高三数学复习资料汇总
- 格式:doc
- 大小:27.00 KB
- 文档页数:4
高三数学复习知识点汇总正文:一、函数与方程1. 函数的定义与性质:对应关系、定义域、值域、单调性、奇偶性、周期性、对称性等。
2. 一次函数与二次函数:标准型、一般型、与坐标轴的交点、最值等。
3. 高次函数与有理函数:对称轴、零点、渐近线等。
4. 指数函数与对数函数:指数函数的性质、对数函数的性质、换底公式等。
5. 三角函数:正弦函数、余弦函数、正切函数的定义与性质、基本关系式等。
6. 方程:一次方程、二次方程、高次方程的解法与应用。
二、三角恒等式与立体几何1. 三角函数的基本关系:同角三角函数的关系、三角函数的诱导公式等。
2. 三角函数的化简与证明:和角公式、差角公式、倍角公式等。
3. 定比关系与三角函数的图像:幅角、周期、图像变换等。
4. 球面几何与立体几何:圆锥、圆柱、球体的性质与计算。
三、导数与微分1. 导数的概念与计算:导数定义、导数的四则运算、导数的应用等。
2. 高阶导数与高阶微分:高阶导数的计算、高阶微分的计算等。
3. 函数的单调性与极值问题:函数的增减性、极值条件与求解等。
4. 微分中值定理与导数应用:拉格朗日中值定理、柯西中值定理等。
四、概率统计与数列1. 随机事件与概率计算:事件的概念、加法原理、乘法原理、条件概率等。
2. 排列与组合:排列与组合的计算、排列组合问题的应用等。
3. 数列与级数:等差数列、等比数列、等差数列的前n项和、等比数列的前n项和等。
五、解析几何与植根函数1. 平面与空间直角坐标系:平面直角坐标系、空间直角坐标系的建立等。
2. 二次曲线与参数方程:椭圆、双曲线、抛物线的定义、性质及参数方程等。
3. 参数方程与极坐标:极坐标的定义、性质及参数方程的应用等。
4. 植根函数与分式函数:根式函数的性质、分式函数的性质与计算等。
六、数学建模与应用题1. 实际问题与数学建模:问题的转化、模型的建立与求解等。
2. 几何问题与数学建模:尺规作图、几何体的计算等。
3. 统计问题与数学建模:数据收集、数据处理与统计分析等。
高三数学复习资料5篇高三数学复习资料1考纲要求1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简洁的二元线性规划问题,并能加以解决.考纲研读二元一次不等式表示相应直线Ax+By+C=0 某一侧全部点组成的平面区域,可结合交集的概念去理解不等式组表示的`平面区域.对于线性规划问题,能通过平移直线求目标函数的最值.对于实际问题,能转化成两个相关变量有关的不等式(组),再利用线性规划学问求解.高三数学复习资料21.进行集合的交、并、补运算时,不要忘了全集和空集的特别状况,不要遗忘了借助数轴和文氏图进行求解.2.在应用条件时,易A忽视是空集的状况3.你会用补集的思想解决有关问题吗?4.简洁命题与复合命题有什么区分?四种命题之间的互相关系是什么?如何推断充分与必要条件?5.你知道“否命题〞与“命题的否认形式〞的区分.6.求解与函数有关的问题易忽视定义域优先的原则.7.推断函数奇偶性时,易忽视检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽视标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则肯定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不肯定单调10.你娴熟地把握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪〞和“或〞;单调区间不能用集合或不等式表示.12.求函数的值域必需先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你把握了吗?14.解对数函数问题时,你留意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需商量15.三个二次(哪三个二次?)的关系及应用把握了吗?如何利用二次函数求最值?16.用换元法解题时易忽视换元前后的等价性,易忽视参数的范围。
高三数学复习知识点归纳5篇高三学生要根据自己的条件,以及高中阶段学科知识交叉多.综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的复习方法.下面就是小编给大家带来的高三数学复习知识点,希望大能帮助到大家!高三数学复习知识点1圆锥曲线_2y2_1.2?2?1的一条渐近线方程为?y?0.则此双曲线的离心率为 ( ) ab3 A. _ B. 3 C. D2.已知椭圆C以坐标原点为中心,坐标轴为对称轴,且椭圆C以抛物线_2?_y 的焦点为焦点,y2_2以双曲线??1的焦点为顶点,则椭圆C的标准方程为 _93.已知圆:.,且与圆交于.两点,若,设,求直线的方程; 与轴的交点为,若向量 (1)直线过点 (2)过圆上一动点,求动点作平行于轴的直线的轨迹方程,并说明此轨迹是什么曲线.高三数学复习知识点21.求数列极限求数列极限可以归纳为以下三种形式.抽象数列求极限这类题一般以选择题的形式出现,因此可以通过举反例来排除.此外,也可以按照定义.基本性质及运算法则直接验证.求具体数列的极限,可以参考以下几种方法:a.利用单调有界必收敛准则求数列极限.首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值.b.