题意,得=2x cm.则AG=AB-=(170-2x) cm.连接AF.在△AEF 中,EF=AE=40 cm EF AD ,⊥,所以45EAF ∠=°AF ,= cm. 于是45FAG ∠=°.在△AFG 中,由余弦定理,得2222FG AF AG AF AG =+-⋅cos FAG ∠.所以222(1702)2(1702)x x x =+--⨯-⨯cos45°. 解得12370503x x =,=.所以AG=170-2x=70 cm,或2303AG =- cm(不合题意,舍去).答:该机器人最快可在线段AB 上离A 点70 cm 处截住小球.【解法二】 设该机器人最快可在点G 处截住小球,点G 在线段AB 上.连接FG, 设FG=x cm.根据题意,得=2x cm. 过点F 作FH AB ⊥,垂足为H.因为AE=EF=40 cm 90EF AD A ,⊥,∠=°,所以四边形AHFE 是正方形. 则FH=40 cm,GH=AB-AH-=(130-2x) cm.在Rt △FHG 中,由勾股定理,得222FG FH GH =+. 所以22240(1302)x x =+-. 解得12370503x x =,=.所以AG=170-2x=70 cm,或2303AG =- cm(不合题意,舍去).答:该机器人最快可在线段AB 上离A 点70 cm 处截住小球.。