利用函数极限求数列极限如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解.求项和或项积数列的极限,主要有以下几种方法:a.利用特殊级数求和法如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果.lb.利用幂级数求和法若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值.c.利用定积分定义求极限若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限.d.利用夹逼定理求极限若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解.e.求项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算.高三数学复习知识点31.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的〝属于〞关系;(2)能选择自然语言.图形语言.集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn二.【命题走向】的直观性,注意运用Venn预测_题的表达之中,相对独立.具体题型估计为高三数学复习知识点4一.基础知识(理解去记)(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体.其中,这条定直线称为旋转体的轴.(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.侧面母线2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.3.1棱锥——有一个面是形,其余各面是有一个公的三角形,由这些面所围多边共顶点成的几B何体叫做棱锥.4.1圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥.5.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.B .6.1圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.7.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.或空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体叫做球体,简称球;相关公式侧面积=各个侧面面积之和表面积(全面积)=侧面积+底面积体积公式:V柱体=S底hV锥体= S底h/31V棱台S?S`)h, 3__S?S`)h?r??rR??R)h, V圆台3R为球的半径)(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影.2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;正视图——光线从几何体的前面向后面正投影,得到的投影图;侧视图——光线从几何体的左面向右面正投影,得到的投影图;俯视图——光线从几何体的上面向下面正投影,得到的投影图;3.直观图:3.1直观图——是观察着站在某一点观察一个空间几何体而画出的图形.直观图通常是在平行投影下画出的空间图形.3.2斜二测法:结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的高三数学复习知识点5第一,函数与导数.主要考查集合运算.函数的有关概念定义域.值域.解析式.函数的极限.连续.导数.第二,平面向量与三角函数.三角变换及其应用.这一部分是高考的重点但不是难点,主要出一些基础题或中档题.第三,数列及其应用.这部分是高考的重点而且是难点,主要出一些综合题.第四,不等式.主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小.是高考的重点和难点.第五,概率和统计.这部分和我们的生活联系比较大,属应用题.第六,空间位置关系的定性与定量分析.主要是证明平行或垂直,求角和距离.第七,解析几何.是高考的难点,运算量大,一般含参数.高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键.针对数学高考强调对基础知识与基本技能的考查我们一定要全面.系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理.原理.法则.公式.并形成记忆,形成技能.以不变应万变.高三数学复习知识点归纳精选5篇。
高考数学必考知识点归纳一、集合与函数1.集合o表示法:列举法、描述法、图示法(韦恩图)。
o运算:交集、并集、补集(相对于全集)。
2.函数o概念:输入与输出之间的对应关系。
o表示法:解析法、列表法、图像法。
o单调性:增函数、减函数。
o奇偶性:奇函数、偶函数、非奇非偶函数。
二、数列1.定义与表示o数列的定义:按一定顺序排列的一列数。
o表示法:通项公式、递推公式。
2.等差数列o定义、通项公式、前n项和公式。
o性质:中项性质、等差中项。
3.等比数列o定义、通项公式、前n项和公式(注意公比不为1的情况)。
o性质:中项性质、等比中项。
4.数列求和o倒序相加法、错位相减法、分组求和法、裂项相消法等。
5.数列的极限o数列极限的概念、性质及简单计算。
三、三角函数1.基本概念o角度与弧度制、三角函数定义(正弦、余弦、正切)。
2.诱导公式o角度加减变换公式。
3.同角关系式o基本恒等式、平方关系、商数关系。
4.性质o周期性、奇偶性、单调性、有界性。
5.图像与性质o各三角函数图像特征、相位变换、振幅变换。
6.三角恒等变换o和差化积、积化和差、倍角公式、半角公式。
7.解三角形o正弦定理、余弦定理、面积公式、海伦公式。
四、向量1.基本概念o向量的模、方向、坐标表示。
2.运算o加法、减法、数乘、数量积(点积)、向量积(叉积)。
o模长与夹角的关系、平行与垂直的条件。
五、解析几何1.直线o方程:点斜式、斜截式、两点式、截距式、一般式。
o斜率:定义、公式、倾斜角。
o位置关系:平行、垂直的条件。
2.圆o方程:标准方程、一般方程。
o性质:圆心、半径、切线、弦的性质(如相交弦定理)。
3.圆锥曲线o椭圆、双曲线、抛物线的定义、标准方程、性质。
六、立体几何1.空间位置关系o直线与平面、平面与平面的平行、垂直关系。
2.几何体o柱体、锥体、球体等的结构特征及表面积、体积公式。
3.三视图o正视图、侧视图、俯视图及其绘制方法。
七、不等式1.性质o基本性质、传递性、可加性、可乘性(正数时)。
高三数学必学知识点一、函数与方程1. 函数的性质- 函数的定义与表示方法- 奇函数与偶函数- 单调性与最值2. 一次函数与二次函数- 一次函数的表示与性质- 二次函数的图象与性质- 二次函数的一般式与标准式- 求解二次函数的零点与顶点3. 复合函数与反函数- 复合函数的定义与性质- 反函数的定义与求解方法- 幂函数与指数函数的反函数4. 三角函数- 三角函数的定义与性质- 常用三角函数的图象与变换- 正弦、余弦与正切的关系- 三角方程的求解二、数列与数学归纳法1. 等差数列与等比数列- 等差数列的通项公式与求和公式 - 等差数列的性质与应用- 等比数列的通项公式与求和公式 - 等比数列的性质与应用2. 递推数列与特殊数列- 递推数列的定义与性质- 斐波那契数列与杨辉三角 - 几何数列与调和数列3. 数学归纳法- 数学归纳法的原理与应用 - 数学归纳法证明数学命题 - 数学归纳法在数列中的应用三、概率与统计1. 概率基本概念- 随机事件与样本空间- 概率的定义与性质- 事件间关系与计算2. 条件概率与独立性- 条件概率的定义与计算- 乘法定理与贝叶斯定理- 独立事件的判定与性质3. 随机变量与概率分布- 随机变量的定义与分类- 离散型随机变量的概率分布律 - 连续型随机变量的概率密度函数4. 统计基本概念- 总体与样本的概念- 抽样与抽样分布- 样本均值与样本方差四、立体几何与解析几何1. 空间几何基本概念- 点、直线、平面的定义与性质 - 空间几何基本公理与定理2. 立体几何的应用- 空间中直线与平面的位置关系- 空间中点到直线与平面的距离- 空间中直线之间的关系3. 解析几何基本概念- 平面直角坐标系与空间直角坐标系 - 直线与曲线的方程与性质- 图形的对称性与平移旋转五、导数与微分1. 导数的概念与性质- 导数的定义与计算方法- 导数与函数的关系- 导数的几何意义与应用2. 函数的求导法则- 常数函数与幂函数的导数- 三角函数与反三角函数的导数 - 复合函数与隐函数的导数3. 微分与函数的最值- 微分的定义与计算方法- 函数的最值与最值点- 函数图象的拐点与凹凸性六、积分与曲线1. 定积分的概念与性质- 定积分的定义与计算方法- 定积分与曲线的面积- 定积分计算与应用2. 不定积分与反导函数- 不定积分的定义与计算方法- 基本积分表与换元法- 反导函数与定积分的关系3. 曲线的方程与性质- 参数方程与极坐标方程的转化- 曲线的切线与法线- 曲线的弧长与曲率以上是高三数学必学的知识点,通过掌握这些知识,可以为高考数学提供坚实的基础。
高考数学复习提纲一、数与代数1. 数系及其性质a. 自然数、整数、有理数、实数、复数的定义和性质b. 数轴的表示和运算2. 代数运算a. 加、减、乘、除法则及其性质b. 开平方、立方及其运算规则c. 绝对值与模的计算3. 代数式与方程a. 代数式的定义与基本性质b. 一次方程、二次方程的解法c. 线性方程组与非线性方程的解法二、函数与方程1. 函数的概念与性质a. 函数的定义及其表示方法b. 奇偶函数与周期函数c. 函数图像的性质和变换2. 幂函数与指数函数a. 幂函数与指数函数的定义和图像特征b. 幂函数与指数函数的性质和运算规律c. 对数函数的定义和性质3. 三角函数a. 三角函数的定义和基本性质b. 三角函数的图像特征和变换c. 三角函数的运算规律和恒等式4. 二次函数与反函数a. 二次函数的定义和性质b. 二次函数的图像特征和变换c. 反函数的定义和性质三、几何与空间1. 几何基本概念a. 点、线、面、角的定义及其性质b. 相关几何概念的关系和运算2. 直线与曲线a. 直线的方程及其性质b. 圆和椭圆的概念和性质c. 抛物线和双曲线的概念和性质3. 三角形与多边形a. 三角形的性质和判定定理b. 正多边形的性质和计算c. 圆与多边形的关系和计算4. 空间几何a. 空间点、直线的位置关系和计算b. 空间图形的管理与计算四、统计与概率1. 数据统计与分析a. 数据的收集、整理和展示b. 平均数、中位数和众数的计算c. 方差与标准差的概念和计算2. 概率相关概念a. 随机事件与样本空间b. 概率的定义及其运算规则c. 条件概率和独立事件的计算3. 排列与组合a. 排列与组合的概念和计算方法b. 二项式定理和多项式展开式五、解答技巧与考试技巧1. 高考数学解题技巧a. 分析题目和建立数学模型b. 运用合理的解题方法和步骤c. 考虑特殊情况和边界条件2. 高考数学考试技巧a. 熟悉高考数学考试的题型和出题规律b. 如何正确阅读和理解题目c. 如何合理分配时间和避免常见错误六、习题训练和模拟考试1. 高考数学习题训练a. 完成各个章节的习题集和试卷b. 对错误的题目进行仔细分析与订正c. 多做模拟考试,提高解题速度和应对能力2. 高考数学模拟考试a. 模拟高考数学卷的编写和答题过程b. 严格按照考试时间和规则进行模拟c. 对模拟考试结果进行评估和反思七、知识巩固和复习策略1. 知识点总结与梳理a. 对每个章节的重点知识进行总结和梳理b. 制作知识点归纳表和思维导图2. 复习计划和时间安排a. 制定合理的复习计划和时间表b. 按照计划进行有针对性的复习3. 经典习题和考点分析a. 整理经典习题和典型例题b. 分析高考数学的重点考点和难点4. 合理安排休息和调整心态a. 注意保持良好的作息和饮食习惯b. 学会放松和调整心态,保持积极的心态面对高考以上是《高考数学复习提纲》的内容安排,希望对你的复习有所帮助。
高中数学知识点总结一、三角函数【1】以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=x r ,csc α=yr。
【2】同角三角函数平方关系:1cos sin 22=+αα,αα22sec 1=+tg ,αα22csc 1=+ctg ;同角三角函数倒数关系:1=⋅ααctg tg ,1csc sin =⋅αα,1sec cos =⋅αα;同角三角函数相除关系:αααcos sin =tg ,αααsin cos =ctg 。
【3】函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;对称轴是直线)(2Z k k x ∈+=+ππϕω,图象与直线B y =的交点都是该图象的对称中心。
【4】三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgx y =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈。
【5】=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos =±)(βαtg βαβαtg tg tg tg ⋅± 1【6】二倍角公式是:sin2α=ααcos sin 2⋅cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tg2α=αα212tg tg -【7】三倍角公式是:sin3α=αα3sin 4sin 3-cos3α=ααcos 3cos 43-【8】半角公式是:sin2α=2cos 1α-±cos2α=2cos 1α+±tg2α=ααcos 1cos 1+-±=ααsin cos 1-=ααcos 1sin +。
高三数学知识点总结(15篇)高三数学知识点总结1考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题。
重点考查集合间关系的理解和认识。
近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。
在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。
简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。
导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量一般是2道小题,1道综合解答题。
小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。
大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。
向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型、考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。
对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查、在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目、考点五:立体几何与空间向量一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)、在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。
高考高三数学总复习知识点归纳总结一、函数与方程1. 一次函数- 定义及性质- 斜率公式- 常见应用2. 二次函数- 定义及性质- 抛物线及图像特点- 判别式与根的情况- 常见应用3. 指数函数与对数函数- 定义及性质- 指数函数的图像特点- 对数函数的定义与性质- 常见应用4. 三角函数- 基本概念及性质- 常用三角函数的周期性、奇偶性、函数值范围- 三角函数的图像特点- 常见应用5. 方程与不等式- 一元一次方程与一元一次不等式- 一元二次方程与一元二次不等式- 三角方程与三角不等式- 常见应用二、数列与数学归纳法1. 等差数列- 定义及性质- 常见应用2. 等比数列- 定义及性质- 常见应用3. 斐波那契数列- 定义及性质- 常见应用4. 数学归纳法- 原理及应用步骤- 常见应用三、几何与三角形1. 直线与角- 基本概念及性质- 常见应用2. 三角形- 定义及性质- 各类三角形的特点- 常见应用3. 圆- 基本概念及性质- 圆的切线与切点- 弧度制- 常见应用4. 三角函数与解三角形- 正弦定理- 余弦定理- 解三角形的步骤与技巧- 常见应用四、概率与统计1. 随机事件与概率- 基本概念及性质- 概率计算方法- 常见应用2. 排列与组合- 基本概念及性质- 常见应用3. 统计与统计图- 数据的收集与整理- 统计图的绘制与分析- 常见应用五、导数与微分1. 导数的概念与性质- 导数的定义- 常见函数的导数- 常见应用2. 微分的概念与性质- 微分的定义- 高阶导数- 常见应用3. 函数的极值与最值- 极值与最值的概念- 极值与最值的判定条件- 常见应用总结本文档对高考高三数学总复习的知识点进行了归纳总结,涵盖了函数与方程、数列与数学归纳法、几何与三角形、概率与统计、导数与微分等内容。
希望能帮助您系统复习数学知识,取得优异的成绩!。
高三全册常考数学知识点总结一、集合与函数概念1.1 集合- 集合的表示方法- 集合的性质与运算- 集合的分类(如:数集、子集、真子集等)1.2 函数概念- 函数的定义与表示方法- 函数的性质(如:单调性、奇偶性、周期性等)- 函数的分类(如:线性函数、二次函数、三角函数等)二、实数与方程2.1 实数- 实数的分类与性质- 实数的运算规则2.2 方程- 线性方程的求解- 一元二次方程的求解- 方程组的求解(如:二元一次方程组、三元一次方程组等)三、三角函数3.1 三角函数的定义与性质- 角度与弧度制的转换- 三角函数的定义(如:正弦、余弦、正切等)- 三角函数的性质(如:周期性、奇偶性、单调性等)3.2 三角函数的图象与性质- 三角函数的图象特点- 三角函数的图象变换(如:平移、伸缩等)四、数列4.1 数列的概念与性质- 数列的表示方法- 数列的性质(如:单调性、周期性、收敛性等)4.2 等差数列与等比数列- 等差数列的通项公式与求和公式- 等比数列的通项公式与求和公式五、不等式与不等式组5.1 不等式的性质与解法- 不等式的性质- 不等式的解法(如:移项、合并同类项等)5.2 不等式组的性质与解法- 不等式组的表示方法- 不等式组的解法(如:同大取大、同小取小等)六、解析几何6.1 坐标系与直线- 坐标系的性质与表示方法- 直线的方程与性质(如:斜率、截距等)6.2 圆与椭圆- 圆的方程与性质- 椭圆的方程与性质6.3 抛物线与双曲线- 抛物线的方程与性质- 双曲线的方程与性质七、概率与统计7.1 概率的基本概念- 事件的分类与运算- 概率的求法(如:古典概型、条件概率等)7.2 统计的基本概念- 平均数、中位数、众数的定义与计算- 方差、标准差的定义与计算八、数学应用8.1 数学建模- 数学建模的基本方法与步骤- 数学建模的实际应用案例8.2 数学竞赛- 数学竞赛的类型与特点- 数学竞赛的训练方法与策略以上是对高三全册常考数学知识点的简要总结,希望能对您的有所帮助。
高三数学复习资料汇总
数学是一个系统化的逻辑体系,它有着明确的结构。
在这个结构的体系中,数学知识具有一定的抽象性和具体性。
下面是为大家整理的有关高三数学复习资料,希望对你们有帮助!高三数学复习资料汇总1(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是
x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.高三数学复习资料汇总21.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次
函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么
问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参
数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即ab0,a0.24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。
)28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第
一象限的角;终边相同的角和相等的角的区别吗?30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)33.反正弦、反余弦、反正切函数的取值范围分别是34.你还记得某些特殊角的三角函数值吗?35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?36.函数的图象的平移,方程的平移以及点的平移公式易混:(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4-3,即y=2x+5.(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为2(x+2)-(y+3)+4=0,即y=2x+5.(3)点的平移公式:点P(x,y)按向量平移到点P(x,y),则x=x+hy=y+k.37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)38.形如的周期都是,但的周期为。
39.正弦定理时易忘比值还等于2R。
高三数学复习资料。